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Introduction

Cancer is characterized by the deregulation of cellular 
pathways that regulate several critical components of cell 
behavior, including growth and invasion into surrounding 
tissues. Particular types of cancer can differ in their cellular 
origins, acquired mutations, and microenvironmental condi-
tions, which contributes to a broad range of phenotypes and 
frustrates the search for a silver bullet treatment.1 Instead, 
cancer treatment utilizes a personalized approach, where 
adjustments to treatment are made in response to disease 
progression. Over the past 30 years, this strategy has shown 
some success as cancer death rates have fallen 31% due to 
improvements in prevention, detection, and treatment.2 In 
spite of these gains, cancer remains the second leading cause 
of death in the United States, and more than one in three 
people are expected to develop cancer during their lifetime.2 
Even more concerning is the fact that novel cancer drugs 
entering clinical trials only have a 3.4% approval rate by the 
US Food and Drug Administration (FDA), and these drugs 
that do pass often have little to no effect on overall survival.3,4 
These data suggest a disjunction in the drug development 
pipeline where clinical outcomes do not realize the same 
degree of therapeutic success observed in preclinical studies.

The low rate of clinical translation for novel cancer 
therapies is due in part to the complex and interconnected 
network of the tumor microenvironment (TME), where 
cancer cells reside.5,6 This background encompasses all of 
the participatory components of a tumor including local 
specialized cell types (immune cells, fibroblasts, etc.), the 
extracellular matrix (ECM), chemical gradients, and physi-
cal conditions, such as interstitial fluid pressure and shear 
stresses. Critically, these components vary at local and 
regional scales, and, when combined with the genomic 
instability of cancer cells, results in a highly heterogenous 
disease state. These local differences in the TME have been 
shown to affect clinically significant tumor properties, 
such as cancer development, progression, and therapeu-
tic response.6,7 One particularly prominent process is the 
metastatic cascade, a hallmark of cancer that is long recog-
nized as a significant cause of cancer-associated mortality, 
yet remains poorly characterized.8–14 The recent designa-
tion of metastasis-free survival as an emerging clinical trial 
endpoint by the FDA demonstrates both the importance of 
improving our understanding of metastasis and the influ-
ence of the TME in therapeutic development.14

To study the role of the TME in cancer development 
and progression, cancer models are designed with varying 
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The low success rate of prospective therapeutics 
to the clinic, with an average cost of ~$650 mil-
lion dollars each, is a large barrier to cancer drug 
development. As high rates of failure occur at the 
end of clinical testing, the identification of effective 
and translatable candidates must be made more 
rigorous to mitigate the loss of time and capital. To 
accomplish this aim, integration of cancer tissue 
models with advanced tissue monitoring and con-
trol systems is needed.

Experimental Biology and Medicine 2022; 247: 598–613. DOI: 10.1177/15353702221074293

mailto:cadyn@sunypoly.edu


Head and Cady  Modeling technologies for studying the tumor microenvironment  599

degrees of experimental control, system complexity, and 
model accuracy. A particular challenge for cancer models is 
accounting for the heterogeneous nature of the TME while 
maintaining experimental reproducibility and practicality. 
The conventional pipeline for cancer research is to first screen 
for potential biological processes in vitro and then to validate 
therapeutics in vivo before moving to human testing. This 
approach is standard practice because the low cost and high-
throughput capabilities of cell culturing techniques allow for 
robust candidate screening and pathway characterization, 
while in vivo models enhance the physiological relevance of 
therapeutic potential findings and test for systemic toxicities. 
Yet, the low success rate of this methodology in identifying 
clinically viable therapeutics suggests that there is room for 
improvement. Major concerns, namely, the poor recapitula-
tion of physiological conditions in two-dimensional (2D) 
cell culture and the significant differences between human 
and murine drug response, encourage re-examination of 
conventions in translational cancer research.15,16 In the fol-
lowing section, we summarize conventional cancer models, 
discuss their advantages and disadvantages, and summarize 
common quantification techniques to motivate the need for 
emerging cancer research tools (Figure 1). In later sections, 
we review techniques and technologies that can address gaps 
present in conventional cancer model technology through 
TME monitoring and manipulation.

Existing preclinical cancer models

In vitro and in vivo cancer models are critical tools in the 
investigation of cancer signaling pathways and development 
of novel diagnostic and therapeutic technologies. Recent 
advances in molecular characterization and genetic engi-
neering have rapidly expanded both our grasp on cancer 
development and allowed for the rapid generation of new 
cancer models to better recapitulate particular aspects of can-
cer biology.17,18 In this section, a topical review of prominent 
in vitro and in vivo cancer modeling techniques is presented.

In vitro cancer models

Cell culture techniques are some of the most accessible meth-
ods for studying cancer biology. They enable a bottom-up 
approach where system complexity is constructed using 
well-characterized components to recreate specific niches 
in the cell microenvironment.17,18 This additive property of 
in vitro cell culture ensures a high degree of experimental 
control and target selectivity, which improves experimen-
tal reproducibility and enables high-throughput analysis. 
The bulk of in vitro cancer research is done using commer-
cial cancer cell lines due to their straightforward validation 
between laboratories and ease of maintenance.15 Cell line–
based models are particularly useful in the evaluation of 
cancer cell–specific properties, such as oncogenes and drug 

Figure 1. Schematic of prominent technologies used for modeling the tumor microenvironment. Cancer models determine the biological complexity that is 
being studied. Monitoring technologies quantify the parameters of interest during a study, and manipulation improves experimental control and model relevance. 
Combinations of these technologies are needed for effective translation of findings to the clinic. (A color version of this figure is available in the online journal.)
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sensitivity. However, cell lines also suffer from several limi-
tations, including the selective pressures of monolayer cul-
ture, which can cause genetic alterations that are not found 
in vivo, and clonality, which loses the intra- and inter-tumoral 
heterogeneity found in the clinic.19–21 These changes can then 
contribute to misrepresentation of cell behavior and drug 
sensitivity. Primary cells are used to circumvent many of 
these concerns; however, sourcing and maintaining primary 
cells is significantly more challenging than commercial cell 
lines. Moreover, repeated passaging and expansion of pri-
mary cells depletes native ECM components and can lead to 
epigenetic drift and loss of tissue morphology.20 Collectively, 
these shortcomings limit the scope of cell line monocultures 
to cancer cell–specific functions.

