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Abstract
G protein-coupled receptors (GPCRs) comprise the most important superfamily of protein

targets in current ligand discovery and drug development. GPCRs are integral membrane

proteins that play key roles in various cellular signaling processes. Therefore, GPCR sig-

naling pathways are closely associated with numerous diseases, including cancer and sev-

eral neurological, immunological, and hematological disorders. Computer-aided drug

design (CADD) can expedite the process of GPCR drug discovery and potentially reduce

the actual cost of research and development. Increasing knowledge of biological structures,

as well as improvements on computer power and algorithms, have led to unprecedented

use of CADD for the discovery of novel GPCR modulators. Similarly, machine learning

approaches are now widely applied in various fields of drug target research. This review

briefly summarizes the application of rising CADD methodologies, as well as novel machine

learning techniques, in GPCR structural studies and bioligand discovery in the past few

years. Recent novel computational strategies and feasible workflows are updated, and

representative cases addressing challenging issues on olfactory receptors, biased ago-

nism, and drug-induced cardiotoxic effects are highlighted to provide insights into future

GPCR drug discovery.
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Impact statement
This review briefly describes current progress

in computer-aided drug design and machine

learningapproaches for the structural studyof

G-protein-coupled receptors and GPCR-

targeted drug discovery. The ever-increasing

knowledge of GPCR structure–activity rela-

tionships, along with the continuous

improvement of computer functions and

algorithms, including novel artificial-

intelligence-based methodologies, has

accelerated drug discovery through the utili-

zation of remarkable computer-aided drug

design methods that are continuously

improved and updated. New technological

improvements in simulations of molecular

dynamics have provided further helpful tools

for deciphering the dynamic processes and

challenges underlying how GPCR structures

transduce physiological signals into diverse

cellular responses. This is complementary to

X-ray crystallography and cryo-electron

microscopy (EM), which can be used to

determine the three-dimensional finely tuned

conformational changes in the active states of

a diversity of GPCRs. The further decoding of

allosteric/authentic and other molecular

mechanismsofspecificGPCRs, togetherwith

the addition of structure-based and ligand-

based drug design that results in rapid col-

lection of three-dimensional structures and

the evolution of database technologies, will

lead to a deeper understanding of the com-

plexity of specific GPCR-ligand pairs and the

development of a powerful platform forGPCR

drug discovery. Given that GPCRs represent

the important drug targets for current medi-

cine, this review has more general implica-

tions and is thus of interest to the broader

research and industry communities, including

structure- and ligand-based drug design,

structural information technology, medicinal

chemistry, and drug discovery.
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Introduction

G protein-coupled receptors (GPCRs) have been the most
widely studied drug targets over the past few decades. This
protein superfamily consists of more than 800 protein
members, making it the largest superfamily of proteins in
the human body.1,2 GPCRs are integral membrane proteins
containing seven transmembrane a-helices and are coupled
to heterotrimeric G proteins on the intracellular side of the
membrane. They are categorized into six classes based on
sequence similarities, and classes A, B, C, and F have been
discovered in humans. Among them, class A (rhodopsin-
like) contains the majority of GPCRs with 719 members.3

Endogenous ligands for GPCRs include from small mole-
cules like lipids, ions, to peptides and proteins.4 In this
regard, GPCRs with unknown endogenous ligands are
defined as orphan receptors.5 There are approximately
100 endoGPCRs that are characterized as orphan receptors
so far.6

GPCRs play essential roles in numerous physiological
and pathological mechanisms. They normally respond to
a wide variety of endogenous signals and undergo confor-
mational changes that are subsequently transmitted to the
G protein or other small proteins like arrestin to cause acti-
vation and further transduction of cellular signals. GPCR
proteins are involved in various physiological functions,
such as cell migration, proliferation, and metabolism,
making them vital targets for therapeutic treatment for
cancer, HIV infection, and other major GPCR-related dis-
eases.7 Understanding the molecular mechanism of GPCRs
has therefore become one of the core issues in drug research
and development. GPCRs have historically been of great
interest to the pharmaceutical industry, and nearly 40% of
the Food and Drug Administration (FDA)-approved drugs
are developed for GPCRs and act on more than 100 unique
GPCR targets, accounting for around 25% of potentially
druggable human GPCRs.7–9 Therefore, it is pertinent to
underline that there are still varieties of potentially drug-
gable GPCRs, which are undoubtedly a huge appeal to
future discovery of therapeutic agents. Over the past five
years, GPCR modulators have continued to hit the market.
At this time of writing, 41 drugs targeting GPCRs have been
approved by the FDA, while over 142 compounds targeting
83 different GPCRs are currently under clinical trials.3

Fantastic progress has been made in resolving GPCR
three-dimensional structures by X-ray crystallography, cou-
pled with lipidic mesophases and cryo-electronmicroscopy
(cryo-EM) since 2007.10–12 Structures of more than 60
unique GPCRs have been determined with over 370 diverse
conformational states.3 All available GPCR crystal and
cryo-EM structures have now been surveyed and incorpo-
rated into an interactive resource integrated as a browsable
database called GPCRdb, which provides detailed structur-
al information and appropriate experimental conditions.1,13

Moreover, around 40 additional online databases and serv-
ers are available, which focus on the structural information
of GPCRs, relevant receptor-ligand interactions, receptor-
intracellular partner interactions, and their oligomeriza-
tion.14 In particular, ice-breaking progress has been made
over the past 10 years on a few high-impact structures

including agonist-bound receptors, GPCR-G protein com-
plexes, and elusive chemokine receptors, with the advent of
new techniques such as protein-based nanodiscs and
fusion protein engineering.15–22 Multitudes of three-
dimensional GPCRs structures, including active, inactive,
and ligand-binding states are disclosed, revealing the gen-
eral basis for receptor activation, signaling, and allosteric
modulation processes. Besides, much effort has been made
in recent years towards identifying orphan and adhesion
GPCRs, but progress has been limited, making the discov-
ery of novel ligands for these receptors particularly
appealing.23

