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Abstract
Major depressive disorder (MDD or depression) is a debilitating neuropsychiatric syndrome

with genetic, epigenetic, and environmental contributions. Depression is one of the largest

contributors to chronic disease burden; it affects more than one in six individuals in the

United States. A wide array of cellular and molecular modifications distributed across a

variety of neuronal processes and circuits underlie the pathophysiology of depression—no

established mechanism can explain all aspects of the disease. MDD suffers from a vast

treatment gap worldwide, and large numbers of individuals who require treatment do not

receive adequate care. This mini-review focuses on dysregulation of brain dopamine (DA)

systems in the pathophysiology of MDD and describing new cellular targets for potential

medication development focused on DA-modulated micro-circuits. We also explore how

neurodevelopmental factors may modify risk for later emergence of MDD, possibly through

dopaminergic substrates in the brain.
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Major depressive disorder

Major depressive disorder (MDD) is one of the world’s
greatest public health concerns due to its prevalence,
impact, and complexity. MDD, otherwise known as depres-
sion or clinical depression, is defined as a prolonged period
of time of a person experiencing a depressed mood, loss of
interest, or pleasure.1 MDD affects at least one in six people
in the US population,2 and a 2007 World Health
Organization study of over 200,000 adults demonstrated
that MDD results in the greatest overall reduction in
health when compared with other debilitating and chronic
diseases, including diabetes and arthritis.3 MDD encom-
passes a variety of symptoms related to mood, cognition,
and hedonic systems that implicate multiple central ner-
vous system (CNS) circuits and neural functions.4,5 These
symptoms include anxiety, fatigue, anhedonia, changes in
sleep and activity, and even suicidality. It is difficult to
ascertain which CNS changes contribute to the underlying
pathophysiology of MDD, rather than function as compen-
satory neuroplastic responses induced by the CNS to

ameliorate disease processes. Early studies of the neurobi-
ology of MDD focused largely on the neurotransmitters
norepinephrine and serotonin, due to the antidepressant
properties of pro-noradrenergic and pro-serotonergic
agents, including the selective serotonin reuptake inhibi-
tors (SSRIs). However, serotonergic dysfunction alone is
insufficient to fully describe MDD and its treatment (for
excellent reviews of this topics, please see references6,7).
Current antidepressants are associated with only moderate
efficacy, delayed therapeutic effects, and significant side
effects. Approximately 30% of patients do not remit from
MDD, even after several treatment attempts. Moreover,
newly developed medications show a high failure rate in
clinical trials, and a significant proportion of MDD patients
are “treatment-resistant”.8

Recent studies onMDD have explored several intriguing
and important avenues in this regard. First, genetic studies
have continued to identify multiple risk alleles and disease-
modifying genes across a wide variety of neurochemical
and cellular function families.9 Important environmental,
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behavioral, developmental, and epigenetic factors continue
to be identified,10–12 and a more detailed understanding of
altered brain architecture is now evident.13 There is still a
pressing need for fast-acting, specific, and efficacious ther-
apies—both pharmacological and behavioral.

Early studies of the monoamine hypothesis of MDD also
considered dopamine (DA), but interest in DA soon
focused on movement disorders and drug use and abuse.
Recently, the crucial role of anhedonia as an endopheno-
type of MDD has been re-emphasized, and indeed, this
is a cardinal symptom of MDD. Anhedonia is unlikely to
be a specific symptom of MDD; for example, it is also prev-
alent in disorders historically linked conceptually to DA
dysfunction, such as schizophrenia and Parkinson’s dis-
ease.14,15 This also encompasses the complex reward-
related deficits observed in MDD such as disruption of
decisional anhedonia, which refers to the anticipation,
motivation, and decision-making process involved in
obtaining a reward.16,17 Importantly, anhedonia is one the
hallmark symptoms of MDD aside from depressed mood,
and was shown nearly 50 years ago to be a sign of poor
antidepressant response.18 No treatment has been efficient
in treating anhedonia; in this regard SSRIs have been
shown to be ineffective for positive affect deficits.19 In
this mini-review, therefore, we focus on dysregulation of
brain DA systems in the pathophysiology of MDD and pro-
pose new cellular targets for potential medication develop-
ment focused on DA-modulated micro-circuits and novel
cellular targets. We also explore how neurodevelopmental
factors may modify risk for later emergence of MDD, pos-
sibly through DAergic substrates in the developing brain.