To compensate for these challenges, three-dimensional 
(3D) cell culture techniques have been used to more 

accurately model tumor architecture. Tumor spheroids are 
notable for their similarities to avascular tumors and are 
commonly used to recreate cell–cell interactions and differ-
ential exposure conditions22 (see Table 1). These properties 
restrict the availability of oxygen and nutrients in the core of 
spheroids, resulting in a gradient of proliferative and meta-
bolic cell behaviors that alter therapeutic response and cor-
relate with tumor conditions found in vivo.23 Spheroids can 
be generated from established cancer cell lines or derived 
from tumor tissue with varying degrees of cell dissociation 
and enrichment used to select for particular cell subpopula-
tions.22,24,25 Importantly, the inclusion of multiple cellular 
constituents allows for the probing of specific interactions 
between cell types.22,23 Owing to their construction from 
selected cell lines, however, spheroids lack control over ECM 
characteristics and fail to recapitulate higher-order tissue 

Table 1. Summary of 3D cancer cell culture techniques and animal models.

Technology Technique Description Advantages Disadvantages

Spheroid 
models

Multicellular tumor 
spheroids

Aggregation and compaction of 
suspended cancer cell lines26,27

Standardized cells; ideal for 
high-throughput screening 
(HTS); cell–cell interactions 
easily incorporated; and partial 
differentiation24

Immortalized cell lines and 
culture adapted

Tumorsphere (tumor 
organoids)

Clonal proliferation of cells 
suspended in stem-cell media24

Enriched for cancer stem cells Clonal cell population; only 
cancer stem cells

Tumor-derived 
spheroids

Partial dissociation and 
reorganization of tumor tissue

Recreates tumor properties/ 
microarchitecture

Not standardized cell lines and 
exclusively tumor cells

Organotypic 
spheroids

Mechanically diced and rounding of 
tumor tissue

Preserves tumor heterogeneity 
and microarchitecture

Not standardized cell lines

Scaffolds Hydrogel-based 
scaffold

Cross-linked hydrophilic polymer 
network28

Control over ECM proteins 
and growth factors and cell 
encapsulation

Poor mechanical properties

Porous scaffolds Various polymeric pore and fiber-
forming techniques29–31

Diverse material selection and 
engineered microstructures

Inefficient cell seeding and 
variable mechanical properties

Decellularized 
scaffolds

Decellularized ECM from tumor 
tissues32

Mimics natural tissue properties 
and biocompatible

Inefficient cell seeding; 
immunogenic response; and 
technical preparation

Explant model Tissue slice Sectioning of surgically extracted 
tumor tissue

Preserves tumor heterogeneity 
and tissue architecture

Low throughput and challenging 
to maintain long term

In vivo tumor 
models

Cell line–derived 
xenograft (CDX)

Transplantation of cultured cancer 
cells into immunocompromised 
mice20,33,34

Easily established; synchronous 
growth; and low cost

Low genetic heterogeneity

Patient-derived 
xenograft (PDX)

Surgically derived tumor 
transplantation of samples into 
immunocompromised mice34

Retains human TME interactions 
at low passage numbers and 
serial transplantation avoids in 
vitro selection conditions

Human stroma loss in higher 
passages; high cost; time 
intensive; and engraftment 
variability20,34

Environmentally 
induced model (EIM)

Induction of carcinogenesis via 
exposure to environmental stimuli

Relevant for tumorigenesis; 
captures genetic; and phenotypic 
heterogeneity

Difficult to determine tumor 
burden and long latency.20,35

Genetically 
engineered mouse 
model (GEMM)

Induces cancer by cloning 
oncogenes or knocking out tumor 
suppressors in immunocompetent 
mice34

Native TME and intact immune 
system

Variable gene expression and 
potential for random integration34

Humanized mouse 
(HM)

Engrafting human biological 
systems into immunocompromised 
mice

Incorporates aspects of the 
human immune system

Potential for graft rejection33

Other mammalian 
models (companion 
animals)

Naturally occurring tumors in 
animals that are genetically closer 
to humans than mice36

Increased relevance compared 
to mouse models and more 
representative pharmacodynamics

Higher operational costs; longer 
lifespans; and specialized 
expertise

Non-mammalian 
models

Tumor grafting on chorioallantoic 
membranes or zebrafish37,38

Low-cost alternatives to 
mammalian models and fewer 
ethical concerns

Labor intensive and limited 
to specific facets of cancer 
progression

ECM: extracellular matrix; TME: tumor microenvironment.
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behaviors such as vascularization. Precise control over spa-
tiotemporal biophysical and biochemical factors is also not 
available with conventional techniques. In addition, not all 
cell types are amenable to spheroid formation, their small 
size makes handling difficult, and uniform spheroid forma-
tion is necessary for comparison.39