In-depth understanding of the molecular mechanisms
for GPCRs, coupled with the abundance of crystal and
cryo-EM structures that have come available in the last
decades, allows researchers to use computational method-
ologies in order to explore detailed information in ligand-
GPCR complexes (Figure 1).11,13,17,24–27 Computer-aided
drug design (CADD) has long been applied as an effective
way to expedite the process of GPCR drug discovery and
potentially reduce the actual cost of research and develop-
ment.28 CADD methods generally include both structure-
based drug design (SBDD) and ligand-based drug design
(LBDD) (Figure 2).29 With the rapid development of
modern computer technology, structure-based virtual
screening has become the most efficient and highly accu-
rate method for the discovery of novel drug molecules and
for conducting qualitative and quantitative studies on
protein-ligand interactions. Since 2012, SBDD continues to
aid drug discovery for GPCRs including adenosine, dopa-
mine, and muscarinic receptors by identifying novel chem-
ical scaffolds that target specific binding sites.30–32

Quantum chemistry, molecular mechanics (MM), and
molecular dynamics (MD) are the basic theoretical calcula-
tion methods used in CADD. Applications of classic MD
and advanced hybrid quantum mechanics (QM)/MM
approaches enable atom-level simulations of biomolecular
systems.33 During MD simulations, a virtual microscopy
system is established, in which the motion of particles is
in accordance with the classical laws of Newton’s mechan-
ics and the interactions between particles satisfy the super-
position principle. Therefore, MD simulation, in
combination with SBDD, is able to reflect the dynamics
and flexibility of target proteins in nature in order to offer
precise insights into molecular interactions between GPCRs
and ligands.34 An increasing number of studies have
shown that ligand-induced flexibility of GPCRs plays a
vital role in numerous activation and signaling processes.
Therefore, protein flexibility has been taken into account
and incorporated in relaxation procedure and molecular
docking of SBDD methods in software such as GOLD,
Glide, and induced fit docking (IFD) of Schr€odinger.35,36

In silico SBDD is the most practical technique when the
three-dimensional structure of a disease-implicated drug
target is known, as discussed above. SBDD includes two
major strategies: molecular docking approaches and de novo
ligand design. Since the 1960s, molecular docking has
become the most widely used method in SBDD.37

Docking can provide theoretical calculations for target-
ligand binding conformation and scores of their binding
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Figure 2. General workflow of computational approaches, including SBDD and LBDD, commonly used for GPCR drug discovery. General procedures for SBDD start

with a compound library collection and target identification. The structure of a target protein can be obtained by X-ray or cryo-EM and by homology modeling;

subsequently, docking-based virtual screening, coupled with MD simulations, is performed to screen for hit compounds. Frequently used LBDD approaches include

ligand-based pharmacophore models, 3D-QSAR, and CoMFA in combination with 2D-similarity searches. ML has been more commonly used in LBDD workflows to

generate descriptors for diverse training models. Scaffold hopping serves as another complementary approach for generating new chemistry. (A color version of this

figure is available in the online journal.)

Figure 1. Schematic diagram of a classic GPCR structure and representative three-dimensional GPCR-agonist, GPCR-antagonist complexes discussed in this

review. (a) Schematic diagram of a GPCR seven-transmembrane structure. (b) Structures of the human adenosine A1 receptor-Gi2 protein complex bound to its

endogenous agonist (PDB ID: 6D9H) and the adenosine A2A receptor bound to amini-G heterotrimer (PDB ID: 6GDG). (c) Structures of the dopamine D2 receptor (PDB

ID: 6CM4), P2Y1 receptor (PDB ID: 4XNV), b2 adrenergic receptor (PDB ID: 3NYA), and muscarinic M3 receptor (PDB ID: 4U15). (A color version of this figure is

available in the online journal.)
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affinity, making it of great significance for both the initial
screening of hit compounds and the computational analysis
of lead compound binding patterns. Docking approaches
comprise rigid docking from the classical drug-ligand
“lock-and-key model”, and flexible docking from the later
development of an “induced-fit model” and
“conformational selection model”.38–40 Scoring functions
for molecular docking mainly include force field-based,
experience-based, knowledge-based, and descriptor-based
scoring. The most commonly used D-score and G-score are
based on Tripos force fields, while the Dock and Autodock
algorithms are based on Amber force fields. Experience-
based scoring functions include Chemscore and
Glidescore.41 In recent years, machine learning (ML) has
also been introduced into the scoring function by trans-
forming protein-ligand interactions into descriptors that
are further analyzed by random forest (RF), neural net-
work, support vector machine (SVM), or Bayesian classifi-
cation to establish effective scoring function models, such
as NNScore and RF-Score.42

LBDD methods are utilized as alternatives to SBDD
methods by exploiting the knowledge of known active
and inactive molecules rather than the knowledge of struc-
tural information of a target protein. Therefore, LBDD
methods are especially useful when the protein structure
cannot be determined experimentally or predicted by com-
putational methods. Even with the abundance of GPCR
crystal and cryo-EM structures now available, LBDD
remains in demand.43 The basic principle underlying
LBDD is the assumption that similar molecules trigger sim-
ilar effects, including biological actions and interaction
with target proteins.44 A common practice in drug research
is to explore similar molecules as a way to conveniently
modulate certain characteristics, given a set of molecules
that are effective towards a pharmaceutically relevant
target.45 The most frequently used LBDD methods include
ligand-based pharmacophores, molecular descriptors, and
quantitative structure–activity relationships (QSAR).

