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Introduction

Photoacoustic tomography (PAT) has been a fast-developing 
hybrid imaging technique in the past two decades. It can 
provide high absorption contrast of optical imaging and 
superior spatial resolution of ultrasonic imaging in deep 
biological tissues. Reconstructions of high-quality images 
representing the distribution of optical absorption, initial 
pressure, and optical parameters of the imaged tissues are 
essential in PAT. Conventional methods such as analytical 
methods,1–5 time reversion (TR),6 and iterative methods7–9 
enable reconstructions with high quality from complete 
acoustic measurements. They are generally based on the 
premise of an ideal point detector with omnidirectional 
responses (i.e. it is equally sensitive to pressure waves from 

any direction), ignoring the effects of the detector responses 
on the acoustic measurements. However, to collect weak 
PA signals, planar unfocused ultrasonic transducers with 
large detection areas are usually used in practical applica-
tions, considering the drawbacks of the point detector, such 
as small effective area, poor sensitivity, and low signal-to-
noise ratio (SNR). The diffraction effect of flat unfocused 
transducers affects the acceptance angle and the delay accu-
racy, resulting in the finite aperture effect.10,11 In addition, 
the sampling signal output by the transducers is the result of 
the convolution of the acoustic pressure reaching the trans-
ducer surface with the transducer responses. The responses 
of the ultrasonic transducers in receive-mode are generally 
depicted by their spatial impulse response (SIR) and elec-
tric impulse response (EIR). EIR characterizes the electrical 
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response of the transducer. In contrast, SIR models the aver-
aging effect over the active area, reflecting the anisotropic 
detection sensitivity caused by the finite receiving surface 
of the transducer.12 If EIR and SIR are not considered in the 
image reconstruction algorithms, the image resolution and 
imaging accuracy will be reduced.

Different methods have been reported to mitigate the 
impact of detector properties on the quality of PAT images. 
We classified the main techniques into four categories: 
focused transducers, negative acoustic lens, compressed 
sensing (CS), and model-based image reconstruction, as 
shown in Table 1.

Unlike a point detector, a focused transducer enables 
detection of the PA radiation generated by the acoustic 
sources in a specific angle range by its focus, that is, a virtual 
point detector.10,13–15 The tangential extension of the point 
spread functions (PSFs) of a focused transducer is narrower 
than that of an unfocused transducer, improving the tan-
gential resolution of the reconstructed images. However, 
this improvement is at the expense of the radial resolu-
tion.13,14 Fortunately, the trade-off between the tangential 
and radial resolution is acceptable, especially when imag-
ing large objects such as breasts.14 In addition, the f-number 
of a focused transducer determines its acceptance angle, 
which also affects the tangential and radial resolution and 
should be optimized to achieve optimal image reconstruc-
tion performance.

A finite-size unfocused detector has a large active area, 
high sensitivity, good SNR, and a slight acceptance angle. 
A partial solution is to use a negatively focused acoustic 
lens attached to the transducer surface to achieve a larger 
acceptance angle. With such a detector, the tangential resolu-
tion can be increased by more than three times than the flat 
detector.16–18 In addition, the imaging range can be further 
improved by enlarging the acceptance angle. However, the 
quality of lens fabrication, the acoustic reverberation inside 
the lens, and the film defects between the lens and transducer 
surface will lead to artifacts in images. In addition, the signal 
loss caused by acoustic absorption inside the acrylic lens and 

the impedance mismatch between the acoustically coupled 
mineral oil and the acrylic lens must also be considered.

CS has been a practical scheme for reconstructing images 
from incomplete measuring data. It can remove artifacts 
originating from incomplete measurements while signifi-
cantly reducing the system cost and data acquisition time. 
For instance, Chiu et al.19 presented a CS-based method to 
eliminate the finite aperture effect in PAT image reconstruc-
tion by incorporating the SIRs of the finite-sized flat trans-
ducer into the linear discrete imaging model. However, they 
did not consider the impact of noises in the experimental 
verification.