Scaffold-based culture techniques are another method of 
3D tumor modeling when cell–ECM interactions are being 
investigated37,40 (see Table 1). Scaffolds can be hydrogels or 
porous substrates composed of natural or synthetic materi-
als. Natural polymers (e.g. alginate, chitosan, gelatin, colla-
gen, fibronectin, and Matrigel®) use prominent tumor ECM 
components that can contain native background factors and 
be reorganized by cells.37,41,42 This compositional complexity 
allows naturally derived polymers to mimic the structural 
heterogeneity found in vivo and promote organized cancer 
cell development.37 Unfortunately, certain naturally derived 
polymers can be highly variable, overly complex, difficult 
to isolate, and lack human-specific markers.32,42,43 Basement 
membrane scaffolds also tend to be derived from tumor 
tissue and thus may contain unquantified background 
proteins and effectors. Alternatively, synthetic polymers, 
such as poly(ethylene glycol), poly(vinyl alcohol), and 
poly(lactic-co-glycolic acid), are used for their high repro-
ducibility, tunable stiffness, and ease of modification.44 
Their commercial development provides a streamlined 
matrix selection process, but synthetic materials can also 
have cytotoxic components or unpredictable cell–polymer 
interactions.42 Other challenges to scaffold-based cell culture 
include achieving sufficient cell distribution, infiltration, 
and recovery.45 Cell–cell interactions are difficult to manage 
when seeding cell suspensions, but spheroid seeded scaf-
folds have shown higher drug resistance than spheroids on 
a flat surface and scaffolds seeded with dispersed cells.46

Histoculture (explant cell culture) is another approach 
that captures much of the complexity of the TME by cul-
turing sections of tumors grown in vivo (Table 1). While 
this setup is well suited for rapid testing and visualization, 
sample collection and long-term maintenance are difficult 
and only a fraction of the tumor’s overall heterogeneity is 
captured.47

While discussion of all available in vitro assays for stud-
ying the TME is beyond the scope of this work, a broad 
summary is valuable for recognizing opportunities for 
advancement in quantification. Evaluation of in vitro cancer 
models is primarily accomplished through measurement of 
cell markers and cell behaviors. Drug sensitivity assays test 
concentrations of anticancer drugs in microtiter plates to 
evaluate therapeutic effect.48 Cancer cell migration and inva-
sion are observed using Transwell® migration assays, where 
the movement of cells (B16F10, HeLa, MCF-7, MDA-MB213, 
T-47D, etc.) across a membrane is used to evaluate chem-
oattractant response and malignancy.15 Fluorescent reporter 
genes and colored dyes can be used to label markers, in par-
ticular, cancer pathways and track cell fate.49 These assays 
have been integrated into hypoxia-response pathways to 
link hypoxia to increased fibrous tissue deposition.50 For 
3D tumor models, additional cell processing or alternative 
analysis techniques may be employed to preserve spatial 
or organizational information. Metrics commonly used for 

the characterization of spheroids include size, shape, and 
cellular organization, which are best visualized through opti-
cal microscopy techniques (e.g. bright field, dark field, dif-
ferential interference contrast, and fluorescence imaging).23 
Flow cytometry can also be used for quantifying fluorescent 
markers in cells, but disaggregation is necessary for analy-
sis, and therefore, steps must be taken to prevent the loss of 
spatial information.23,29 Other considerations for 3D in vitro 
cell culture techniques include the autofluorescence of cer-
tain scaffold materials, such as collagen, which can interfere 
with scaffold-based culture imaging, as well as background 
signal from out-of-plane fluorophores.45 To counter these 
drawbacks, various sectioning techniques have been used to 
improve contrast and data collection, including light-sheet-
based fluorescence microscopy, two-photon microscopy, and 
multiphoton microscopy.23,37,29 Finally, chemical gradients 
and active flow systems are difficult to establish and main-
tain in most conventional cancer cell culture formats, and 
some in vitro assays are restricted to endpoint analysis, limit-
ing access to cellular dynamics.51 As such, in vitro methods 
are best suited for high-throughput testing and screening 
studies with low model complexity for mechanism discov-
ery and therapeutic candidate identification.

In vivo cancer models

In contrast to the low physiological relevance afforded by 
in vitro methods, in vivo models are used to capture a more 
complete picture of the biological complexity present in the 
TME by allowing cancer cells to grow in an environment 
that is similar to the human body (Table 1). This is a criti-
cal component for the translational research of novel thera-
peutics because it allows for systemic toxicity screens and 
provides more comprehensive data on the impact of clinical 
drug administration. However, the various autochthonous 
and non-autochthonous models that have been developed to 
study specific aspects of cancer progression are not univer-
sally applicable. For instance, immunotherapy, carcinogen-
esis, and early tumor growth are best studied with de novo 
techniques such as environmentally induced or genetically 
engineered mouse models, but, the rapid growth of multi-
focal tumors limits their application in studying late-stage 
cancer processes such as metastasis.20,52 On the contrary, 
transplant models using cell lines (4T1, B16, Lewis lung car-
cinoma, etc.) or patient-derived tumors are flexible platforms 
for observing therapeutic efficacy and tumor growth, as the 
location of tumor implantation can be chosen to simplify dis-
ease monitoring (ectopic), preserve TME interactions (ortho-
topic), or expedite metastatic dissemination and colonization 
(systemic).20,52 To model human cancers in animal models, 
cell line–derived xenografts (CDXs) are used for their lower 
costs and higher availability than patient-derived xenografts 
(PDXs), which have significantly higher clinical relevance 
but suffer from variable engraftment rates.52 Incorporation 
of patient-derived cells in hollow fiber implants (mini-
PDX) assays have also been demonstrated as an alterna-
tive approach to accelerate in vivo drug sensitivity testing.53 
Recently, the development of humanized mice has further 
increased the relevance of transplant models by integrating 
elements of the human immune system.33,54
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Despite the many advantages to studying the TME in vivo, 
challenges, including cost, time, high model variance, and 
low throughput, limit its statistical power compared to in 
vitro systems.41 Critically, concerns have also been raised 
that animal testing does not reliably translate to the clinic.16 
Tumor model differences including drug metabolism, 
immune system composition, tumorigenesis, and chimer-
ism can all contribute to response divergence.33,37 Also, while 
inbred animal populations are desirable for experimental 
reproducibility, clinically relevant parameters such as popu-
lation dynamics and inter-tumoral heterogeneity are absent. 
To combat some of these limitations, animal models with a 
higher genetic similarity to humans have been used, but their 
associated costs, development time, and handling expertise 
preclude widespread use.36 Alternatively, non-mammalian 
tumor models, such as yeast, zebrafish, and chicken chorio-
allantoic membranes, can be used for applications including 
carcinogens, oncogenes, and angiogenesis, while mitigating 
the costs and ethical concerns associated with mammalian 
models37,55 (see Table 1).

