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Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated

and balanced. A perturbation in the excitatory/inhibitory balance—as is the case in some

neurological disorders/diseases (e.g. traumatic brain injury Alzheimer’s disease, stroke,

epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett

syndrome and autism spectrum disorder)—leads to dysfunctional signaling, which can

result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular

level, transmission of glutamate and GABA, the principle excitatory and inhibitory neuro-

transmitters in the central nervous system control excitatory/inhibitory balance. Herein, we

review the synthesis, release, and signaling of GABA and glutamate followed by a focused

discussion on the importance of their transport systems to the maintenance of excitatory/

inhibitory balance.
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Introduction

An optimally functional brain requires both excitatory and
inhibitory inputs that are regulated and balanced. Optimal
balance is necessary for efficient information processing at
both the cellular and network level, each of which ultimate-
ly subserves cognition and behavior.1,2 At the cellular level,
modulation of the intrinsic excitability and synaptic
strength maintain balance, thereby regulating the overall
firing probability of a neuron.3–6 At the network level, opti-
mal balance maintains stable circuitry (reviewed in Gao
and Penzes7 and Nelson and Valakh8). A perturbation in
E/I balance has been implicated in the etiology and expres-
sion of autism spectrum disorders (ASD), schizophrenia
and anxiety, cerebral ischemia, traumatic brain injury, epi-
lepsy and substance abuse.9–13 As such, a deeper under-
standing of the cellular and molecular mechanisms

regulating physiological E/I balance would allow for
improvement of current clinical strategies for managing
such disorders. In this review, we will focus solely on the
neurotransmitters glutamate and GABA, including how
they are made, released, and signal, as well as, whether
and how specific transport processes influence their
activity.

Gabaergic neural transmission

Gamma-aminobutyric acid (GABA) is present in high con-
centrations in the CNS. Studies in cortex showing that
application by ionotophoresis inhibits cell firing paved
the way for its classification as an inhibitory neurotransmit-
ter in mature, adult mammalian brain.14–17 Nonetheless,
when the potassium/chloride cotransporter KCC2 levels
are low, as occurs early in development, GABA signaling
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is excitatory, exerting trophic effects that contribute to
normal neuronal growth and expansion.18,19

GABA synthesis and packaging. GABA is formed pre-
dominately by the enzymes glutamate decarboxylase 65
(GAD65) or GAD67, both of which use pyroxidine as a
co-factor to convert glutamate to GABA in the CNS.
GAD65, located in nerve terminals, produces GABA for
classic tonic neurotransmission.20,21 GABA produced via
GAD 67, expressed principally in the neuronal somata,
functions in a non-neurotransmitter, metabolic, capacity
contributing to synaptogenesis as well as to oxidation-
reduction (redox) regulation.20–22 Glutamine, serving as a
precursor for glutamate synthesis via phosphate activated
glutaminase, is also a substrate of GABA.23,24 Once synthe-
sized, GABA is packaged for release into synaptic vesicles
by vesicular transporters specific for GABA (VGATs) in a
manner dependent on both the electrochemical and pH
gradient.25,26

GABA signaling. GABA signals via membrane bound
receptor proteins that either open chloride channels
(GABAAR and GABACR) or activate a G protein
(GABABR) (for review see Bormann27). Both lead to hyper-
polarization of the cell membrane albeit via different mech-
anisms.28 GABAARs are composed of an obligatory a and b
subunit (a1-6, b1-4) and at least one other subunit (c1-4, d, e,
p, and h) and are ubiquitously expressed throughout the
vertebrate CNS. GABACR are composed exclusively of q
subunits (q1–3) (see Hedblom and Kirkness29 Bonnert
et al.30 and reviewed in Zhang et al. and Macdonald and
Olsen)31,32 and are near exclusively found in the retina.27,33

Sedative-hypnotics of the barbiturate and benzodiazepine
family increase channel opening frequency,32,34,35 while
bicuculline competitively antagonizes GABAARs,

36 but
these drugs have no effect on GABACRs.

33 The GABABR
is a G-protein coupled receptor formed by the dimerization
of GABAB1 and GABAB2 subunits (reviewed in Heaney and
Kinney37).