The model-based scheme has been demonstrated effective 
in reconstructing images with high quality from complete or 
incomplete measurements.20–26 In this scheme, image recon-
struction essentially involves the inversion of a forward 
imaging model. Li and Cheng27 and Li et al.,28 for the first 
time, demonstrated the feasibility of model-based reconstruc-
tion to solve the problem of the spatial resolution degrada-
tion caused by finite-sized unfocused ultrasonic transducers 
without changing imaging settings. Based on the discrete 
imaging model, they designed a spatial-temporal optimal 
filter used for deconvolution with the SIR of the transducer 
for each point in the PA data set. This method effectively 
improved the tangential resolution while maintaining the 
radial resolution. Although it provided uniform peak ampli-
tudes of PSF in all imaging domains, the sidelobe level might 
become more significant in the case of the object close to 
the detector surface. Later, various methods for numerically 
compensating for the transducer effects in image reconstruc-
tion algorithms were explored.12,29–38 These methods are gen-
erally computationally burdensome because of their nature 
of iterative least-squares minimization. However, incorpo-
rating far-field approximation into the forward model can 
reduce the computational complexity.30

In addition, deconvolution has been applied to reduce 
blurring in PA images caused by a finite detector size.39–45 
As a post-processing method for detector data or recon-
structed images, the deconvolution-based algorithms can 

Table 1. Comparison of methods for correcting the finite aperture effect in PA imaging.

Method Advantages Drawbacks Applications

Focused transducers The tangential resolution is significantly 
improved.

There is a loss in the radial 
resolution.
The number of geometric 
focus (f) is not considered.

PAT systems with focused transducers which 
perform 2D circular scanning around large 
imaging objects such as breast.

Negative acoustic 
lens

The tangential resolution is more than three 
times higher than the flat detector.
The larger scanning area can be imaged.

Poor quality of lens leads 
to signal loss or image 
artifacts.

PAT systems equipped with an unfocused 
flat ultrasonic transducer whose surface is 
completely covered by a negative cylindrical lens.

Compressed sensing 
(CS)

The tangential resolution is effectively improved.
The artifacts caused by incomplete 
measurements are eliminated.
The system cost and data acquisition time are 
reduced.

The measuring noises are 
not considered.

Dirac impulse acoustic 
sources without 
considering EIR.

Complete or 
incomplete PA 
measurements.

Model-based image 
reconstruction

The degraded tangential resolution for PAT 
with finite-sized unfocused transducers is 
effectively improved, while the radial resolution 
is reserved.
The spatial invariance of resolution is ensured.

A large amount of PA data 
are required to be collected.
High computational burden 
must be considered due to 
the iterative optimization.

Complete PA 
measurements.

PA: photoacoustic; PAT: photoacoustic tomography; EIR: electric impulse response.
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improve the image resolution without physically increasing 
the numerical aperture of the imaging system. However, the 
possible noises introduced by post-processing procedures 
should not be neglected.

Recently, Luo et al.46 presented a fast method for correcting 
the finite aperture effect in circular/spherical-scanning-based 
PAT systems. The process is based on the quick calculation 
of SIR-related parameters and compensation of the SIR in 
the framework of the blood pressure (BP) reconstruction. 
The simulation and phantom experiments demonstrated 
improved lateral resolution and SNR over the conventional 
BP. Luo’s method is theoretically more computationally effi-
cient than the model-based scheme. However, they did not 
consider the EIR of the detector and did not conduct experi-
mental comparisons with the model-based methods.

Note that an essential difficulty with the image recon-
struction incorporating the detector effects is the unknown 
EIR of the transducer. It is usually measured by experiment 
in practical applications because it is difficult to model it 
accurately using relatively simple analytical models, and 
the parameters employed in theoretical models cannot be 
accurately measured.20,33 This measurement is very sensi-
tive to noise and other errors, reducing the accuracy of the 
system matrix.33,47 The readers are referred to Han et al.33 for a 
comprehensive survey on the progress of EIR measurement. 
Alternatively, a joint optimization approach can solve this 
issue.36,37 The measured EIR is refined with a variable pro-
jection method to recover the optical deposition by exploit-
ing the bi-linearity of the imaging model.32,33 This approach 
enables low-cost and adequate compensation for the model 
mismatch. However, it is required to choose the regulariza-
tion parameters reasonably to obtain satisfactory reconstruc-
tion results.

Endoscopic photoacoustic tomography (EPAT) is an inva-
sive application of PAT for biological luminal structures.48–51 
In this study, we present a model-based image reconstruction 
method for EPAT, which incorporates the SIR and EIR of the 
detector into the imaging model. The process involves two 
steps: establishing a forward imaging model and inversing 
the forward model through iterative optimization. Results of 
verification and comparison with conventional BP and other 
model-based algorithms demonstrate the superiority of our 
method in improving the quality of EPAT images.