When evaluating changes to the TME in animal models,  
macroscale indicators such as tumor size, weight, and 
metastatic spread, measured by necroscopy, histology, or 
cytology, are commonly used to gauge cancer growth and 
progression.56 For observation of genetic and cellular changes 
occurring in the TME, molecular biology techniques (e.g. 
enzyme-linked immunosorbent assay (ELISA), quantitative 
polymerase chain reaction (qPCR), microarray, radioimmu-
noassay, flow cytometry, immunohistochemistry, western 
blot analysis, and proteomics) or optical imaging of labeled 
molecules (e.g. confocal, multiphoton, and wide-field fluo-
rescence) are typical.56–58 These assays, however, are often 
end-stage, limiting data collection to single timepoints per 
animal, and can disrupt the TME’s spatial organization. In 
contrast, non-invasive quantification techniques can provide 
anatomical and functional data ranging from tumor structure, 
perfusion, and permeability to metabolic activity and drug 
distribution over time, allowing for higher statistical power 
with fewer animals and multimodal analysis.59 Anatomical 

information is gathered using techniques with high spatial 
resolution, that is, computed tomography (CT), magnetic 
resonance imaging (MRI), photoacoustic imaging (PAI), and 
ultrasound (US), whereas, techniques with high sensitiv-
ity, such as bioluminescence imaging (BLI), fluorescence 
imaging (FI), intravital imaging (IVM), positron-emission 
spectroscopy (PET), Raman spectroscopy (RS), and single 
photon emission computed tomography (SPECT), are used 
for molecular imaging (Table 2).60 Collectively, these tech-
niques can illuminate tissue-level processes to gauge overall 
tumor behavior and therapeutic performance. Confocal and 
multiphoton microscopy, in particular, are advantageous for 
obtaining non-destructive optical sections of intact tissue.57 
Implementation of these technologies with intravital imag-
ing techniques further enhances the study of TME dynam-
ics by allowing observation without tumor excision.57,61–64 
Other considerations include imaging agent requirements, 
penetration depth, temporal resolution, and exposure to ion-
izing radiation, when deciding on a technique. Thus, in vivo 
models are optimum for performing crosstalk studies with 
high model complexity (angiogenesis and metastasis), ana-
lyzing drug biodistribution, and assessing systemic toxicity.

Improvements to preclinical cancer 
models via enhanced imaging and 
localized modulation

While conventional in vitro and in vivo cancer models have 
provided numerous insights into the TME, the continued 
low success rate of clinical translation indicates room for 
improvement. It stands to reason then that one of two 
changes needs to occur: either in vivo models must become 
satisfactory predictors of clinical success, or in vitro mod-
els should achieve sufficient clinical relevance that animal 
models are replaced. Thus, the following section surveys the 
use of novel engineering strategies to improve translational 
cancer model relevance and accessibility for more accurate 
findings. This is discussed in the context of technological 
improvements to monitoring and manipulation of the TME.

Table 2. Characteristics of current imaging modalities.

Sensitivity (M) Spatial resolution Depth of 
penetration

Temporal 
resolution

Cost Multiplexing 
capability

Magnetic 
resonance

Magnetic resonance imaging 
(MRI)

10−3 to 10−5 25 to 100 μm No limit Min to h $$$ No

Nuclear Positron emission tomography 
(PET)

10−11 to 10−12 1 to 2 mm No limit 10 s to min $$$ No

Single-photon emission computed 
tomography (SPECT)

10−10 to 10−11 1 to 2 mm No limit Min $$ Yes

Optical Bioluminescence imaging (BLI) 10−15 to 10−17 3 to 5 mm 1 to 2 cm Sec to min $ Yes
Fluorescence imaging (FI) 10−9 to 10−12 2 to 3 mm <1 cm Sec to min $ Yes
Intravital microscopy (IVM) 10−15 to 10−17 ~1 to 10 μm 700 μm Sec to days $$ Yes
Photoacoustic imaging (PAI) N/A 10 μm to 1 mm ~6 mm to 5 cm Sec to min $ Yes
Surface-enhanced Raman 
spectroscopy (SERS)

10−12 to 10−15 mm ~5 mm Min to days $ Yes

Ultrasound Ultrasound (US) >10−12 10–500 μm to 1–2 
mm

mm to cm Sec to min $ Yes

X-rays Computed tomography (CT) 10−2 to 10−3 50 to 200 μm No limit Min $$ N/A

Source: Adapted from James and Gambhir.60
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Monitoring and biomarker detection in the TME

As the high level of heterogeneity in the TME makes it dif-
ficult to trace crucial signaling pathways, minimally inva-
sive study at high resolution is needed for observation and 
detection of cell populations and molecular concentrations 
to track changes in diseased tissue and gauge therapeutic 
response. Improvements in data collection from 3D tissue 
structures are expected to preserve signaling and transduc-
tion pathways, reduce the number of animals needed for 
statistical significance, and improve the development time 
of potential therapeutics. To accomplish this need, an array 
of molecular imaging techniques and biosensor systems are 
used for biomarker recognition and visualization.