Artificial intelligence (AI) and ML have also seen signif-
icantly extensive use on applications in quite a few research
fields. Increased computational resources now allow
researchers to develop more comprehensive databases
and more effective algorithms targeting specific research
applications. ML methods employ two basic learning strat-
egies: supervised learning and unsupervised learning.
These strategies accomplish diverse tasks, such as classifi-
cation, regression, clustering, and dimension reduction.46

ML tasks for drug discovery pipelines require proper fea-
ture extraction methods and applicable algorithms. Major
methods for feature extraction, in this regard, conversion of
molecular structures into ML representation of chemical
information, involve the graph-based methods, substruc-
ture mining, molecular descriptors, and molecular finger-
prints.47 Algorithms are derived from SVM, convolutional
neural networks, recurrent neural networks, and multilay-
er perceptrons (MLPs) as most frequently used in drug dis-
covery workflows. Revolution in both SBDD and LBDD has
been accomplished with the application of ML and addi-
tional novel strategies, and representative cases in recent
years would be discussed below (Table 1).

Molecular mechanisms of GPCR structure
and signaling

GPCRs usually consist of three portions: an extracellular N-
terminus, seven transmembrane a-helices with intracellular
and extracellular loops, and an intracellular C-terminus.
For this reason, they are also called hepta-helical receptors.9

The flexibility of GPCRs plays a vital role in various bio-
logical processes, including ligand recognition, orthosteric
or allosteric modulation, activation, and signaling. GPCRs,
when activated, control cellular signal transduction across
membranes.48 The signal is initiated from the extracellular
side with incorporation of endogenous ligand molecules
that stabilize the active conformation of the receptor, lead-
ing to cellular response through dimerization with intracel-
lular G proteins or other intracellular proteins.49 The
activation-related conformational changes of GPCRs have
been clarified by recent studies, and this has widen our
understanding of structural basis of the interactions
between GPCRs and their partners.50 Upon activation, C-
terminal a-helix of G protein a-subunit interacts with the
cavity on cytoplasmic side of GPCRs with outward move-
ment of TM6 region.

Rapid progress in GPCR structural biology in recent
years has led to an unprecedented elucidation of detailed
structural basis of GPCR activation process. Numerous
structures of GPCR-G protein or GPCR-arrestin complexes
have now been deciphered by X-ray crystallography and
cryo-EM in recent years. More than 60 unique GPCR struc-
tures and 13 structures of GPCRs bound to a nucleotide free
G protein heterotrimer, covering 3 different Ga families,
have been determined to date.51 Nonetheless, a variety of
challenges remain in achieving high-resolution active or
active-intermediate states of GPCR activation and ligand
association process.52 Besides, membrane is usually mim-
icked by use of detergents in vitro which limits precise rep-
resentation of physiological environment. To address
mechanistic questions at an atomic level, the integration
of structural biology with computational methodologies is
essential for exploring the structural dynamics and molec-
ular mechanisms of GPCRs with multiple conformational
states.53 MD simulation for ligand-target complexes takes
protein flexibility into consideration and can account for
explicit solvent, ions, and membranes in the biosystem.
Previously, researchers have summarized how atomic
dynamics modeling revealed transient states with high
energy barrier of ligand binding process, provided insights
into effects of receptor mutations on ligand affinity and
kinetics and helped understand target druggability.54–56

Therefore, MD simulations have been increasingly applied
to GPCRs to elucidate the conformational changes of key
residues and motifs, as well as to compute diverse binding
modes, target specificity, and binding kinetics.57

Chan et al. probed the existence of sodium ions in the
dopamine D2 receptor (D2R) using all-atom MD simula-
tions in 2020.58 As we know, GPCRs are usually regulated
by “allosteric site” metal ions which render the GPCR inac-
tive. In the case of D2R, an allosteric sodium ion locates
next to D802.50 in apo D2R and decreases the affinities of
agonists, thereby leading to coupling of the receptor to the
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Gi/o protein. This in turn, inhibits adenylyl cyclase, while
enhancing the affinities for some antagonists. Chan’s use of
computational and pharmaceutical methods showed for
the first time that a sodium ion could be located at the
“orthosteric site” of the ligand-binding pocket and enable

coordination of a polar residue with a specific agonist mol-
ecule. First, a complex of D2R and a potent agonist
MLS1547 was computationally constructed by docking.
Interestingly, MD simulations revealed an additional
sodium ion in the orthosteric ligand binding site of the

Table 1. Summary of representative cases discussed in this review regarding the recent application of CADD methodologies in GPCR structural studies

and bioligand discovery.

GPCR

Molecule/

dataset

Research

categories Methodologies Significance Year

Dopamine D2

receptor;

m-opioid
receptor

– Molecular

mechanism

All-atom MD Metal ions detections at

orthosteric site of ligand

binding pocket

2020

P2Y1R BPTU Molecular

mechanism;

SBDD

Conventional MD; umbrella

sampling; well-tempered and

funnel-metadynamics

Investigations on membrane-

embedded sites; identifica-

tion of ligands to lipids-

exposed sites

2015/2018

Dopamine

receptor

subtypes

Dopamine; 7-

hydroxy-N,N-

dipropyl-2-

aminotetralin,

etc.

Molecular

mechanism

MD; homology modeling;

molecular docking

New structural findings regard-

ing binding modes and

selectivity for DR subtypes

2019

Adenosine

receptors;

P2Y

receptors

XAC; DPCPX;

KW3902; ZMA;

Z48; Z80, etc.