Dopamine and dopamine receptors

DA is a catecholamine neurotransmitter and neuromodu-
lator that primarily acts through binding to high-affinity
receptors. DA receptors (D1–D5) are G-protein coupled
receptors with relatively slow effects on synaptic signaling
through secondmessenger systems. DAergic systems mod-
ulate a wide variety of neural functions and behaviors,
including motor control, motivation, reward, cognition,
and maternal and reproductive behaviors. DA receptors
are divided into two primary families: the D1-like and the
D2-like receptors. The D1-like receptor family includes the
D1 and D5 receptors, which are encoded by the DRD1 and
DRD5 genes, respectively. The D2-like receptor family
includes the D2, D3, and D4 receptors, which are similarly
encoded by DRD1, DRD2, and DRD4, respectively. Each
subtype of DA receptor has a unique regional and cellular
pattern of expression, developmental ontogeny, regulatory
properties, and functional roles. The two families (D1-like
and D2-like) are easily distinguished pharmacologically,
but development of truly specific agonists and antagonists
of each molecular receptor subtype has been challenging
for the field. D1 and D2 receptors are the most abundantly
expressed receptors, and are rarely co-expressed in the
same neurons, at least in adult animals.20 D1-like receptor
activation can contribute to either excitation or inhibition,
dependent on cell type; D2-like receptor activation is usu-
ally inhibitory.21–23 DA signaling is typically terminated by

re-uptake of DA through a high-affinity presynaptic trans-
porter (DAT).

The D1-like receptors typically stimulate adenylate
cyclase to increase the intracellular concentration of the
second messenger cyclic adenosine monophosphate down-
stream of activation of the adenylate cyclase stimulatory G
proteins Gas/aolf; this, in turn, stimulates the activity of pro-
tein kinase A.24,25 D1 receptors are mostly found in the cau-
date and putamen (striatum), substantia nigra pars
reticulata, nucleus accumbens (NAc), olfactory bulb, amyg-
dala, and frontal cortex, with D5 receptors particularly
expressed in the cerebral cortex.26,27 On the other hand,
D2, D3, and D4 receptors all couple to Gai/ao-proteins to
primarily inhibit adenylate cyclase.28 This group of recep-
tors is mainly expressed in the striatum, cerebral cortex,
hippocampus, NAc, substantia nigra pars compacta, and
pituitary gland.27,29,30 D2-like receptors can also modulate
the Akt-GSK3 signaling pathway which in turn regulates
proliferation, differentiation, and gene transcription.31

MAPK signaling is also modulated by both D1- and D2-
like receptors, and this pathway significantly contributes to
DA-mediated modulation of cell death, developmental pat-
terning, and synaptic plasticity.32

There are several major DAergic pathways in the
brain.33,34 The main brain regions containing DA-
containing cell bodies are in the midbrain and consist of
the substantia nigra pars compacta (SN) and the ventral
tegmental area (VTA). Axons arising from the DA cells in
the SN pars compacta form the nigro-striatal tract and pro-
vide DA innervation to the dorsal striatum, arranged in a
topographical manner. The striatum is part of the basal
ganglia, a group of forebrain structures involved in motor
control, motivation, and cognition. Degeneration of the
nigrostriatal DA neurons is the main pathology of the
movement disorder Parkinson’s disease, but Parkinson’s
disease is also characterized by dysfunctions in affect,
mood, and reward. The mesolimbic and mesofrontocortical
DA systems arise from the medially localized VTA. The
mesolimbic system provides DA innervation to subcortical
regions including the NAc, septum, olfactory tubercle, hip-
pocampus, and amygdala. The NAc (sometimes also
referred to as the ventral striatum) is an important interface
for functional output related to motivation and motor sys-
tems. The NAc consists of two subregions containing large-
ly GABAergic medium spiny neurons, the core and the
shell, and it is a vital component of brain reward systems.
The mesofrontocortical system provides dopaminergic
afferents to specific cerebral cortical areas, including the
orbitofrontal and medial prefrontal cortex (PFC).
Disruption of DA neurotransmission within the mesofron-
tocortical system has been associated with mental health
conditions, including schizophrenia, bipolar depression,
substance use disorders, and MDD. The PFC is involved
in complex cognitive functions including motor planning,
attention, and behavioral inhibition and is highly stress-
sensitive (see below). The PFC sends glutamatergic projec-
tions to forebrain structures including the striatum,
midbrain, and hippocampus. Lastly, the tuberoinfundibu-
lar DA system is an important hypothalamic pathway,
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which connects the hypothalamus and pituitary gland to
control prolactin secretion in the anterior pituitary.