Bicuculline-resistant, GABABRs are activated by baclo-
fen and inhibited by phaclofen.38 Located both presynapti-
cally and postsynaptically, the primary effects of activation
of GABABRs are the inhibition of adenylate cyclase, inhibi-
tion of voltage-gated Ca2þ channels, and activation of
inwardly rectifying Kþ channels, all of which contribute
to a gradual and protracted synaptic inhibition.39–41

GABA uptake. The length and size of GABA R mediated
responses are controlled by four different sodium symport-
ers belonging to the solute carrier 6 (Slc6) family. The high
affinity GABA transporters—GABA transporter (GAT) 1–
3—and low affinity betaine-GABA transporter 1 (BGT1) are
all coupled to Naþ and Cl� gradients.42–47 In the CNS,
GAT1 is expressed on inhibitory interneuron axon termi-
nals, on the somato-dendritic compartment of developing
interneurons, in pyramidal neurons, and in astrocytic pro-
cesses and has a Km value of 8 mM.44,45,48 Selectively
expressed on astrocytes,42,49–54 the Km of GAT3 is 0.8mM.
GAT2 (Km¼ 18 mM) is found in high abundance in kidney

and liver and is only weakly expressed in brain, most aus-
piciously in cells forming the pia and arachnoid barrier and
in a subset of blood vessels.55,56 Transcript for BGT-1 has
been found in both mouse and human brain 45,57 with a
demonstrated Km of 80 mM.

Following its synaptic release, GABA uptake by neurons
can be recycled/reloaded into synaptic vesicles to sustain
subsequent rounds of release.58,59 Alternatively, it can be
metabolized in both neurons and astrocytes by GABA-
transaminase and succinic semialdehyde dehydrogenase,
a process known as the GABA shunt, to replenish the
TCA cycle,60,61 thereby constituting an alternative energy
substrate.

Contribution of GABA transport to the maintenance of
E/I balance. Because GABA released into the extracellular
space is not enzymatically broken down, GAT activity is
positioned to control the basal extracellular GABA in the
extracellular space and E/I balance by acting as the
primary mechanism to terminate synaptic inhibitory
neurotransmission.

GAT1. In the CNS, GAT1 signaling accounts for �75–80%
of GABA uptake,62 with high expression in GABAergic
neurons of the neocortex, hippocampus, basal ganglia,
brain stem, cerebellum, olfactory bulbs, and retina.63

Indeed, GABAAR-mediated currents derived from hippo-
campal slice recordings from GAT1�/� mice are increased
compared to control slices.62 These results were recapitu-
lated by using GAT1 selective inhibitors at wild-type syn-
apses.64,65 Interestingly, a reduction in inhibitory tone at
hippocampal presynaptic GABABR has been reported in
GAT1�/� mice,62 which is potentially due to receptor
desensitization following prolonged agonist exposure, as
has been reported with other G-protein coupled recep-
tors.66 This occurs alongside decreased phasic inhibi-
tion—manifest as a reduction in miniature inhibitory
postsynaptic current (mIPSC) frequency as compared to
wild-type.62 Given that presynaptic GABABR activation
typically inhibits neurotransmitter release, this, and the
finding that spontaneous IPSCs were unaffected by presyn-
aptic GABAB tone,62 suggests that diminished phasic inhi-
bition in GAT1�/� mice likely occurs via a GABAB

receptor-independent mechanism.
Loss of GAT1 signaling also has a profound effect on

behavior. Mice null for GAT1�/� display decreased depres-
sion and anxiety-like behavior,67,68 are less aggressive,69

and display signs of hypoalgesia, when compared to
wild-type control mice.70 They also demonstrate impair-
ment in hippocampus-dependent learning and
memory.67,71 Moreover, selective GAT1 inhibitors—includ-
ing tiagabine, NO-711, and DDPM-2571 72,73—have been
demonstrated to recapitulate GAT1�/� behavioral pheno-
types in wild-type rodents.73–76 These findings have paved
the way for human clinical trials of GAT1 inhibitors for
treatment of behavioral complications of psychiatric disor-
ders including aggression,77,78 anxiety,79,80 cocaine addic-
tion 81 and for the improvement of pain symptoms in
individuals suffering from sensory neuropathy.82

1070 Experimental Biology and Medicine Volume 246 May 2021
...............................................................................................................................................................