Molecular

mechanism

Classic MD; metadynamics;

temperature-accelerated

MD; umbrella sampling

Assessment of complex stability

and identification of alterna-

tive binding modes through

induced fit

2020

Adenosine

receptors

A1AR;

A2AAR

– Molecular

mechanism

Robust Gaussian accelerated

molecular dynamics

Elucidation for detailed mecha-

nism of specific AR-G protein

coupling

2019

5-HT2A; D2

subtypes

– Molecular

mechanism

ML-represented MD Efficient computational analysis

of “MD Big Data” and classi-

fication of ligands

2019

Olfactory

receptor

Olfr73

ZINC database of

1.58 million

candidates

SBDD MD; molecular docking; PH4

search; interaction fingerprint

Accurate models with protein

dynamics for OR agonist

discovery

2019

Dopamine D2

receptor

ChEMBL10 Molecular mech-

anism; SBDD

MD; homology modeling;

molecular docking

Biased ligands-based design on

specific amino acid–ligand

contacts

2018

b-adrenergic
receptor;

muscarinic

acetylcholine

receptor

ZINC database De novo; design

fragment-

based design

CIP-based fragment search;

molecular docking; MD;

binding free energy analysis

De novo design of GPCR

ligands based on the relevant

3D structural information

2019

hAA2A; r5HT1A 141,990 mole-

cules in

ChEMBL

Fragment-based

design

Similarity-driven fragment-

based approach

Evolutionary drug discovery

approach for producing

candidates

2013

Dopamine D4

receptor;

sigma-1

receptor

279,866 mole-

cules in

ChEMBL

LBDD Adaptive fragment prioritization Predictive quantitative poly-

pharmacology models

2014

A2AAR; b1AR;
b2AR; D3R;
OX2 ;

CXCR4, etc.

ZM241385;

Suvorexant;

IT1t, etc.

Molecular

interactions

Fragment molecular orbital

calculation

Balance between computational

accuracy and speed; recep-

tor-ligand binding

interactions

2016

Adenosine A2A

receptor

ChEMBL De novo design Reinforcement-learning with

recurrent neural network

High diversity ligands genera-

tion with chemical and bio-

logical properties

2019

Odorant recep-

tor OR51E1,

etc.

Library of 258

odorants

LBDD SVM-based virtual screening;

QSAR; homology modeling

New perspective on the con-

struction of QSAR models

2018

5-HT2BR; 5-

HT1BR

ChEMBL; MCule

of 4.8M

molecules

LBDD; SBDD NSFP-based ML model; molec-

ular docking

Novel subtype-selective ligands

identification

2018
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extracellular region, forming coordination with D2R and
the agonist molecule at 1.0� 3.2 ls time scale. These results
were also observed for l-opioid receptor and further veri-
fied by high-resolution crystal structure determination and
biochemical experiments. In addition, by enhancing the
interaction at the particular binding site, researchers were
able to modify candidate molecules and increase their
activities by 16-fold. This strategy, together with the work-
flow, has opened up new opportunities at a mechanism
level of GPCR signaling characteristics and optimization
of GPCR ligand molecules.

Understanding the incorporation of GPCR ligands to
membrane-embedded sites remained a challenge, as sub-
stitution of detergents for membrane in crystallization pro-
cedures limits the precise representation of physiological
membrane environment. BPTU is an antagonist for puri-
nergic P2Y1 receptor (P2Y1R). It targets a special extra-
helical site that locates in-between the membrane and the
protein.26 In 2018, Yuan et al. conducted all-atom simula-
tions with models of BPTU and a POPC bilayer. The simu-
lation workflow involved both conventional MD and
multiple enhanced sampling methods, including umbrella
sampling, well-tempered metadynamics as well as funnel-
metadynamics simulations.59 Researchers explored
molecular mechanism underlying the allosteric binding of
BPTU to the extra-helical site of P2Y1R, and found that
BPTU prefers to partition into the interface of lipophilic
region, before interacting with the second extracellular
loop of P2Y1R. The study further provided accurate
binding free energy calculation which was in remarkable
agreement with experimental data. Yuan’s work offered a
reference for investigations on other membrane-embedded
sites, and identification of ligands to lipid-exposed sites of
membrane proteins.

Homology modeling, fold recognition, de novo folding,
and MD simulations are major approaches for building
conformational models of GPCRs. Bueschbell et al., in
2019, applied homology modeling and MD simulation to
construct robust conformational models of all the dopa-
mine receptor (DR) subtypes and further performed dock-
ing for structurally diverse ligands. These experiments
revealed new structural findings regarding the binding
modes and selectivity for DR subtypes.60 Salmaso et al., in
a review article, provided a detailed discussion of recent
MD studies of purinergic GPCRs, including well-known
adenosine receptors and P2Y receptors.61 This article indi-
cated that enhancement of traditional MD simulations algo-
rithms has enabled researchers to explore more
complicated and long-timescale phenomena, including
receptor activation, recognition, and dissociation pathways
in GPCR biosystems at an atomistic level. Furthermore,
Wang et al. employed all-atom simulations by a robust
Gaussian accelerated molecular dynamics (GaMD)
method on adenosine receptors (ARs), including subtypes
of A1AR and A2AAR, and deciphered detailed mechanism
of specific AR-G protein coupling.62 GaMD simulations
and free energy calculation revealed preferential coupling
of A1AR-Gi and A2AAR-Gs complexes, which were highly
consistent with experimental findings.

ML algorithms have also been integrated with tradition-
al MD simulation, as a great mass of data accumulates
gradually from large-scale simulations. Meanwhile, auto-
mated de novo design using deep learning (DL) methods
has been accomplished via numerous automated com-
pound generators and selection operators in recent
years.63 For instance, Plante et al., in 2019, described a
novel approach that was based on transforming the analy-
sis of GPCR function-related, ligand-specific differences
encoded in the MD simulation trajectories into a represen-
tation recognizable by state-of-the-art DL object recognition
technology.64 This method was subsequently used on the
serotonin 5-HT2A receptor and D2 subtypes for high-
accuracy identification of the pharmacological classifica-
tion of ligands. These results presented a feasible frame-
work for efficient computational analysis of “MD Big
Data” collected to understand ligand-specific GPCR
activities.