Imaging probes for TME characterization. The multitude 
of changes in the TME, such as ECM remodeling, neovascu-
larization, proteolysis, metabolic changes, and levels of 
reactive oxygen species (ROS) provide ample opportunities 
for biomarker recognition and imaging. Still, detection and 
quantification require sufficient target labeling with mini-
mal background signal. Imaging probes are combinations 
of ligands, linkers, and reporters used to identify targets 
through biomarker recognition. They can include geneti-
cally encoded reporters, exogenous fluorophores, and con-
trast agents. Their ability to bind with high specificity and 
selectivity to target moieties at sufficient concentrations and 
durations to detect above background is essential for TME 
characterization.60 Currently, conventional histological 
techniques have limited biomarker labeling capabilities and 
are restricted to 2D tissue slices (Table 3). Recent advances 
in multiplexed immunohistochemistry/immunofluores-
cence platforms (mIHC/mIF), however, have achieved 
high-throughput labeling of tissues using iterative staining, 
imaging and inactivation with dye-labeled antibodies.65,66 
This approach allows the assessment of biomarker colocal-
ization, distribution, and cell/tissue composition.66 Simi-
larly, tissue clearing for section-free volumetric microscopy 
and histo-cytometry is an emerging field for the collection 
of quantitative information from intact 3D tissue samples 
that has the potential to reduce sampling errors associated 
with heterogenous tissues and preserve anatomical rela-
tionships.67–69 Despite the impressive gains in TME detec-
tion and quantification, these techniques are still limited to 
end-stage analysis, and preparation times are significant 
(days).

For dynamic labeling of the TME, high-efficiency delivery 
methods are necessary due to the dilution and elimination of 
imaging probes in living systems. Current methods utilize 
genetic reporters and injectable imaging agents to achieve suf-
ficient contrast, which has enabled the quantification of a vast 
array of TME properties, including cell populations, tumor 
fluid perfusion, signal transduction, therapeutic action and 
biomarker expression70–73 (see Table 3). To further improve 
detection, targeted nano-carriers are being designed with 
moieties such as antibodies, small molecules, aptamers, and 
dendrimers to prioritize localization in desired tissues.74 Their 
larger size allows for the incorporation of multiple targeting 
probes and reporter molecules to fine-tune signal strength 

as well as the option for multimodal imaging to overcome 
limitations of specific imaging techniques.75 Pharmacokinetic 
characterization of these particles is necessary to account for 
their biodistribution profiles using techniques like tumor per-
fusion imaging.76 Other targeting methods utilize sensitized 
carriers or activation sites that respond to unique conditions 
in the TME, such as pH, O2, and protease concentrations.77–83 
For instance, fluorescence imaging of denatured collagen with 
photo-triggerable folding of collagen mimetic peptides cir-
cumvents limitations associated with targeting unstructured 
proteins.99 Similar strategies have also been demonstrated 
with fibrin imaging using MRI and SPECT.100,101 Finally, cell-
mediated labeling strategies, where cell-penetrating fluo-
rophores are used to mark neighboring cells can be used to 
identify local cell–cell interactions.102 Analysis of cells marked 
by this approach demonstrates a strategy for nonspecific func-
tional characterization of the metastatic niche.

Sensors for study of the TME. In addition to the novel 
molecular labeling approaches discussed in the previous 
section, TME sensors are promising alternatives to monitor 
both analyte concentrations (e.g. proteins, nucleic acids) 
and biophysical properties (e.g. pressure, stiffness) of the 
TME.58 Their wide range of readouts, including electro-
chemical, optical, and gravimetric (piezoelectric), provide 
additional sensing opportunities for biomarker detection 
and TME characterization that are not available with imag-
ing probes103–105 (see Table 3). They can also find application 
in lieu of cost-prohibitive analytical techniques. As dedi-
cated reviews on biosensors and their various classifica-
tions have been recently covered, we instead emphasize 
two key TME sensor characteristics: invasiveness and 
sensitivity.106,107

Invasiveness is a crucial consideration for TME investi-
gation as significant disruption of the tissue can alter cell 
behavior and distort experimental results. This property is 
especially important in vivo, where animal stress, tissue dam-
age, and biocompatibility issues underly long-term sensor 
use. Consequently, highly invasive techniques such as atomic 
force microscopy (AFM) and electron microscopy, where 
major surgery or tissue processing is required, are most 
appropriate when quantifying cell and TME tissue proper-
ties that are difficult to collect otherwise.108,109 For example, 
Mao et al.110 used AFM to characterize the nanomechani-
cal properties of aortic intima in response to pharmaceuti-
cal stimulation in vivo. Similarly, molecular analysis with 
micro-dialysis and in vivo mass spectroscopy have immense 
potential in characterizing the concentration of analytes in 
the TME but require surgery and analyte extraction.111–113 
Efforts to minimize sensor invasiveness, such as the incor-
poration of wireless readout capabilities or miniaturization 
of implants, improve sensor usability over larger timescales 
but typically involve more complicated fabrication proce-
dures.114,115 Biochemical sensing strategies have been widely 
explored for their straightforward production methods (e.g. 
electrochemical sensors, evanescent wave sensors). Label-
free detection methods are minimally invasive and allow 
for real-time monitoring but their signal-to-noise ratio can 
be insufficient for reliable detection of small molecules.116
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The ability to accurately detect low concentrations of ana-
lytes is another critical property in sensor application. Due 
to the diverse and heterogenous nature of the TME, high 
sensitivity and a low detection limit are needed for reliable 
data collection. For biomarker detection, sensing is typically 
done through functionalization with affinity-based recogni-
tion elements, such as antibodies, antigens, enzymes, nucleic 
acids, receptors, or whole cells.97,106,117 Using direct detection 
methods, label-free biosensors rely on physical interactions 
between the biomarker and sensor interface but are limited 
by analyte availability and generally weak interface sensi-
tivity. In cases where sufficient sensitivity is not achieved, 
amplification of the biomarker or signal can improve device 
performance at the expense of more complicated sample 
processing (longer assay time) and increased risk of distort-
ing binding characteristics.116 Common applications of this 
strategy include PCR for nucleic acid amplification and sig-
nal amplification via sandwich immunoassays or enzyme 
conjugation.118 Other strategies for improving sensor per-
formance include increasing the detection region, improving 
mass transport effects near the sensor, and using magnetic 
nanoparticles for analyte scavenging.95,118