Inhibition of GAT1 also reduces the hyperexcitation of
GABAergic neurons produced by opiate withdrawal.83,84

Apart from its role in mediating GABA uptake, multiple
lines of in vitro evidence demonstrate GAT1 reversal repre-
sents a route of non-vesicular GABA release in the brain.
Wu et al. found that the reversal potential of GAT1 is close
to equilibrium to the cell’s resting membrane potential,
such that action potentials and high-frequency firing are
sufficient to induce GAT1 reversal.85 GAT1 reversal is
observed in response to membrane depolarization in hip-
pocampal cultures.86 Interestingly, an increase in GAT1
immunoreactivity has been observed in the hippocampus
of rats following 4-AP and kainic acid-induced epilepti-
form activity 87,88 and recent studies show that the anti-
seizure medications gabapentin and vigabatrin enhance
GAT1-mediated GABA release,86,89 with vigabatrin potent-
ly increasing ambient [GABA]e and inducing tonic inhibi-
tion of neurons.90 Additionally, tiagabine, a selective GAT1
inhibitor—commonly prescribed as an add-on therapeutic
option for epileptics with complex partial seizures 91—has
been demonstrated to elevate the pentylenetetrazole (PTZ)-
evoked seizure threshold and reduce generalized seizures
in amygdala kindled rats.92,93 Thus, GAT1 inhibition or
reversal—the latter occurring either naturally or in
response to drug treatment—may represent a potent neuro-
modulatory mechanism to terminate ongoing seizure activ-
ity (E/I imbalance) by directly increasing GABAergic
transmission.

Taken altogether, the bi-directionality of GAT1-mediated
GABA transport, controlled by the dynamic driving force
equilibrium, underscores its ability to modify brain excit-
ability and behavior by modulating the level of both tonic
and/or phasic inhibition.

GAT2. In the adult rodent brain, GAT2-mRNA is found in
leptomeningeal cells, in ependymal cells that line the ven-
tricles, and in cells that constitute the pia and arachnoi-
dea.94,95 As might be expected based on these localization
studies, GAT2 does not appear to influence network func-
tion, at least under physiological conditions.55,56,96

However, GAT2 knockout mice do have a slight elevation
in brain taurine levels,55 in agreement with evidence that
GAT2 expressed on blood vessels permits taurine efflux
from brain to blood.55,56,96

BGT-1. BGT-1 levels are nearly one thousand times lower
than those of GAT1.97 This, as well as its low affinity for
GABA, suggests it may lack a role in the reuptake of extra-
cellular GABA under physiological conditions. In keeping
with this contention, seizure severity of BGT1 deficient
mice (both male and female) elicited by acute administra-
tion of PTZ did not differ from wild-type littermates.97 Yet,
pharmacological inhibition of BGT-1 reduced spontaneous
interictal-like bursting activity recorded from brain slices
taken from rats who experienced prolonged kainic acid-
induced seizures.98 Also of interest, is data demonstrating
that BGT-1 is up-regulated in astrocytes of cortical and hip-
pocampal tissue taken from human Alzheimer disease
(AD) patients, thus begging the question as to whether

BGT-1 might regulate neuronal excitability imbalances
demonstrated to occur in AD.99–101

GAT3. Evidence indicates that concurrent block of both
GAT1 and GAT3 in the hippocampus in vivo results in a
synergistic enhancement of extracellular GABA levels and
increased GABAA receptor tonic inhibition—suggesting
that GAT3 represents an important GABA reuptake mech-
anism in brain.102 In support of this assertion, rats subjected
to juvenile stress have decreased GAT3 mRNA expression
in hippocampus, which was experimentally demonstrated
to underlie increased inhibition and reduced paired-
pulse facilitation, which persisted into adulthood.103

Interestingly, GAT3 expressed in Xenopus oocytes is inhib-
ited by physiological levels of zinc, and immunohistochem-
istry studies in rat hippocampus indicate GAT3 is
expressed at zinc-containing glutamatergic synapses in
regions CA1 and CA3.104 These results suggest that zinc
co-released with glutamate 105,106 could serve to enhance
GABAergic transmission via GAT3 inhibition. However,
in at least one study, selective antagonism of GAT3 using
SNAP-5114 93 increased the excitability of neocortical inter-
neurons, suggesting that (as discussed for GAT1) a reduc-
tion in transporter-mediated GABA release may be
responsible for the reduction in GABA levels.107

Interestingly, an increase in GAT3 mRNA is observed in
the amygdala and cortex of rats following amygdala-kin-
dling,108 whereas GAT3 mRNA levels are decreased in the
amygdala of alcohol-preferring rats as compared to con-
trols, an effect also observed in the amygdala of alcohol-
dependent humans.109 Whether these changes reflect
dynamic regulation of GABA transport (uptake or release)
in efforts to restore E/I balance requires confirmation.
Given that GAT3 is predominately localized to astrocyte
processes surrounding symmetric (typically inhibitory)
and asymmetric (typically excitatory) synapses,50 future
studies should address the cell-type specificity of all of
these effects using astrocyte conditional knockout mice.