Oligomer-specific drug design seems to be an increasing
need, as evidence accumulates that GPCRs tune their func-
tions through oligomer formation and protein–protein
interactions. While structural information about GPCR
oligomers becomes more demanded, technical obstacles
to crystallization and biochemistry are also amplified. In
2014, Schonenbach et al. provided an overview of mecha-
nistic and functional models for GPCR oligomers, and per-
spectives on emerging techniques to characterize GPCR
oligomers.65 In this case, MD simulations become a power-
ful tool to predict oligomer interfaces and analyze their
stabilities, and have been applied to multiple GPCRs
including rhodopsin, b2AR, b1AR, and l-opioid receptors.
Overall, studies in the past few years have provided more
insights into practicability of MD simulations in various
biological processes regarding GPCRs, filling the gap
between protein structures and functions.66

Improvements in MD algorithms enable the observation
of finely tuned conformational changes that are critical in
intracellular signal transductions.67 Application of these
enhanced approaches would significantly transform the
efforts on current drug discovery for GPCR monomers
and oligomers.

Receptor-based rational design

Structure-based rational design has played an outstanding
role over the past decades in the discovery of bioactive
ligands for GPCRs and has identified a number of small
molecules with therapeutic significance. Structural infor-
mation is essential for SBDD of novel bioactive molecules.
SBDD has benefited from the rapid development and tech-
nology breakthroughs in X-ray crystallography and cryo-
EM; therefore, the search for potent GPCR agonists or
antagonists as promising lead compounds has now entered
a new phase. For example, using GPCR stabilization and
SBDD technologies, small molecule AZD4635 was derived
as an antagonist of the immune checkpoint target A2AR. It
has entered a Phase II clinical trial in 2019 for the treatment
of advanced solid tumors.68 While rapidly emerging infor-
mation for GPCR has enhanced the effectiveness and accu-
racy of rational ligand design process, multiple
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computational tools become available and can be utilized
simultaneously. Ligand docking, free energy calculation,
and de novo ligand design are most practicable approaches
for SBDD. Free energy calculation methods, for instance,
thermodynamic integration and free energy perturbation,
have provided additional support for rigorous prediction
of GPCR-ligand binding affinity.69,70 Meanwhile, with the
frequent application of molecular docking for drug discov-
ery, an increasing number of easy-to-use bioinformatics
tools for homology modeling and docking have become
available online in recent years as complements to the clas-
sic software and packages, such as Autodock, GLIDE, and
Surflex-Dock (Table 2).71–77

Olfactory receptors (ORs) are one of the major members
in the GPCR superfamily. An increasing number of high-
resolution 3D structures of non-olfactory receptors has
accelerated the rational drug design and the understanding
of receptor-ligand interactions in recent year. By contrast,
little is known about ORs: the cognate agonists of most ORs
have not yet been identified and discovery of their agonists
remains challenging.78,79 For agonist discovery, protein
dynamics are critical for the development of accurate
models. Therefore, adoption of MD simulation in SBDD
projects is encouraged for OR ligand discovery. Several
computational studies on ligand prediction of ORs have
been published in recent years (Table 3). In 2019, Yuan
et al. provided a proof-of-principle study for identifying
novel therapeutic OR agonists using virtual screening
with MD simulations.80 They constructed a three-
dimensional structure model of olfactory receptor Olf73
by homology modeling and optimized structural confor-
mation of the initial model by MD simulation. A smaller
but more flexible binding pocket of Olfr73 was revealed
common to most of the known OR agonists, rather than
the binding pockets of typical non-ORs. Moreover, virtual
screening of a library of 1.58 million compounds against
Olfr73 was conducted; 25 predicted Olfr73 agonists were
tested by cell-based assays, of which 17 compounds were
validated as effective with a hit rate of 68%. Further

interaction fingerprint analysis for these newly found ago-
nists indicated much fewer polar interactions between the
OR and ligands than was observed with other GPCRs, as
well as a limitation of this pocket size for agonist binding.

Characterization of biased signaling and identification
of biased agonists for GPCR now remain challenging,
even with the abundance of available crystal structures.
Biased agonists represent ligands that induce distinct
active conformations of a receptor, thereby activating spe-
cific subsets of its functional signaling profiles.81

Understanding of the mechanisms underlying biased ago-
nism of GPCRs and characterization of ligands has there-
fore been increasing in recent years. Biased agonists
targeting GPCRs, such as the angiotensin type I receptor
and l-opioid receptor, have reached the late stages of clin-
ical development, providing potential therapeutic benefits
including higher efficiencies and reduced adverse
effects.82,83 Challenges in studying biased signaling under-
lie the limitations in understanding the complexity of
GPCR functionality and in detecting specific types of sig-
naling dynamics.84 Several recent studies have confirmed
that SBDD represents a powerful strategy for identifying
novel scaffolds of biased agonists (Table 4).85–90 In 2017,
Man€nel et al. performed a SBDD study on functionally
selective D2R ligands in order to pursue fine-tuning of
functional receptor activities.87 The structure of D2R was
predicted by homology modeling using the crystal coordi-
nates of the D3R subtype and molecular docking of known
functionally selective ligands indicated the ligand-receptor
interactions within the orthosteric site and an extension
into a secondary pocket. A virtual library with about
13,000 compounds was screened based on that model,
and 16 partial agonists were discovered out of the 18 top-
ranked compounds. Mccorvy et al., in 2018, presented an
approach that applied a combination of homology model-
ing, docking, and MD simulation to translate GPCR struc-
tural data into b-arrestin-biased ligands for aminergic
GPCRs.88 In that work, the researchers used D2R as a
model system to identify GPCR–ligand contacts that

Table 2. Representative computational and bioinformatics tools for structure-based virtual screening published in recent years.