Future considerations of monitoring the TME. While these 
strategies used for TME observation and biomarker detection 
are not new, challenges in achieving acceptable signal-to-
noise ratios, biodistribution profiles, and target identification 
are still under intense investigation. For imaging probes, 
physicochemical optimization of the size, surface charge, cir-
culation half-life, and biocompatibility are all factors that 
must be considered during development, particularly for in 
vivo applications. Limitations of particular imaging modali-
ties are also areas of concern. Currently optical modalities 
provide the best option for high temporal resolution, but 
tradeoffs in working distance and spatial resolution, as well 
as optical scattering in biological tissues and out-of-plane 
photobleaching, hinder deep tissue study. In addition, high-
resolution imaging of large tissue regions is time consuming 
and has high computational requirements for processing and 
analysis.67 On the contrary, biosensors are anticipated to 
reduce dependence on expensive equipment and expertise 
required for advanced detection systems. To accomplish this 
function, sensors need to be practical, robust, reproducible, 
and miniaturizable. Identification of optimal sensor modali-
ties for the target applications will also require reliable per-
formance metrics for comparison, and characterization of 
binding kinetics will be necessary for dynamic measure-
ments. Due to the heterogenous nature of the TME, extension 
of the sensing interface could be advantageous for sampling 
larger tissue regions. Finally, while improvements to detec-
tion and quantification in the TME are certainly important, 
the integration of advanced biosensing technology into con-
ventional testing formats should also be considered to maxi-
mize technology uptake by the scientific community (Figure 
2(a)–(c)).119

Manipulation of the TME

To improve the success rate of therapeutic translation, 
more accurate modeling of clinically relevant cancers and 

treatment outcomes are needed. Still cancer characteristics, 
including systemic spread, multiscale heterogeneity, and 
acquired resistance, present formidable complexity when 
recapitulating a comprehensive cancer model. Thus, the use 
of practical, application-specific cancer models is still war-
ranted, particularly in basic research. However, the predic-
tive efficacy of translational models needs work. To this end, 
greater experimental control in vivo and more representative 
in vitro cancer models would allow for effective modulation 
of the TME.

Pharmacotherapy targeting the TME. Pharmacotherapy in 
combination with radiation and surgery is the primary treat-
ment strategy used in the treatment of cancer. It is comprised 
of cytotoxic chemotherapy and radiation therapy, which 
non-specifically interfere with cell division, immunotherapy, 
which promotes the immune system’s anticancer activity, 
and hormonal therapy and targeted therapy, which interfere 
with cancer growth signaling pathways. These drugs encom-
pass the majority of clinical effectors used to treat cancer yet 
challenges such as drug resistance and nonspecific toxicity 
limit their clinical effectiveness.121,122 To alleviate these issues 
and improve the efficacy of pharmacotherapeutics, various 
drug delivery methodologies have been demonstrated.

The most prolific method of selective pharmacotherapy 
is via biomolecular recognition of target sites. Surface tar-
geting ligands, as mentioned previously in the discussion 
on analyte recognition, allow for targeting of differentially 
expressed receptors on specific cell types and the capture of 
signaling molecules. This directed behavior is used to selec-
tively eliminate cancer cells, promote non-cancerous cell 
behavior, and tune aspects of the TME for therapeutic ben-
efit.123–125 For instance, radiopharmaceuticals, which serve as 
calcium analogs or chelators, are used for their preferential 
accumulation in bones to target bone metastases with local-
ized radiation.126 Oftentimes, however, a single anticancer 
therapeutic is not potent enough to eliminate cancer on its 
own. In these cases, combinations of anticancer drugs and 
adjuvant TME therapies can have synergistic effects. TME 
modification with antiangiogenic therapy can transiently 
improve nanotherapeutic delivery by reducing the intersti-
tial fluid pressure of solid tumors to restore convective trans-
port.127 The result is higher drug bioavailability in the tumor, 
which impacts drug efficacy and therapeutic response.

Cell-mediated therapy is another targeting approach that 
has explored the loading of tumor-homing cells with thera-
peutics or receptors to circumvent typical barriers to nano-
particle delivery and immunosurveillance.128–130 Implantable 
cell encapsulation technology can be used to isolate popula-
tions of cells for genetically directed secretion of therapeutics 
(e.g. prodrug activators, cytotoxic agents, and immunostim-
ulants) into the TME.131 Immunotherapy uses checkpoint 
inhibitors and T-cells that are genetically modified with 
chimeric antigen receptors (CAR T-cells) or T-cell receptors 
(TCR T-cells) to overcome the immunosuppressive TME 
and tumor evasion mechanisms.132 This therapeutic strat-
egy is not universally applicable, however, as complications 
including T-cell production, specificity, and exhaustion, as 
well as side effects (e.g. cytokine release syndrome and neu-
rotoxicity) limit patient compatibility.133 Efforts to alleviate 
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these shortcomings and improve target selectivity include 
combinatorial antigen recognition to reduce bystander cell 
recognition and exhaustion-resistant phenotypes.134–136

Alternatively, TME-specific release can also be achieved 
by sensitizing drug delivery systems (DDSs) to endogenous 
physiochemical conditions, such as hypoxia and pH.137–140 