Glutamatergic neural transmission

Glutamate, the most abundant amino acid in the vertebrate
nervous system, is found at concentrations three- to four-
fold higher than the next three most abundant amino acids,
aspartate, glutamine, and taurine.110,111 As mentioned pre-
viously, glutamate is a substrate for GABA synthesis as well
as a precursor for other intermediates of the TCA cycle. It
participates in both osmotic balance and ammonia homeo-
stasis 112–114 and is also incorporated into peptides, fatty
acids, lipids, and proteins.115 The pivotal discovery that
application of glutamate to brains of rats resulted in seizure
activity provided evidence for its role as an excitatory neu-
rotransmitter.116–118 Later work determined that glutamate
fulfills the five criteria for classification as a neurotransmit-
ter: (1) localization to nerve terminals; (2) release upon neu-
ronal stimulation; (3) activation of cognate receptors; (4) a
rapid termination mechanism; and (5) application of gluta-
mate mimics neuronal stimulation.110,119

A large proportion of neuronal synapses in the CNS
(�80–90%) release glutamate 111,120 contributing to a

Sears and Hewett Transporters influence E/I balance in brain 1071
...............................................................................................................................................................



myriad of sensory, cognitive, and behavioral processes (for
review see Hassel and Dingledine121). Maintenance of low
basal extracellular glutamate concentrations as well as effi-
cient release and uptake of the neurotransmitter are neces-
sary to maintain proper balance of synaptic excitation and
inhibition with imbalance leading to neurological disorders
and disease states. For example, cognitive deficits associat-
ed with schizophrenia may result from glutamatergic
hypofunction,12 while disproportionate release of gluta-
mate and/or prolonged glutamate receptor activation can
lead to over-excitation and excitotoxic neuronal cell
death.122–124 Hence, it is imperative that the release of glu-
tamate be exquisitely controlled by specific and efficient
uptake, as will be discussed below.

Glutamate synthesis and packaging. Because of its
inability to cross the blood–brain barrier, glutamate is syn-
thesized primarily from glutamine (glutamate-glutamine
cycle) in both neurons and astrocytes by the action of
phosphate-dependent mitochondrial glutaminase (for
review see McKenna125). An additional source of glutamate
results from the transamidation of a-ketoglutarate, a key
intermediate in the TCA cycle, by the enzyme glutamate
dehydrogenase.126 Once formed, 70–210mM glutamate can
be packaged into synaptic vesicles via one of three vesicular
glutamate transporters ((VGLUT1, Slc17a6); (VGLUT2,
Slc17a7); and (VGLUT3, Slc17a8)),127–129 all of which rely
on the vacuolar type Hþ-ATPase for function.127,130

Vesicular and non-vesicular release of glutamate. The
majority of fast synaptic excitatory neurotransmission is
facilitated by action potential driven, Ca2þ-dependent
vesicular release of glutamate from neurons. However, glu-
tamate can be released by both astrocytes and neurons by
other cellular mechanisms. For instance, when the gra-
dients of Naþ, Kþ and Hþ are disrupted across the
plasma membrane, as occurs during cerebral ischemia,
the Naþ-dependent excitatory amino acid transporters
(EAATS) reverse, dumping glutamate into the extracellular
space.131–133 Volume-regulated anion channels (VRACs) are
glutamate permeable when physiological and/or patholog-
ical swelling occurs.134,135 Functional hemichannels in
astrocytes can efflux amino acids, including glutamate.136

This mechanism of glutamate release may occur under
physiological 137–140 as well as pathophysiological 141,142

conditions. Additionally, purinergic P2X7 receptors are
responsible for ATP-induced glutamate release.143 Finally,
astrocytes express the protein machinery (see litera-
ture144–147) that would support fusion-related release of
neurotransmitter 148–150 and, indeed, vesicular glutamate
release has been described from astrocytes in response to
neuronal activity.151,152 There is a suggestion that this may
be a significant source of extracellular glutamate during
development, but not in adulthood.153 Overall, the exis-
tence and importance of vesicular glutamate release from
astrocytes in vitro appear incontrovertible; however, wheth-
er this occurs in vivo remains contested (for dual perspec-
tive reviews see Savtchouk and Volterra154 and Fiacco and
McCarthy155) Finally, the ambient, basal levels of

extracellular glutamate that bathe the CNS are maintained
by the activity of a heteromeric amino acid transporter
known as system xc, found near exclusively on astrocytes,
that facilitates entry of cystine in exchange for glutamate in
a one-to-one fashion.156