Dopamine, stress, and MDD

Roles for the dopamine system in modulating stress and
depression-related circuits have been posited for some time
(for reviews, see references35–38). Mesolimbic andmesocort-
ical DA neurons are activated by acute behavioral stressors,
as well as by other behaviorally salient stimuli.39–42

Mesocortical DA neurons are especially sensitive to acute
stressful stimuli such that relatively mild stressors induce
marked activation of these neurons and of DA neurotrans-
mission in the PFC. Functional heterogeneity is observed
within the mesolimbic projections to the NAc in that behav-
ioral stressors activate DAergic activity to a greater extent
in the NAc shell than in the NAc core or dorsal striatum.43

Studies of conditioned fear also implicate mesolimbic DA
pathways as a key controller of fear-related learning, and
DA-recipient cell targets in the NAc have been directly
implicated in animal models of depression.36,44 Acute expo-
sure to stress has been shown to increase DA synthesis
activity in terminal regions and the rank order of this
effect again reflects differential responses across DA
circuits (PFC greater than NAc; NAc greater than dorsal
striatum). Stress also serves as a crucial potential of drug
self-administration and relapse. Collectively, these data
demonstrate that region and cell-specific increases in DA
neurotransmission and downstream signaling activation
occur during exposure to acute stress. Studies in humans
reveal that blocking or decreasing DA using pharmacolog-
ical interventions resulted in induction and deepening of
depression.35 Conversely, antidepressants increase brain
DAergic mechanisms45 and D2-like receptor antagonists
are often efficacious successful adjuvants to SSRIs in the
treatment of MDD.46 For example, lurasidone and aripipra-
zole/brexpiprazole are new agents with DA receptor mod-
ulating effects that are both effective in treating depressive
symptoms.46–49

Rodent models of MDD also implicate and replicate
DAergic contributions to MDD-induced cellular and
regional pathologies and maladaptations (Table 1; see also
the following excellent reviews focused on this topic50–52).
Anhedonia, again, takes center stage, and this can be
assessed through a variety of assays with distinct strengths
and limitations, ranging from simple sucrose consumption
assays to complex operant models of decisional anhedo-
nia.5,17,53–58 Because MDD has a such a complex etiology
across individuals, animal models similarly utilize a
number of induction agents, including acute and chronic
stress exposure, early life stress and/or maternal neglect,
exogenous administration of glucocorticoids, chronic
inflammatory conditions, and genetic manipulations59–61

(Table 1). Chronic mild unpredictable stress, social defeat
stress, and resident-intruder chronic social stress appear to
have particularly strong validity and alter a wide variety of
neural circuits and behaviors, including CNS DA systems
and their targets.62–69 However, others have argued that
laboratory rodents do not encounter the adaptive evolu-
tionary social pressures required for the development of

depression, and thus all rodent models of MDD may be
irrevocably flawed.70

Several key recent studies have brought a focus back to
dopaminergic systems, and DAD1 receptors specifically, in
considering the underlying pathophysiology of mood dis-
orders. Optogenetic initiation of phasic firing patterns in
VTA dopaminergic neurons projecting to the medial PFC
induced increased susceptibility to social defeat stress.65

Another group instead optogenetically inhibited VTA neu-
rons in awake, behaving mice and observed that this
instantly reduced struggling in the tail suspension test
and induced anhedonia in a sucrose preference test.71