Figure 2. Engineered platforms for enhanced study of the tumor microenvironment: (a) sensing cell culture flask is designed around standard cell culture flasks to 
minimize protocol adjustment, (b) embedded electrodes allow for detection of a variety of biologically relevant chemicals; companion rack systems allow parallel 
real-time monitoring, and (d) the bioresorbable electronic patch uses wireless thermal actuation for enhanced drug delivery into glioblastomas. (A color version of this 
figure is available in the online journal.)
Source: Adapted from Kieninger et al.119 and Lee et al.120
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In these cases, localized therapeutic release can be realized 
without altering the drug itself. This targeting is possible 
due to the significant remodeling that occurs during tumor 
progression, producing abnormal vasculature, nutrient gra-
dients, and metabolic states.141 The accumulation and reten-
tion of many large drugs and nanomedicines in solid tumors 
due to leaky vasculature and non-functioning lymphatics, 
called the enhanced permeability and retention (EPR) effect, 
is one such method of tumor targeting that has been widely 
explored.142,143 Recent work has shown that this effect is not 
universal, however, and that intratumoral drug distributions 
are heterogenous. To overcome these limitations, Li et al.144,145 
used size-switching nanoparticle superstructures to accu-
mulate in tumor tissue via the EPR effect, and dissociate into 
small molecule particles to diffuse more readily through the 
TME. For extended delivery applications, controlled degra-
dation of drug-loaded hydrogels has been used to minimize 
systemic exposure.146 Here, tuning the composition of the 
hydrogel and the degradation rate of the individual compo-
nents, allows for variable control over the release of multiple 
drugs. Exogenous triggers (e.g. light, radiofrequencies, and 
ultrasound) can also be used to control drug kinetics or per-
form photothermal therapy, but target accessibility can limit 
viable signaling modalities.147,148

Engineered tissue models for recapitulating the TME. Like 
biosensors, transducers are capable of operating at the cel-
lular scale, improving in vitro modeling and affording direct 
control over the neighboring TME. These devices can bridge 
the gap between experimentally robust in vitro models and 
physiologically relevant in vivo models through the incorpo-
ration of pertinent biophysical and biochemical conditions. 
This approach allows the study of crucial aspects of tumor 
biology that are not easily observed otherwise, such as 
metastasis and angiogenesis. Methods to accomplish this 
feat include functional and structural improvements to exist-
ing cancer model technology.149 One such example uses a 
magnetic actuating platform to mimic respiration-induced 
tissue stretching in vitro.150 Results show actuation of breast 
cancer cells decreases metabolic activity and inhibits matrix 
degradation, indicating a potential role in dormancy and 
reactivation.150 To improve the structural composition of 
tumor models, microscale organization of cells, and bioac-
tive materials can be achieved using bioprinting and scaf-
fold technologies. This strategy has enabled the management 
of local cell–cell interactions as well as cell confinement and 
ECM stiffness through variable cross-linking.151–153 Other 
engineering solutions seek to improve the analysis of 3D tis-
sue models without the use of sectioning or isolation meth-
ods. TRACER (tissue roll for analysis of cellular environment 
and response) uses a stackable cell culture design to enable 
rapid disassembly and layer-by-layer analysis of 3D tissue 
constructs.154,155 The miniaturization of sensors and fluid 
handling technology to the cellular scale and beyond has 
empowered the development of microfluidic systems for 
novel cell culture platforms and drug delivery applications. 
These organ-on-a-chip (OOC) devices are capable of dynam-
ically managing mechanical signals, biochemical gradients, 

and cellular interactions to improve cell differentiation and 
tissue organization over conventional 3D culture tech-
niques.156 OOCs have been used to model angiogenesis, 
tumor progression, drug exposure, and crosstalk between 
cells, as well as visualize spatial heterogeneity.156–159 In one 
implementation, metastatic and intravasation potential were 
evaluated by producing dynamic oxygen gradients across a 
collagen barrier to observe matrix breakdown.160 This OOC 
thus provides functional control over physiologically rele-
vant conditions that are not manageable in conventional 
cancer model formats. OOCs also provide an opportunity 
for the development of personalized cancer models using 
patient cells for treatment screening and predicting thera-
peutic response.161 More advanced microphysiological sys-
tems are also being explored for modeling multiple cellular 
compartments (body-on-a-chip technology) to experimen-
tally validate pharmacokinetic models as an intermediate to 
clinical testing.162,163