Materials and methods

Forward imaging model incorporating detector 
responses

EPAT utilizes an imaging catheter with a probe mounted on 
its tip inserted into the target cavity or lumen. As shown in 
Figure 1, the transversal imaging plane, that is, the cross- 
section of the luminal structure, is perpendicular to the cath-
eter located in the image center. The collimating light source 
is the inward photon flow at the surface boundary facing the 
source. Light transport in the tissues is modeled by the radia-
tive transfer equation (RTE), which is simplified as a diffu-
sion equation (DE) based on the assumption that the reduced 
scattering coefficient is much larger than the absorption coef-
ficient.52 Solving the DE produces light fluence. The optical 
deposition is proportional to the absorption coefficient and 
light fluence as follows53

 A r r r( ) = ( ) ( )µa Φ  (1)

where A(r), μa(r), and Φ(r) denote the absorbed optical 
energy density (AOED), absorption coefficient, and light 

Figure 1. Planar co-ordinate systems of the imaging plane for EPAT. (a) Cartesian co-ordinate system and (b) polar co-ordinate system. (A color version of this figure 
is available in the online journal.)
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fluence at a location r∈Ω , respectively. Ω is the imaging 
domain. The initial pressure induced by optical absorption 
is proportional to the AOED and the Gruneisen coefficient. 
The acoustic propagation in the tissues is governed by the 
following PA wave equation10
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where p(r, t) is the acoustic pressure at location r and time t, 
CP is the specific heat capacity at a certain pressure, βe denotes 
the thermal expansion coefficient, cs represents the speed of 
sound, and Ie(t) is the function depicting the incident laser 
pulse in time-domain. The initial condition of equation (2) is 
as follows: p t pt( , ) ( )r r= =0 0  and ( / ) ( , )∂ ∂ ==t p t tr 0 0 , where 
p0(r) is the initial pressure.

The photoacoustically induced ultrasonic waves, that is, 
PA waves, are collected by a finite-sized unfocused ultra-
sonic transducer in receiving mode along a circular trajec-
tory in the imaging plane. The PA data set collected via a 
full-view (360°) scanning contains L A-scan lines. The radial 
angle of the lth A-line is θl l= −360 1( ) L , where l = 1, 2, . . ., 
L. A total of K points are sampled on each A-line. The wave 
propagation and acquisition are treated as a linear time-
invariant system. The voltage signal output by the detector 
at time t and angle θl in response to the acoustic pressure 
reaching its surface is represented by a K × 1-dimensional 
vector

 u e h r h r rre et t t tθ θ θl l l p d, , , ,SIR( ) = ( ) + ( ) ( )∫ ∈ , * *Ω  (3)

where ue(θl, t) denotes the theoretical sampling voltage 
vector at angle θl and time t output by the detector, e(θl, t) 
is the additive measurement noise vector, “*” denotes the 
convolution in the time-domain, he is the EIR vector of the 
detector, and hSIR is the SIR vector from the detector posi-
tion to location r27,28
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here, rd S∈  denotes the position on the active area S of the 
transducer.

Reconstruction of images representing AOED

The spatial distribution of the AOED on a cross-section of 
the imaged object is reconstructed from the sampling voltage 
signal output by the detector via inversion of the forward 
model. The non-linear least square (NLS) problem estimat-
ing the AOED at a position r within the imaging domain is 
defined as follows
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here, Â  denotes the estimated AOED, A represents the 
AOED to be optimized, um is the measured sampling volt-
age signal, η is the regularization parameter, g(A(r)) is the 
L1 regularization term, ⋅  is the Euclidean norm, and H(·) 
is the forward imaging operator depicting the process from 
the AOED to the sampling voltage signal.

The fast iterative shrinkage thresholding algorithm 
(FISTA)54 is employed to solve the NLS problem iteratively. 
The AOED is taken as the unknown being updated at each 
iteration until the output of the forward model matches the 
sampling voltage output by the detector. The principle of the 
FISTA is as follows.