Platform Functions and features Link Year

EasyVS Molecule library construction and docking http://biosig.unimelb. edu.au/easyvs/ 2020

HawkDock Prediction and analysis of protein–protein

complex based on docking and MM/

GBSA

http://cadd.zju.edu.cn/hawkdock/ 2019

DockThor 2.0 Protein-ligand docking and binding mode

prediction utilizing high-performance

platform and supercomputer

http://www.dockthor.lncc.br/ 2017

pepATTRACT Large-scale protein–peptide docking http://bioserv.rpbs.univ- paris-diderot.fr/services/pepATTRACT/ 2017

AMMOS2 Protein–ligand–water complexes refine-

ment via molecular mechanics

http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php/ 2017

PPI3D Template-based modeling and search for

homologous protein complexes

http://bioinformatics.lt/software/ppi3d/ 2017

SEABED Receptor preparation, library editing, flexi-

ble ensemble docking, hybrid docking

and QSAR

http://www.bsc.es/SEABED/ 2015

MTiOpenScreen Small molecule docking for user-defined

binding site or blind docking

http://bioserv.rpbs.univ-paris-diderot.fr/services/MTiOpenScreen/ 2015
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mediate biased signaling, and they identified specific
amino acid–ligand contacts at transmembrane helix 5 and
extracellular loop 2 that are responsible for Gi/o and
b-arrestin signaling. They further used specific templates
targeting those residues to develop biased ligands. This
work illustrated a successful combined strategy for design-
ing biased ligands, based on a combination of computation-
al and biochemical approaches, and provided a good
example of leveraging GPCR structures to create biased
drugs. With increasing clinical development of biased ago-
nists ongoing for a variety of indications, we believe that
future drug design will continue to assess ligand bias in
order to develop safer and perhaps more effective
medications.

De novo small molecule design is another frequently
used SBDD strategy. The basic principle of de novo design
is to create novel chemical entities with specific properties
from scratch or to search the same space for new structures
with drug properties. By using structural information of
either target information or structure–activity relationship
data, de novo design of a drug offers an efficient and intel-
lectually appealing alternative to molecular docking of a

large compound database through the use of either the
structural information about the target or the structure–
activity relationship data.91 This provides a broader
exploration of chemical space to identify novel scaffolds
in a cost- and time-efficient manner. Today, with the grow-
ing capabilities in chemical synthesis and computational
speed, de novo design has become increasingly in demand
by researchers to deliver attractive ideas for chemical gen-
eration and drug discovery.92 Numerous algorithms have
been developed to improve the performance of de novo
design, especially with the re-emergence of ML in recent
years. In 2019, Li et al. presented de novo design for GPCR
ligands based on relevant 3D structural information.93 They
performed a fragment-based workflow by first extracting
the characteristic interaction patterns (CIPs) on the binding
interfaces between the GPCRs and ligands. They further
employed these CIPs to search GPCR ligands for chemical
fragments, which would form similar interaction patterns
with GPCRs. The selected chemical fragments were further
assembled into complete molecules using the AutoT&T2
software. This strategy was well validated in the cases of
the b-adrenergic receptor and muscarinic acetylcholine

Table 3. Computational studies for ligand prediction of olfactory receptors in recent years.

Olfactory

receptors Representative known ligands

Molecule/dataset for compu-

tational studies

Research categories and

methodologies Year

OR51E1 Eugenyl acetate; 2,4-dinitroto-

luene; methyl furfuryl disulfide

Library of 128 compounds from

literature

LBDD. SVM-based virtual

screening; QSAR; homology

modeling

2018

OR1A1 Ethyl phenylacetate; trans-

anethole

Library of 315 compounds from

literature

LBDD. SVM-based virtual

screening; QSAR; homology

modeling

2018

OR2W1 Octanal; benzophenone;

eugenyl acetate

Library of 274 compounds from

literature

LBDD. SVM-based virtual

screening; QSAR; homology

modeling

2018

MOR256-3 Benzaldehyde; 2,3-butanediol;

coumarin

Library of 73 compounds from

literature

LBDD. SVM-based virtual

screening; QSAR; homology

modeling

2018

OR1G1 Nonanal; 9-decen-1-ol;

camphor

Library of 173 compounds from

literature

LBDD. SVM; RF; naı€ve Bayes;

neural network

2018

Olfr73 Isoeugenol; p-isobutylphenol ZINC database of 1.58 million

molecules

SBDD. MD; molecular docking;

PH4 search; interaction fin-

gerprint analysis

2019

MOR42-3 a-hexyl cinnamaldehyde Library of 574 odorants SBDD. Homology modeling;

molecular docking; free

energy calculation

2014

Table 4. Successful cases for the discovery of biased agonists for GPCRs in recent years.

GPCR

Representative biased

agonist

Molecule/dataset for computational

studies

Research categories and

methodologies Year

MT1/MT2 4-phenyl-2-

propionamidotetralin

Library of 8.4 million fragment-like and

lead-like compounds

SBDD. Molecular docking 2020

D2R UNC0006; aripiprazole Library of about 13000 compounds SBDD. Homology modeling; molecular

docking

2017/2018

5-HT2AR 2,5-dimethoxy-4-

nitrophenethylamine

3-(aminoethyl)1-methylindol-5-ol;

5-methyltryptamine; 5-Nitro-1H-indole-

3-ethanamine

SBDD. MD; molecular docking; ligand-

residue interaction analysis

2015

b2AR BI-167107 ZINC library of 3.4 million lead-like and

fragment-like molecules

SBDD. Homology modeling; molecular

docking

2013
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receptor and identified a total of 15 and 22 compounds,
respectively, as active antagonists for these two receptors.
Further MD simulations and binding free energy analyses
were performed to explore the key interactions between
those active compounds and their targets. The described
workflow presented an effective fragment-based design
method for the b-adrenergic receptor and the muscarinic
acetylcholine receptor based on CIP analysis. With the
increasing improvements in de novo design approaches,
we should be aware of the remaining challenges, such as
precise description of molecular fingerprints or scoring
functions. The combination of ML-driven generative
molecular design models with novel algorithms for identi-
fication of activity-specific fragments could represent
promising directions for future molecular discovery and
optimization.