Within the cerebral cortex itself, overexpression of D1
receptors only slightly increased sucrose preference, but
termination of the overexpression (to normal D1 levels)
produced profound depression-like behaviors across sev-
eral paradigms.72 Several additional studies also implicate
dopaminoceptive circuits within the PFC, hippocampus,
and amygdala in altering responses to challenges and stres-
sors.73–75 Beyond MDD, alterations in dopaminergic circa-
dian activity may contribute to rapid mood-cycling in
bipolar disorder.76 A newly identified population of D1
receptor-expressing neurons within a subregion of the
medial amygdala determines approach-avoidance conflict
in the face of threatening stimuli.77 A previously neglected
population of DA neurons in the dorsal raphe nucleus, the
brain region usually associated with 5-HT neurons and the
actions of many antidepressant drugs, has recently been
demonstrated to functionally contribute to aspects of
mood regulation.78 A newly identified DA-modulated cir-
cuit involving D1 receptor-containing neurons in the inter-
peduncular nucleus contributes vitally to the regulation of
anxiety behaviors.79 In this newly identified circuit, VTA
projections to the interpeduncular nucleus activate D1
receptors to modulate a specific subtype of GABAergic
neuron, which then differentially excite or inhibit two
additional specific subpopulations of neurons to drive
anxiety-related behavior. Perhaps most strikingly, D1
receptor-mediated changes in the structure and function
of PFC neurons can suppress stress susceptibility.80

Emerging data from our group indicate that cerebral corti-
cal interneuron deletion of D1 receptors produces
mice who have strong antidepressant and stress resilient
phenotypes at baseline (Delva and Stanwood, unpublished
observations). These data suggest that cell-specific neuro-
pharmacology strategies are needed, location- and
signaling-biased ligands may be particularly useful.81

For example, a ligand that blocks D1 receptors expressed
on cortical interneurons, but not D1 receptors expressed by
excitatory neurons, striatal medium-spiny neurons, or
interpeduncular nucleus neurons would represent a new
and exciting mechanism to treat MDD. These studies are
also summarized in Table 2.

Individuals with MDD also exhibit changes in markers
of DAergic circuits and neurochemical regulation. For
example, in vivo availability of DAT, as studied with a
PET tracer, is reduced both in the putamen and VTA, bilat-
erally.82 Reduced DAT levels after stressor exposure have
been observed in animal studies as well, and this effect is
typically interpreted as reflecting compensatory DAT
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Table 1. Animal models, especially rodent models, are a crucial step in understanding the pathophysiology and treatment of MDD and other

depression-related disorders, but also have limitations.a

Rodent model Strengths Weaknesses Evidence for DA involvement

Chronic social and/or

physiological stress

Introduction of salient stressors is

an important risk factor for MDD;

in rodents, these include tem-

perature, tail- or foot-pinch, iso-

lation, restraint, and defeat

during social confrontations; high

apparent translational relevance,

especially for social stressors;

physiological stressors such as

temperature and restraint are

easily quantifiable and

reproducible

Stress is used to induce depres-

sion-like traits in rodents, but this

has poor specificity and does not

specifically induce MDD—

instead, elements of anxiety dis-

orders, substance use disorders,

and psychosis are also all

induced; species-appropriate

social stressors are not always

utilized

Nearly all external stressors activate

at least some central DA neurons

and pathways; social defeat and

resident intruder social stress

alter molecules, cells, circuits,

physiology, and behavior related

to DA, both as a source of risk

but also as substrates for

behavioral resiliency; altered

phenotypes responsive to

DAergic drugs

Unpredictable chronic mild

stress (UCMS)

Introduction of chronic low-intensity

stressors is an important risk

factor for MDD; high translational

relevance; reproduces anhedo-

nia (and other) symptoms of

MDD

Inconsistent responsiveness across

species, strains, and laborato-

ries; unclear how sensitivity to

these stressors is offset by neu-

robiological resilience

mechanisms

Mild stress is a risk factor not just

for MDD but also for relapse to

drug abuse, accompanied by

modifications in DA-related cir-

cuitry; UCMS-induced changes

in DA systems relatively poorly

studies to date, but changes in

receptor expression

Early life stress (pre- or

postnatal) and/or

maternal neglect

Encompasses neurodevelopmental

risk factors; adverse early-life

experiences are important risk

factors for MDD and suicide,

among other disorders

Complex methodologically and dif-

ficult interpretation—parental

care and units are very species-

specific and resultant pheno-

types are sometimes inconsis-

tent; maternal neglect is typically

intermittent in rodent models, but

chronic in human scenarios;