The quadratic approximation of f(A(r)) at a given point y 
is written as
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where L > 0 is the Lipschitz constant, ∇f is the gradient of f, 
and <·> denotes the inner product of two vectors defined 
by < >=x y x y, T . The minimum of equation (7) is determined 
as follows
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Then, the primary iterative step for solving equation (5) is

 A yk L kpr( ) = ( )  (10)

The detailed steps of iteration are as follows:

Step 1. Initialization. The iteration times k = 1; the step 
size t1 = 1; the initial guess of the AOED is denoted as A0(r); 
and y1 = A0(r).

Step 2. Determination of the Lipschitz constant. The  
Lipschitz constant is determined as follows

 L = ( )2λmax H HT  (11)

where λmax(·) represents the greatest eigenvalue of a matrix.

Step 3. Calculation of the AOED at the kth iteration. The 
AOED at position r at the kth iteration is determined as 
follows
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where

 f my yk k( ) = ( ) − ( )u r H
2  (13)

and H u r( ) ( )yk = k  is the theoretical voltage signal output by 
the detector at the kth iteration.

Step 4. Updating of yk. yk and tk are updated as
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Step 5. Termination of the iteration. The termination of the 
iteration is determined by

 ε = ( ) − ( )u r u rm k 2

2  (16)

where ε < 10−9 indicates the termination of the iteration, and 
accordingly, the estimates of AOED are the output; other-
wise, proceed to Step 6.

Step 6. Let k ← k + 1 and return to Step 2

Experimental data and evaluation metrics. We used 
numerical phantoms to demonstrate the validity and 
evaluate the performance of the proposed method consid-
ering the lack of enough ground truth for human tubular 

structures. As shown in Figure 2, we generated the simple 
phantoms containing dot-grid and the complex phantoms 
mimicking coronary arterial vessels with plaque burdens. 
In the simple phantom, there are 25 dots with the radius of 
0.03 mm evenly distributed along the angle of 0°, 45°, 90°, 
135°, 180°, 225°, and 270° in the imaging plane. The complex 
vessel phantoms contain multilayered tissues with different 
compositions varying from healthy tissues to rupture-prone 
plaques. The size of the imaging plane is 3 mm × 3 mm.  
By referring to histological findings on human arterial  
vessels,55,56 we selected the optical and acoustic properties 
and geometrical parameters of different types of tissues, 
as shown in Table 2. The speed of sound and mass density 
of the vessel phantoms follow the Gaussian distributions 
based on the values provided in the table. We achieved 
the optical fluence simulation by discretely solving the 
DE with the finite difference time-domain algorithm. The 
forward acoustic process, including initial pressure signal 
generation and acoustic propagation, was simulated using 
the k-wave toolbox.57 The sampling voltage signal output 
by the detector in response to the acoustic pressure reaching 
its receiving surface was generated based on equation (3). 
The noise vector was selected as an uncorrelated Gauss-
ian white noise with zero mean and an SNR of 10 dB. The  
SD σ was determined by σ = 0 03. max[ ]ûe , where max[ ]ûe  
is the maximal component of the theoretical sampling volt-
age vector without noise.12 The SIR vector from the detector 
position to each location in the imaging domain was gen-
erated using the Field II simulation toolbox of MATLAB,58 
and the EIR was obtained by referring to Sheng et al.32 as 
shown in Figure 3.

Figure 2. Geometry of simple dot-grid phantom and cross-sections of coronary vessel phantoms. (A color version of this figure is available in the online journal.)
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In addition to visual inspection, we also quantitatively 
evaluated the quality of reconstructed images using stand-
ard metrics, including peak signal-to-noise ratio (PSNR), 
structural similarity index measure (SSIM), and normalized 
mean square absolute distance (NMSAD).59 PSNR evalu-
ates the image quality based on error sensitivity. NMSAD 
and SSIM measure the similarity between the reconstructed 
and ground truth images. High PSNR, high SSIM, or low 
NMSAD suggests reconstructions with high quality. In 
this work, the result images obtained by simulation were 
regarded as the ground truth images.

The conventional BP53 and Wang’s iterative reconstruc-
tion method12 were employed to make a comparison with 
the method proposed in this work. Wang’s method was 
developed for reconstructing three-dimensional PAT images 
based on an imaging model incorporating detector proper-
ties. As it utilized the conjugate gradient (CG) algorithm 
as the optimization framework, we call the CG method 
below for brevity. The programming environment of our 
experiments is MATLAB (R2018a, The MathWorks, Inc., 
Natick, MA, USA) on a personal computer configured with 
a 2.11 GHz Intel® Core™ i5-10210U CPU, 8 GB RAM, and 
Windows 10 64 bits as the operating system.