Ligand-based rational design

Typically, LBDD serves as a valuable alternative for agonist
and antagonist discovery for GPCRs, especially for GPCRs
that currently lack three-dimensional structural informa-
tion. LBDD employs approved drugs or known active mol-
ecules of interest as references and sets up pharmacophore
models to discover novel chemical structures.94 Several
GPCR-targeting compounds that are derived by LBDD
workflow are currently under clinical trials. For instance,
SEP-363856 is an antipsychotic targeting 5-HT1A recep-
tor.95 To achieve better binding affinity, it was optimized
based on QSAR model with a Ki value of less than 1 lM.
The agent has entered Phase III clinical study in 2019 for the
treatment of adults and adolescents with schizophrenia.
These days, with the re-emergence of AI and the accumu-
lated databases, ML approaches have contributed greatly to
GPCR cheminformatics for the improvement of chemical
descriptor calculations and classification algorithms. This
definitely increases our confidence in the integration of
LBDD and SBDD workflows that combine each of their
strengths as discussed below.

GPCR SARfari database is an integrated chemo-
genomics workbench for GPCR studies and drug
discovery. In 2013, Kawai et al. proposed a similarity-
driven fragment-based evolutionary approach for produc-
ing candidate molecules for drug discovery.96 In that study,
bioactive molecules in the GPCR SARfari database were
used to prepare a fragment library. Ligand design for the
hAA2A and r5HT1A receptors was carried out to verify the
feasibility of this approach. In 2014, Reutlinger et al. pre-
sented a de novo design method that used adaptive frag-
ment prioritization.97 They developed a predictive
quantitative poly-pharmacology model for 640 human
drug targets based on publicly available structure–activity
data. Using this model, they obtained novel subtype-
selective and multitarget-modulating dopamine D4 antag-
onists, as well as ligands selective for the sigma-1 receptor,
thereby proving the applicability of using adaptive build-
ing blocks and fragment prioritization. Likewise, the classic
fragment molecular orbital (FMO) method proposes an
excellent solution that balances accuracy and speed. It
offers a considerable speed-up, since quantum mechanics

approaches are often too computationally expensive, and it
also has the potential to explore key interactions and selec-
tivity that would otherwise be hard to detect.98,99

For example, Bodkin et al. described how FMO has been
applied to the analysis of 18 GPCR-ligand crystal structures
representing different branches of the GPCR genome.100,101

This approach could provide more comprehensive
receptor-ligand binding interactions, including those that
are often omitted from structure-based descriptions like
hydrophobic interactions, or nonclassical hydrogen
bonds, and would shed light on both LBDD and SBDD
for these receptors.

Meanwhile, ML algorithms have been gradually intro-
duced into the LBDDworkflow. For instance, application of
DL provides a new perspective on the construction of
QSAR models or the generation of novel chemical struc-
tures.102,103 This requires the conversion of molecular struc-
tures into chemical information that can be processed
computationally. Several studies have been presented on
the automatic extraction of descriptors from chemical struc-
tures using neural network models such as extended con-
nectivity fingerprint (ECFP) and Mol2Vec, as well as
autoencoder models like DruGAN approaches.104–106

DrugEx is a recurrent neural network generator trained
through reinforcement learning for de novo drug design
and has been applied to ligand discovery against the aden-
osine A2A receptor.107 In another study, Rataj et al.
employed a hierarchical combination of ligand-based ML
classification and structure-based molecular docking meth-
ods to discover novel compounds with 5-HT2BR versus
5-HT1BR selectivity.108 A neighboring substructure finger-
print (NSFP)-basedMLmodel was built using in vitro activ-
ity data for human 5-HT1BR and 5-HT2BR receptors
obtained from ChEMBL. The activity and selectivity classi-
fiers for 2B were developed and the final models were
selected based on the highest acquired Matthews correla-
tion coefficient values. This ML-based classification was
subsequently combined with complementary docking
workflows and applied to a MCule database of 4.8M mol-
ecules. Three hits were identified with nanomolar affinity
and over 10-fold selectivity.

Application of ML algorithms in LBDD also addresses
the longstanding challenge of predicting the activity of
chemicals for odorant receptors. The olfactory receptor
database (ORDB) offers an integration of genomic and pro-
teomic information related to ORs, as well as detailed
ligand molecules that have been experimentally shown to
interact with and activate ORs.109 This provides a good
basis for further ligand-based computational studies on
ORs. In 2018, Bushdid et al. performed a study to predict
the activity of chemicals for a given odorant receptor using
a ML algorithm.110 The activities of 258 chemicals on odor-
ant receptor OR51E1 were virtually screened using 4884
chemical descriptors as inputs and two novel agonists
were identified and validated by in vitro experiments. The
SVM-based protocol was further assessed on other odorant
receptors including OR1A1, OR2W1, and MOR256-3, and
the resulting hit rates for novel agonists were around 39–
50%. This was one of the first successful cases of applying
ML algorithms to agonist discovery of ORs. Inspired by the
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SVM-based prediction, another case study used diverse ML
methods to identify potential agonists of olfactory receptor
OR1G1 47. Three classical ML algorithms, including SVM,
RF, and naı €ve Bayes, as well as a neural network-based
method, were employed. After selecting the best prediction
results, the top ranked compounds were characterized as
pyrazines, benzene-containing ketones, and esters.