timing of brain development

across species varies—for

example, early postnatal life for a

rodent is equivalent to late pre-

natal stage in humans

Alterations in DA receptor expres-

sion patterns and signaling;

genetic and epigenetic changes

in DA-related genes; altered dif-

ferentiation, synaptic structure

and morphology in DA neurons

and dopaminoceptive brain

regions

Olfactory bulbectomy Simple and reproducible model Poor face and construct validity and

lack of clinical population

Some documented changes in

brain DA levels and NAc circuitry;

depression-related deficits

reversed by some DAergic drugs

Learned helplessness Learned helplessness induces

behaviors that align well with

several MDD symptoms from the

DSM-V; fairly simple and repro-

ducible; can also be used as a

readout for helplessness behav-

ior induced by other paradigms/

models

Complex experimental protocols

and equipment are required;

paradigm likely only mimics a

subset of the heterogenous dis-

order; relatively poor predictive

validity for efficacy of

antidepressants

Glucocorticoid/

Corticosterone

administration

Aberrant hypothalamic–pituitary–

adrenal axis activity is a clinical

feature of MDD; simple, quanti-

tative, and reproducible insult in

animals; can be used in a variety

of species, including nonhuman

primates

Differential metabolism patterns,

regional activation differences,

timing between exogenously

administered corticosterone, and

endogenous; reduces the com-

plex experience of MDD to a

single molecule; many patients

with MDD have normal cortisol

levels

Both DA neurons and their targets

express glucocorticoid receptors

which respond to stress both

acutely and chronically to regu-

late cognition and motivation

Genetic models (inbred vs.

outbred lines; selective

breeding for sensitive or

resilient traits; targeted

gene knockouts,

knockins, and

transgenics

There are important genetic risk

factors for MDD; relatively easy

to implement targeted mutations

in rodents, especially with cur-

rent CRISPR techniques

MDD is genetically complex; no

single gene mutations produce

the disorder in most patients;

ignores the crucial role of envi-

ronmental risk factors unless

combined with other paradigms

Depending on the gene mutation

under study and the cell-type

and developmental timing of the

alterations in gene expression

patterning and/or function—but

many alter specific aspects of DA

circuitry

(continued)

Delva and Stanwood Dopaminergic and developmental substrates of depression 1087
...............................................................................................................................................................



Table 2. Summary table of recent key animal studies establishing new specific roles for dopaminergic mechanisms in mood-related circuits and

phenotypes.

Citation Manipulation Findings Implications

DeGroot et al.79 Expressed a genetically encoded G

protein-couple receptor activation-

based DA sensor in mouse midbrain.

Used anatomical, neurochemical,

and behavioral techniques to dem-

onstrate a functionally important DA

input from the VTA to the interpe-

duncular nucleus.

DA was detected in the interpe-

duncular nucleus. Two distinct

D1R-dependent subpopulations

circuits were identified, which

contribute to anxiety responses.

Adds an additional level of neces-

sary complexity to DA-depen-

dent neural micro-circuits in the

midbrain.

Freund et al.72 An inducible lentiviral vector was used

to manipulate the expression of D1

receptors in prefrontal glutamatergic

neurons in rats.

Elevated D1R expression increased

hedonic behavior, and the termi-

nation of over-expression pro-

duced depression-related

behavior.

These findings support a significant

role for prefrontal cortical D1R

expression in the regulation of

mood and hedonic reward.

Miller et al.77 This research team isolated a specific

subpopulation of D1R-expressing

neurons in the posteroventral medial

amygdala. They used viral tracing,

optogenetics, pharmacology, and

cell imaging to define effects on

conflict-related behaviors.

Distinct subpopulations of the D1R-

expressing posteroventral medial

amygdala neurons innervate the

bed nucleus of the stria termina-

lis and the ventral hypothalamus.

These two projections have

opposite effects on approach

versus avoidance of threatening

stimuli.