Results

Results of image reconstruction

Figures 4(a) and 5(a) show the ground truth images of the 
simple phantom and vessel phantoms obtained by numeri-
cal simulation. The images represent the maps of the spa-
tially varying AOED. Figures 4(b) to (d) and 5(b) to (d) 
highlight the images reconstructed with the conventional 
BP, CG method, and our method, respectively. In the tradi-
tional BP reconstructions, a point-like ultrasonic transducer 
was assumed. In our approach, the initial AOED in the 
iteration was set to 0.9. From the figures, we can find that 
our approach improved the spatial resolution of the images 
as compared to the BP reconstructions. The images recon-
structed by iterative inversion of the forward imaging model 
incorporating the detector responses can display the inner 
structures of different tissue types such as atherosclerotic 
plaques with various components embedded into the vessel 
wall. In contrast, these structures are significantly blurred in 
the images recovered by the traditional BP. Moreover, our 
approach outperforms the CG method in recovering the 
AOED distribution. The images obtained by our method 
are more similar to the forward simulations, represented 
by the PSNR, SSIM, and NMSAD results in Figure 6. The 
convergence of CG minimization highly depends upon both 
appropriate values of the initial guess and the termination 
conditions of the iteration. An unreasonable initial guess 
will lead to an unsatisfactory convergence. The termination 
condition directly determines the iteration times. Too many 
or too few iterations will lead to low accuracy of the solution, 
thereby affecting the quality of the reconstructed images. 
Therefore, it is essential to select the appropriate iteration 
termination conditions.

Influence of the optimization framework

The model-based reconstruction scheme must use appropri-
ate optimization algorithms and regularization tools to solve 
the NLS problem effectively. We designed three experiments 
to discuss the influence of various optimization algorithms 
combined with different regularization tools on the recon-
structions by our method.

First, we compared the reconstructions using FISTA 
combined with L1, total variation (TV), and the Tikhonov 

Table 2. Characteristic parameters of simple dot-grid phantom and coronary vessel phantoms.

Tissue name Tissue composition Refractive index μa 
(cm−1)

μs 
(cm−1)

Anisotropy factor Speed of sound 
(m/s)

Mass density 
(kg/L)

Radial thickness 
(mm)

Dot target – 1.40 0.99 450 0.80 1635 1.30 0.03
Vessel wall adventitia Connective tissue 1.39 0.70   5 0.80 1600 1.02 0~0.5
Vessel wall media Muscular tissue 1.39 0.40   5 0.80 1580 1.07 0.1~0.4
Vessel wall intima Muscular tissue 1.39 0.20   5 0.80 1560 1.07 0.2~0.5
Calcified plaque Calcium 1.42 0.60 550 0.80 1650 0.94 0.01~0.25
Lipid-rich plaque Lipid 1.42 0.90 500 0.80 1500 0.96 0.1~0.3
Macrophage White blood cell 1.42 0.96 450 0.80 1620 0.97 0.1~0.2
Necrotic core Nucleus 1.42 0.80 450 0.80 1620 0.97 0.1~0.2
Mixed calcified plaque Calcium 1.42 0.60 550 0.80 1650 0.94 0.01~0.3
Vascular lumen Blood 1.32 1.00 600 0.99 1540 1.13 1.2~1.7

Figure 3. Profiles of EIR and SIR of the detector concerning time. (A color 
version of this figure is available in the online journal.)
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regularization. Figures 4(d) to (f) and 7 show the results that 
exhibit no significant difference between the visualization of 
the reconstructed images. The evaluation metrics provided 
in Figure 8 indicate better quality of the reconstructions by 
FISTA + L1 than FISTA + TV and FISTA + Tikhonov.

Second, we compared the performances of four optimiza-
tion algorithms, Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
quasi-Newton, CG,12 Levenberg–Marquardt (L-M),60 and 
FISTA, each combined with L1 regularization in solving the 
NLS problem depicting the model-based image reconstruc-
tion. The results in Figures 9 to 11 indicate that FISTA + L1 
and BFGS + L1 outperform CG + L1 and L-M + L1.