Microfabricated system for manipulation and study of the 
TME. For in vivo applications, improvements to therapy 
administration and control factors are of broad interest. 
Implantable drug reservoirs, used to extend therapeutic 
release profiles, circumvent many issues associated with 
repeated injection regimens and prevent the rapid clearance 
of therapeutics from the target site.146,164–167 Another strategy 
to limit systemic exposure incorporates collagen-binding 
moieties to limit drug transport out of injection sites by 
anchoring to generalizable target sites in tumors.168,169 For 
situations where drug distribution is insufficient, actuated 
drug delivery has been used to improve cellular uptake.120 
This approach allows dynamic control over therapeutic con-
centrations in the TME. The use of biodegradable materials 
can also be selected to obviate the need for retrieval surgery 
and complications associated with chronic implants (Figure 
2(d)).120 Improvements to tumor grafting methods using cell 
sheet transplants are a novel way of subcutaneously engraft-
ing tumor cells in biologically intact structures with high effi-
ciency compared to enzymatically treated cell cultures.170 
Presumably, this technology could be extended to graft 
tumoroids and bioprinted tissues for directed TME forma-
tion in vivo. The application of micro-control systems in vivo 
presents many benefits as localized manipulation can enable 
internal controls, reducing the number of animals need for a 
study, and improve data collection.171 The nano-intravital 
device (NANIVID) is one implementation that has been used 
for an array of studies in vitro and in vivo including hydrogel-
mediated release of the chemotaxis agents (epidermal growth 
factor), hypoxia mimetics (deferoxamine and cobalt chlo-
ride), and ROS inductors (H2O2), as well as for cell collection 
(Figure 3(a)–(h)).166,172–175 Further work in this direction  
has aimed at extending experiment duration through the 
integration of fluidic control with intravital imaging win-
dows (ported mammary imaging window) (Figure 3(i)).63,176 
Recently, the development of integrated micro-nozzles for 
enhanced control over localized delivery has provided addi-
tional impetus for high resolution study in vivo (Figure 3(j)).177
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Genome editing to manipulate the TME. For functional 
analysis of genetic alterations in cancer, CRISPR/Cas9 
(clustered regularly interspaced short palindromic repeats) 
has enabled specific, efficient, and affordable genome edit-
ing. Building off of earlier genome editing techniques (e.g. 
RNA interference, transcription activator-like effector 
nucleases, and zinc finger nucleases), pooled screening of 
novel therapeutic targets with CRISPR/Cas9 can identify 
essential driver genes and genotype-specific vulnerabili-
ties.178 This technology has been used to identify potential 
tumor suppressor genes and a gene involved in tumor 
metastasis in colorectal cancer organoid models.179 Genome 
editing with CRISPR/Cas9 systems has also expedited the 
creation of novel genetic cancer models.180,181 Somatic gene 
editing in live animals provides a scalable alternative for 
model generation but has limited targeting capabilities cur-
rently.182 Rapid progress in this field, however, already 
promises additional genomic editing tools and applications, 

such as point mutations and epigenetic editing.183–186 Finally, 
targeted delivery of CRISPR/Cas9 systems in the TME has 
the potential to identify critical intercellular interactions by 
disrupting communication with cancer-associated cells.

Future considerations of TME manipulation. Improve-
ments to TME model controls for increased physiological 
relevance are imperative for improving the translative suc-
cess of preclinical data. Molecular and microphysiological 
manipulation allow probing of all aspects of cell signaling 
which feed into development and therapeutic response. 
Ongoing research in pharmacotherapeutics is centered on 
drug screens and formulation technology. Synthesis of 
novel drugs face issues in maintaining activity, stability, tox-
icity, and delivery while balancing regulatory and manufac-
turing hurdles. Larger macromolecular and nanoparticle 
formulations currently must contend with poor biodistribu-
tion profiles due to high drug clearance and poor interstitial 

Figure 3. Implantable devices for simultaneous imaging and drug delivery in vivo: (a) the induction nano-intravital device (NANIVID) next to a US dime, (b) the 
NANIVID is designed to penetrate solid tumor tissue for passive delivery, (c) insertion is facilitated by an applicator which aligns the device with the tumor surface, (d) 
a 3D render demonstrates the device orientation during insertion, (e) a cross-sectional view of an implanted NANIVID depicts the location of the outlet and generated 
diffusion gradient, (f) top–down view of the insertion site for imaging, (g) alternative NANIVID design for cell collection, scale bar = 500 μm, (h) magnified view of the 
device outlet where green fluorescing cells were collected, scale bar = 100 μm, (i) exploded view of the microfluidic imaging window for active reagent delivery, (j) 
demonstration of improved dye localization in hydrogel tissue mimics with a micro-nozzle outlet. (A color version of this figure is available in the online journal.)
Source: Adapted from Williams et al.166,174 and Head et al.177
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diffusion. Still, novel biopharmaceuticals, including RNA 
and recombinant proteins, have tremendous potential for 
revolutionizing medicine due to their flexible design  
and sequence recognition properties. Efficient delivery of 
miRNAs, siRNAs, and antisense oligonucleotides also have 
gene silencing capabilities that would allow for targeting of 
previously undruggable non-coding RNAs.187

Although engineered cancer models encompass a wide 
range of techniques, general design principles for compar-
ing methodologies exist. As a model’s main objective is to 
faithfully convey the behavior of a target system, model–
user interactions must be weighed against model accuracy. 
With increasing model complexity, a concomitant increase 
in specialized knowledge and loss in throughput are typical. 
These factors, as well as the use of intensive fabrication tech-
niques and equipment, can limit utilization by the scientific 
community.188 To avoid this limitation, integrated compat-
ibility with standard data collection techniques, including 
those technologies mentioned previously, can mitigate 
specialized training and startup costs.45,158,189 Application-
oriented design can also reduce peripheral systems that have 
little or no role in the process of interest.190 Standardization 
of components and protocols is also necessary to perform 
meaningful comparisons across multiple modeling tech-
niques and improve reproducibility.

Conclusions

Despite the availability of a diverse field of cancer models, 
systems with reliable indicators of clinical success are still 
lacking. The low predictive power of current preclinical 
cancer models stems from their ineffective recapitulation of 
the human TME. To resolve this situation, advancements in 
preclinical model relevance and accessibility through techno-
logical innovation are necessary. This review surveys conven-
tional model systems and advancements in both monitoring 
and manipulation techniques for enhanced experimental con-
trol. Balancing biological complexity and model practicality 
are critical for optimal model identification and selection. Still, 
the largest obstacles to the adoption of new technologies are 
regulatory barriers and accessibility. For regulatory approval, 
the safety and stability of novel drugs and medical devices 
must be established, often without clear guidance for evalu-
ation. Accessibility comes in both the scalability of the manu-
facturing process, companion equipment cost, and the ease of 
operation. Accessibility also plays a significant role in uptake 
by the scientific community, which is driven largely by per-
formance comparisons to equivalent systems and standardi-
zation of protocols and analysis. Nevertheless, the number of 
cancer modeling technologies will undoubtably continue to 
grow, and the development of sophisticated cancer models in 
novel preclinical workflows will require collaboration across 
institutions and disciplines to pool resources and expertise.
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