Glutamate signaling. Fast and slow excitatory synaptic
transmission in the CNS occurs via ligand-gated ion chan-
nels (i.e. ionotropic (iGluRs)) and G-protein coupled (i.e.
metabotropic (mGluR)) receptor subtypes, respectively
(see reviews Traynelis et al. 157Niswender and Conn 158).

Cognate iGluRs, composed of four subunits that assem-
ble as dimer pairs, were classified over 40 years ago accord-
ing to the exogenous ligands that activate them, namely
a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
receptors (AMPARs), kainic acid receptors (kainate,
KARs), and N-methyl-D-aspartate receptors (NMDARs)
(for review see Traynelis et al.157Lodge159). Of interest,
delta receptors have also been classified as iGluR subtypes,
but this is based solely on sequence homology as neither d1
and d2 are gated by glutamate.160,161 They do, however,
respond to D-serine and glycine.162

AMPAR tetramers arise from a combination of GluA1-4
subunits.163 Glutamate binding to AMPAR facilitates the
fast opening of an ion channel pore, fluxing Naþ in and
Kþ out, which then rapidly desensitizes.164 The editing of
the GluA2 subunit (Q/R) is responsible for the imperme-
ability of AMPARs to calcium..165 However, AMPARs can
flux calcium when the tetramer contains unedited GluA2
subunits and/or lacks GluA2 altogether.166,167 Enriched at
glutamatergic synapses, AMPARs mediate fast synaptic
transmission and are a key determinate of the morphology
of the dendritic spine.168,169 Membrane trafficking of
AMPARs into and out of the synapse also regulates synap-
tic strength and plasticity.170

Tetraheteromers of GluK1-5 form KARs that show
prominent localization to both pre- and post-synaptic
sites in the cerebellum (comprised of GluK1, 2, and 5)
and hippocampus (comprised of GluK2, 3, 4, and 5).171

Interestingly, KARs are allosterically modulated by mono-
valent anions and cations, which serve to stabilize the
ligand binding core domain.172,173 Similar to AMPARs,
Q/R RNA editing, in this case of GluK5 and GluK6 sub-
units, renders the receptor impermeable to calcium.174,175

Unlike AMPARs, KAR-mediated excitatory postsynaptic
currents (EPSCs) are small, with both slow rise and decay
times.176,177 Depending on the concentration of agonist,
activation of presynaptic KARs results in either synaptic
facilitation or depression at excitatory CA3-CA1 or mossy
fiber-CA3 synapses.178–180 Presynaptic KAR activation can
also depress GABA release in the hippocampus, presum-
ably through a novel second messenger metabotropic sig-
naling mechanism.181

Functional NMDARs are composed of a combination of
two GluN1 subunits (termed the obligate receptor subunit;
glycine/serine binding) and two GluN2 (GluN2A-D, glu-
tamate binding) and/or GluN3 (GluN3A-B, glycine bind-
ing) subunits, the unique composition of which renders
distinct physiological properties to each receptor
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combination along with regional specificity (reviewed in
Sanz-Clemente et al. 182). For instance, assembly of GluN1
with GluN3, in the absence of GluN2, creates an excitatory
glycine receptor located at sites distant from synaptic ter-
minals.183 In contrast, a significant proportion of forebrain
NMDARs are triheteromers found post-synaptically and
feature two GluN1 subunits together with two different
GluN2 subunits (GluN2A-D), the activation of which cre-
ates the slow component of EPSCs. These NMDARs have
several features that differentiate them from other iGluRs
(for more detail see Glasgow et al.184) First, they function as
coincidence detectors, requiring both ligand and voltage
for channel opening. Second, their deactivation kinetics
are slow, creating an opportunity for temporal integration
of synaptic activity.185,186 Third, they show remarkable cal-
cium permeability, thus making them essential players in
both Hebbian and homeostatic types of plasticity.187,188