The L-M algorithm combines the steepest descent with 
the Gauss–Newton method to find the optimal value quickly. 
By updating the damping parameter, its parameter update is 
varied between the steepest descent update and the Gauss–
Newton update. A small damping parameter leads to an 
update of Gauss–Newton, whereas a large one corresponds 
to the steepest descent update.54 The steepest descent might 
converge to different local minima because the descent is 
fast when the estimated parameters are far from their opti-
mums at the beginning of the iteration. In contrast, it is 
slow when the parameters are close to their optimums. The 
Gauss–Newton method might also converge to local minima 
if the initial guess is far from the optimal solution due to a 
too sizable iterative step size. In addition, the reconstruction 
quality of FISTA + L1 is slightly better than that of BFGS + L1 
since the BFGS convergence value depends on the eigenval-
ues of the Hessian matrix. The larger the eigenvalues, the 

more iterations are required to correct them. As shown in 
Figure 11, FISTA requires the least iteration times to converge 
to the global minimum among the four algorithms.

Third, we conducted experiments to analyze the influence 
of various regularization tools on the reconstruction quality 
by BFGS. From the results shown in Figures 12 and 13, we 
found that BFGS + L1 can achieve better reconstruction qual-
ity than BFGS + TV and BFGS + Tikhonov, demonstrating 
that changing the regularization term does not improve the 
quality of reconstructions by BFGS.

Influence of the initial guess of iterations

We changed the initial AOED in iteration while letting the 
other parameters remain unchanged to discuss the depend-
ence of our method on the values of the initial guess. Figures 
14 and 15 provide the results in the cases of A0(r) = 0.3, 0.6, 
and 0.9, respectively, which demonstrate the robustness of 
our method concerning the initial guess of iteration.

Discussion

Image reconstruction is an essential issue in PAT imaging.  
The method used to reconstruct tomographic images 
depends on the complexity of the imaged structures, collect-
ing the photoacoustically induced acoustic waves, and the 
type of detector. EPAT is an endoscopic application of PAT to 
visualize the anatomical structures and functional composi-
tions of biological tubular structures. Its scanning aperture is 

Figure 4. Image results of the simple phantom. (a) Ground truth image, (b) BP reconstruction, (c) CG reconstruction, (d) reconstruction with our method (FISTA + L1), 
(e) reconstruction with FISTA + TV, and (f) reconstruction with FISTA + Tikhonov.
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enclosed in a digest cavity or a vascular lumen with complex 
geometry. Therefore, sparsely sampling in a limited view is 
inevitable owing to the limitation of the mechanical struc-
tures of the catheter. EPAT cannot directly use well-devel-
oped PAT image reconstruction methods. On the contrary, 
the reconstruction methods developed especially for EPAT 
cannot be applied to PAT without any changes. This study 
focuses on reconstruction enhancement techniques for EPAT 
rather than general PAT.

The model-based image reconstruction is essentially the 
inversion of a forward operator, such that the reconstruction 
accuracy relies strongly on accurate forward modeling. The 
forward model of photoacoustic imaging includes optical 
model, acoustic model, and ultrasonic detection model. The 
optical model describes the transmission of incident light in 
the tissue, and the acoustic model depicts the propagation of 
photoacoustic waves in the tissue. The two are coupled by 
the thermoelastic effect. RTE is a widely accepted physical 

model of light transmission in turbid media. Given the light 
source, the geometry of the imaging target, and optical 
parameters of the imaging medium, solving the RTE pro-
duces the theoretical light fluence. However, the solution of 
the RTE is a computationally burdensome task since it is an 
integrodifferential equation in phase space. Discretization is 
required in both space domain and angle domain. Therefore, 
its approximations are generally applied in optical imaging, 
such as the diffusion approximation and Monte Carlo (MC).61 
The diffusion approximation is a deterministic model based 
on which the RTE is simplified as the DE. The solution of the 
DE is relatively simple in that discretization is needed only in 
the space domain. However, the diffusion approximation is 
only valid in the diffusion domain, that is, the region of sev-
eral mean free paths from the light source. For PAT, the area 
close to the light source and the imaging domain boundary 
constitute essential parts of the recovered image. They usu-
ally contain crucial information required for the evaluation 

Figure 5. Image results of the vessel phantoms. (a) Ground truth images and (b) to (d) images reconstructed with BP, CG, and our method, respectively.