Distinct approach and avoidance

micro-circuits exist within the

medial amygdala and are

potently modulated by DA inner-

vation and postsynaptic D1Rs.

Shinohara et al.80 The authors altered D1R expression in

the medial PFC using viral methods

and quantitatively examined the

effects on behavioral stress respon-

siveness, as well as changes at the

biochemical, neurochemical and

neuroanatomical levels.

Repeated social defeat stress

reduces D1R expression in the

PFC of susceptible mice. D1R

knock-down promotes the

induction of social avoidance by

social defeat. D1Rs also contrib-

ute to stress-induced structural

synaptic changes in the PFC.

D1R in the dopaminoceptive PFC

appear to play a key role in

determining sensitivity and resil-

iency to the behavioral and neu-

roanatomical effects of stress.

Sidor et al.76 Examined ClockD19 mutant mice for

circadian cycle-influenced mood-

related phenotypes and phenocop-

ied phenomemon in wildtype mice

using a novel optogenetic stimula-

tion paradigm of select DA neurons.

Documented rapid mood-cycling

across the light-dark cycle in the

mutant mice and linked these

time-dependent changes in VTA

DA neuronal firing and DA syn-

thesis across the light–dark

cycle.

These findings document a novel

mechanism for regulation of DA

synthesis and firing by CLOCK

and underscores the importance

of normal patterns of DAergic

activity in mood-related

behaviors.

Tye et al.71 Used a combination of electrophysio-

logical, optogenetic, and pharmaco-

logical methods to examine the

impact of VTA DA neurons on stress

and depression-related behavior and

cell responses.

Identified bidirectional control of

specific midbrain dopamine

neurons and bidirectionally

inducing or relieving multiple

independent depression symp-

toms. For example, optogenetic

inhibition of VTA neurons in

awake, behaving mice immedi-

ately reduces struggling in the tail

suspension test and induces

anhedonia in a sucrose prefer-

ence test.

Activation/inhibition of specific

midbrain DA neurons modifies

the neural encoding of depres-

sion-related behaviors in the

NAc, suggesting that processes

affecting depression symptoms

may involve alterations in the

processing of action commands

in limbic circuitry.

Table 1. Continued.

Rodent model Strengths Weaknesses Evidence for DA involvement

Immune system/

Inflammatory-based

models

A link between MDD and inflam-

mation (both central and periph-

eral) has been widely

established; immune molecules

also have indispensable func-

tions during brain development

Exogenous immune activation

strategies are unlikely to mimic

the wide-ranging low-grade

auto-immune activation

observed in MDD

DA systems appear to be a crucial

node in dysregulation of brain

structure and function following

chronic inflammatory insults

aAlso see the following excellent reviews focused on this topic.50–52
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downregulation following blunted DA neurotransmission.
PostmortemWestern blot analyses confirm the reduction in
DAT in the putamen and VTA, but not in the caudate or
NAc, and further demonstrate reduced tyrosine hydroxy-
lase, the rate limiting enzyme in DA synthesis.82 Moreover,
the number of depressive episodes and specific symptom
presentation within individuals was predictive of the
decreases in DAT availability. Individuals with MDD who
reported feeling trapped in perceived inescapable circum-
stances showed the lowest DAT availability in the VTA,
suggesting that DAergic impairment might be more prev-
alent in a subset of people with severe and specific MDD
symptoms. Replication of these findings are needed.
Importantly, this study focused on unmedicated individu-
als with MDD and minimal comorbidity with other condi-
tions; these issues have made it difficult to find consistency
of findings in human MDD patients. Additional studies
have documented reduced reward-related neural fMRI sig-
nals in the caudate and NAc,83 and alterations in both stria-
tal and cerebral cortical responses to positive mood states.84