Another important application to address is the predic-
tion of drug-induced cardiotoxic effects. Blockade of the
human Ether-a-go-go Related-Gene (hERG) potassium
channel has historically been a barrier to drug develop-
ment, as reduced functionality of the hERG channel
causes QT prolongation, which may lead to severe cardio-
toxicities, such as cardiac arrhythmia.111 Notorious cases of
several approved drugs, including astemizole, terfenadine,
and cisapride that have been withdrawn from the market
due to their cardiotoxic effects, addressed the importance of
evaluating the hERG-blocking activity of drug candidates
at the hit selection stage.112,113 Therefore, computational
approaches have been developed to predict potential
hERG blockage of preclinical drug candidates as a way to
reduce the risk of drug attrition. Diverse structure-based
and ligand-based approaches have shed more light on the
molecular basis of drug-channel interactions.114–118 Here,
we mainly discuss two ligand-based examples. Chemi
et al. generated a ligand-based pharmacophore workflow,
followed by development and validation of a 3D-QSAR
model, in pursuit of a fast and reliable in-house computa-
tional tool for estimating hERG activity.119 A total of 730
molecules were used for the study and five features (two
aromatic rings, one hydrogen-bond acceptor, one hydro-
phobic site, and one positive ionizable function) comprised
the pharmacophore model. The sequential 3D-QSAR
model developed with a set of 421 compounds proved to
be predictive with the ROC of 0.96. The performances in
terms of sensitivity and negative predictive value have
been improved using ML-based approaches in recent
years.120,121 For instance, Ryu et al. in 2020, proposed a com-
putational framework named DeepHIT, which contains dif-
ferent DL models that produce fewer false negative
predictions. A dataset of 6632 hERG blockers and 7808
non-blockers was generated and three independent DL
models were trained.112 DeepHIT presented a higher accu-
racy, MCC, sensitivity, and NPV than previous prediction
tools. As a proof-of-concept study, these researchers also
identified novel urotensin II receptor antagonists without
hERG-blocking activity derived from a previously reported
UT antagonist with a strong hERG-blocking activity. In
summary, these computational tools like DeepHIT have
contributed greatly to rational design and optimization in
the early stages of drug discovery and development.

Conclusions

GPCR proteins have extensive physiological roles; there-
fore, they are a prominent target category for pharmaceut-
icals. They have been pursued as major therapeutic targets
for decades by virtue of their contributions in cellular com-
munications. Deeper understanding of GPCR targets and
their corresponding ligands today has resulted in

increasing efforts to integrate all these new information
into computer-derived models to further benefit the drug
discovery process. In this review, we provide an update on
state-of-the-art computational approaches for GPCR drug
discovery from the aspect of MD simulation, structure-
based and ligand-based rational drug design. Awide vari-
ety of novel algorithms or workflows has been developed
and applied to the GPCR ligand discovery process, thereby
guiding further drug design for analogous targets. In addi-
tion, ML methods are now extensively used to build more
accurate computational models as data on drug discovery
accumulate.

Enhancement of computing power provided by new
technologies has made MD simulation a helpful tool in
molecular modeling and SBDD. Though numerous GPCR
conformations and complexes have been deciphered by
X-ray crystallography and cryo-EM in recent years, difficul-
ties still remain in obtaining active states, in observing finely
tuned conformational changes, and in decoding molecular
mechanisms such as allostery for specific GPCRs. MD sim-
ulations, together with enhanced sampling techniques, have
continuously aided our understanding of the detailed and
dynamic processes how GPCR structures transduce physio-
logical signals into diverse cellular responses. But there are
remaining challenges in accurate simulation for the control-
ling systems of GPCR activation, as well as the prediction of
thermodynamic and kinetic properties during ligand bind-
ing to GPCRs. Improved exercises in GPCR dynamics could
further contribute to the discovery and development ofmore
selective and effective drug molecules, including agonists.

The use of SBDD and LBDD methodologies has dramat-
ically increased in the last decades and contributed greatly
to GPCR rational drug design. SBDD has benefited from the
rapid accumulation of three-dimensional structures, while
LBDD develops with the evolution of database technology.
Both of these protocols facilitate the discovery of novel
ligand molecules. The integration of MD simulations also
offers an outlet for incorporating protein flexibility into the
SBDD workflow of GPCR-targeted ligands. Moreover, free
energy calculation has offered significant potential in accu-
rate evaluation of absolute and relative binding affinities.
Programs that could balance between speed and accuracy
would be promising as a general procedure for GPCR-
targeting SBDD studies. Nonetheless, the rational design
of GPCR agonist ligands remains arduous and requires
extensive effort on elucidating transient states and confor-
mational changes of ligand binding. Emergence of novel
AI-based methodologies has opened up new research ave-
nues for drug discovery of GPCRs, especially for LBDD
where molecular feature presentation proves to be the
key step. With the boom of molecular databases and ML
algorithms, LBDD methods would undoubtedly take the
identification of small molecule GPCR ligands to the next
step. However, an important point to note is that, even as
computational methods for drug design are becomingmore
and more advanced, human assessment based on expert
experience of computer-generated outcomes is still essen-
tial on a case-by-case basis. Another challenge posed here is
the interpretation of AI-generated results. It is usually chal-
lenging for chemists and biologists to understand the direct
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output of what a deep neural network has learned after the
training process. As data further accumulate, this gap may
continue to grow and could impede further use of AI
models in drug discovery and development. Besides, it
should be noted that no documented examples of licensed
drugs derived from SBDD are currently available; however,
preclinical and clinical evidence, such as the development
of AZD4635, has been accumulating over time that would
support an impact of structural biology on drug design and
development. Overall, the coupling of SBDD and LBDD
could be particularly appealing in the future, especially
when coupled with appropriate employment of known
databases and annotations.

Wide distribution and significant roles of GPCRs in cel-
lular physiology create a continuously increasing demand
today for novel GPCR modulators. This review highlights
the recent progress and updates on computational methods
for the discovery of GPCR bioactive ligands. The future is
expected for GPCR drug discovery through rapid develop-
ment of parallel techniques that include both experimental
methodologies and computational strategies. However, no
magic shortcut exists for GPCR drug discovery. Scientists
often state that computational drug design is more of an art
than science. The diversity of GPCR structures and confor-
mations constantly poses new challenges for drug discov-
ery, and no procedural approaches yet exists that generally
apply to all GPCRs. Computational discovery of each novel
drug candidate requires an in-depth understanding of the
complexity of a specific receptor-ligand pair, while requir-
ing rational thinking with a receptive frame of mind to pro-
mote a multidisciplinary partnership. With the continuing
effort and enhanced strategies, it is anticipated that increas-
ing success cases for GPCR drug discovery driven by more
advanced computational techniques, will come to pass in
the forthcoming years.
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