Sun and Sun  EPAT image reconstruction including detector responses  889

Figure 6. Evaluation metrics of the images reconstructed with BP, CG, and our method, respectively. (A color version of this figure is available in the online journal.)

Figure 7. Images of the vessel phantoms reconstructed with FISTA optimization. (a) FISTA + L1, (b) FISTA + TV, and (c) FISTA + Tikhonov.
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Figure 8. Evaluation metrics of the images shown in Figures 4(d) to (f) and 7. (A color version of this figure is available in the online journal.)

Figure 9. Images of the vessel phantoms reconstructed with different optimization schemes. (a) FISTA + L1, (b) BFGS + L1, (c) CG + L1, and (d) LM + L1.
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Figure 10. Evaluation metrics of the images shown in Figure 9. (A color version of this figure is available in the online journal.)

Figure 11. Iteration times for recovering the AOED at several locations in the cross-section of vessel phantom I with different optimization algorithms. (A color version 
of this figure is available in the online journal.)
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Figure 12. Images of the vessel phantoms reconstructed with BFGS optimization. (a) BFGS + L1, (b) BFGS + TV, and (c) BFGS + Tikhonov.

Figure 13. Evaluation metrics of the images shown in Figure 12. (A color version of this figure is available in the online journal.)
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Figure 14. Images of the vessel phantoms reconstructed with different initial values of AOED. (a) 0.3, (b) 0.6, and (c) 0.9.

Figure 15. Evaluation metrics of the images shown in Figure 14. (A color version of this figure is available in the online journal.)
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of diseased tissues. Light transmission in these regions is 
highly anisotropic, so the diffusion approximation does not 
hold. Alternatively, MC is a stochastic method that simulates 
interactions between light and tissues. A calculative brief 
model of light propagation in turbid media is required in 
the model-based image reconstruction algorithms because 
the forward operator is calculated repeatedly during itera-
tion. Therefore, this would consider the computational and 
accuracy trade-offs between DE and MC to better determine 
what situations would be used. Figures 16 and 17 provide 
the image results of DE and MC, respectively. The results 
reveal insignificant differences between the quality of the 
final reconstructions by DE and MC, while MC is computa-
tionally burdensome than DE. These results suggest that the 
possible inaccuracy of DE in modeling light transport in the 
regions where the diffusion approximation is invalid is tol-
erable in terms of the significant improvement in the image 
quality and computational cost.

In addition, the image reconstruction algorithm should 
take the detector properties into account to improve the 
image quality. In this work, we only incorporated the spa-
tial and temporal responses of the detector into the forward 
model. However, in practical applications, the detector direc-
tionality,62 limited aperture,11 limited view,63 limited band-
width,64 scanning radius,65 and the uncertainty of detector 
position66 affect the reconstruction quality apart from the EIR 
and SIR. We will optimize the accuracy of the forward model 
further in our future work by incorporating these detector 

properties into the model, ultimately improving the quality 
of reconstructed images.

In addition, even though promising results have been 
obtained with simulation data, verifying the fidelity of the 
recovered structures for in vivo images is still technically 
challenging. It is a common problem in image reconstruc-
tion and enhancement methods due to the lack of ground 
truth information on the underlying tissue properties when 
acquiring experimental measurements.64 Our future work 
will validate our approach on in vivo data.

Conclusions

We designed a method for EPAT image reconstruction con-
sidering the detector responses. We incorporated the SIR 
and EIR of the detector into the forward model. We then 
reconstructed the cross-sectional images representing the 
AOED distribution based on the sampling voltage signals 
by iteratively solving the inverse problem of the forward 
model. The results of the simulation data demonstrated the 
improvement of the reconstruction quality by our method 
compared with conventional BP and the previous CG 
method. Our comparison results indicate that the image 
quality reconstructed with FISTA + L1-regularization is bet-
ter than FISTA + TV-regularization and FISTA + Tikhonov-
regularization. In contrast, FISTA is superior to BFGS, 
CG, and L-M when L1 regularization is used. In addi-
tion, our model-based reconstruction based on FISTA + L1 

Figure 16. Evaluation metrics of reconstructed images when using DE and MC for light transport modeling, respectively. (A color version of this figure is available in 
the online journal.)
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optimization has been demonstrated to be robust to the ini-
tial guess of iteration.
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