Notably then, significant heterogeneity has been observed
among studies, with some changes localized to DA cell
body-containing regions, and other to terminals and/or
dopaminoceptive targets. In addition, some changes local-
ize more strongly to different striatal subdivisions; it is
unclear whether this reflects differences in study subjects,
in circuit-related neuroadaptations, or in the specific brain
mechanisms interrogated by different measurements. Of
additional interest, expression of the gene CHRNA7,
which encodes a subunit of the nicotinic acetylcholine
receptor and regulates cognition through interneuron mod-
ulation of DA signaling, is increased in the PFC of patients
with MDD.85 Conversely, protection from MDD following
stress can be conferred through resiliency mechanisms.
Recent studies of the neurobiology of resiliency indicate
that the function of the mesolimbic DA system contributes
to adaptive behavioral responses to stress.86

Neurodevelopmental origins of MDD and DA
dysregulation during brain development

MDD and other neuropsychiatric disorders are increasing-
ly being viewed from a neurodevelopmental perspective,
with an understanding that early alterations in neuronal
migration, differentiation, and circuit formation provides
an altered CNS substrate on which additional deleterious
factors in childhood and adolescence can further dysregu-
late to produce disease.87,88 Recent studies in animal
models and humans strongly implicate cortical
GABAergic neuronal development in mood regulation
and the pathophysiology of major depression.89–93 But as
is the case with most neuronal substrates, GABAergic inter-
neurons in the cortex are embryonically, structurally, and
functionally diverse, regulating a very delicate balance
across cortical networks.94–97 Of note, PFC interneurons
receive synaptic input from dopaminergic axons, and
express DA D1 and D2 receptors.90,98–101

In addition to being a neurotransmitter in the adult CNS,
DA has important modulatory roles during pre- and post-
natal development.102 Conversely, altering neural circuits

and behavioral experiences during neurodevelopment
can dramatically alter the stabilizing and adaptive influen-
ces of central DA systems in the adult. For example, pre- or
early postnatal exposure to stressors, drugs of abuse, or
environmental toxins enduringly alter the neuroanatomical
organization, cellular responsiveness, and adaptive plastic-
ity of both DA neurons themselves and their forebrain tar-
gets.103,104 Direct neurodevelopmental roles for genetic and
environmental modulation of DA receptors and signaling
components have been described by multiple laboratories
and in multiple mammalian species.105–113 The quality of
parental care has also been observed to alter these mecha-
nisms in multiple animal species/models, as well as in
people. For example, repeated epochs of maternal separa-
tion during early postnatal development decrease DAT
activity and increase systemic and CNS DA responses to
subsequent stressors.114–116 DA systems are also extremely
sensitive to genetic, environmental, and drug-induced
modifications during adolescent development.117,118 Thus,
elucidation of these risk factors, their varied but specific
effects on neurodevelopmental trajectory, and the develop-
ment of therapeutic methods to stabilize brain maturation
and adaptive plasticity even in the face of such risk factors,
are all vital areas of future study in the pathophysiology of
MDD and its associated phenotypes.

Delayed DA maturation, connectivity, and plasticity
during adolescence may be involved in amplifying the
risk to developing mental disorders, particularly in the
PFC.38,119,120 Consequently, environmental influences may
disturb adolescent prefrontal dopamine development
which eventually either worsen or render individuals to
become resistant to certain psychiatric conditions, includ-
ing MDD and schizophrenia.

Summary

MDD is produced by complex and heterogeneous disrup-
tions in neurobiology with genetic, epigenetic, and environ-
mental contributions. CNS biogenic amines, including DA,
have important stabilizing, integrative, and plasticity-
related influences on brain circuits. Biogenic amine disrup-
tions are certainly a component of the pathophysiology of
MDD, although it remains poorly understood which of
these are causal and which may be consequence. Based
on emerging studies from animal models and clinical stud-
ies, we propose that the brain DA system may be crucially
involved in underlying both neuropathological processes
and in promoting adaptive mechanisms contributing to
resilience, particularly during sensitive periods of develop-
ment. New technologies and understanding are allowing
researchers to frame much more specific hypotheses than
ever before. The creation of neuronal cell-type specific
pharmacological ligands, coupled with a modern under-
standing of underlying sub-circuits and neuroplastic mech-
anisms, has the ability to allow us to take the management
of this disabling disorder to the next level. Ultimately, the
heterogenous spectrum of clinical MDD requires a diversi-
ty of therapeutic options and specific modulation of DA
sub-circuits within the CNS will add measurably to our
pharmacological treatment repertoire.
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