Metabotropic glutamate receptors (mGluRs), eight in
total, do not flux ions but instead are coupled to G-proteins
that possess seven transmembrane spanning regions, the
activation of which initiates distinct intracellular signaling
cascades that result in diverse cellular and electrophysio-
logical effects (for reviews see literature158,189,190). mGluRs
are divided into three groups (Group I, II, and III) based on
amino acid sequence homology and the intracellular
second messenger cascade that they initiate. Coupled to
phospholipase C, Group I receptors (mGluR1 and 5) hydro-
lyze phosphoinositol, mobilize calcium, and facilitate pro-
tein phosphorylation. Negatively coupled to adenylate
cyclase, Group II (mGluR 2 and 3) and Group III
(mGluR4 and mGluR6-8) receptors decrease cyclic AMP
production and ultimately protein phosphorylation.
Activation of mGluRs in the CNS has diverse functional
outcomes ranging from activation or inhibition of Kþ and
Ca2þ channels, potentiation and inhibition of AMPA and
NMDA receptor-mediated responses, and/or presynaptic
facilitation or inhibition of neurotransmitter release.189,190

Glutamate uptake. Glutamate is not broken down in the
extracellular space, and as such excitatory amino acid
transporters (EAATs) are responsible for termination of
glutamate signaling by its removal from the synapse fol-
lowing release.191 EAAT1-5 are members of the Slc1 family
of transporters.192 Removal of glutamate by EAATs is said
to be electrogenic as one Kþ ion is transported out of the cell
each time a glutamate anion and three Naþ ions are trans-
ported in.131,193–197 Uptake via EAATs is also associated
with an uncoupled Cl� gradient,198–200 which may also con-
tribute to a reduction in excitability.

Found throughout the brain, EAAT1 (GLAST) 201,202 is
localized exclusively on astrocytes.203 EAAT2 (GLT-1a,b) 204

is also predominately an astrocyte protein although aminor
proportion of GLT-1a can be found on certain axon termi-
nals.205–208 EAAT3 (EAAC1) 209,210 is localized to neuronal
somata and dendrites.211,212 EAAT4 localizes to cerebellar
Purkinje cells,213,214 but also astrocytes,215 while EAAT5
expression appears to be limited to photoreceptors and
bipolar cells of the retina.216 In the CNS, the majority of

extracellular glutamate clearance is performed by
EAAT2217–219.

Role of glutamate transport in maintenance of
E/I balance

Excitatory amino acid transporter 1. In humans, a hetero-
zygous mutation in EAAT1 phenocopies with reductions in
glutamate uptake that likely contributes to neuronal hyper-
excitability resulting in episodic ataxia and, depending
upon the extent of the reduction, seizures.200,220,221 In
mice, loss of EAAT1 does not result in spontaneous seizure
generation, but the duration of seizures elicited by electrical
stimulation of the amygdala is significantly prolonged,
whereas the latency to seizure induced via systemic admin-
istration of PTZ is shortened and the seizures themselves
more severe.222 EAAT1 null mice also show locomotor
hyperactivity when placed in a novel open field.223

Additional studies with this mouse demonstrate abnormal-
ities on behavioral symptoms (positive, negative, and
attentional/cognitive symptoms) associated with the
developmental disorder schizophrenia,224 which arises
from alterations in E/I balance.7

Excitatory amino acid transporter 2. Consistent with its
outsized role in synaptic glutamate uptake, mice with a
genetic deletion of astrocyte (but not neuronal) EAAT2
demonstrate excessive synaptic glutamate, which precipi-
tates spontaneous seizures that are lethal by three–six
weeks of age.225,226 Of interest, Amara et al. determined
that Eaat2 (Slc1a2) is located on mouse chromosome 2
near quantitative trait loci shown to modulate seizure fre-
quency in mouse models of epilepsy and alcohol with-
drawal.227 In humans, glutamate levels are increased in
interictal epileptogenic foci,228 leading to the speculation
that clearance is impaired. In keeping with this idea, pro-
tein expression of EAAT2 (and EAAT1) in the CA1 hippo-
campus of patients with temporal lobe epilepsy was
reduced by 25% (and 40%), respectively.229 Reduction of
EAAT2 protein expression at human neocortical epileptic
foci has also been described.230 These reductions could be
caused by the production of alternative EAAT2 mRNA
splice variants.231 Finally, seizure control in both mouse
andmonkey models of epilepsy was achieved via strategies
that upregulate EAAT2 expression.232,233 Upregulation of
EAAT2 expression was also shown to attenuate alcohol
consumption in male alcohol preferring rats,234 contribut-
ing to the idea that glutamate transport might be a target for
treatment of alcohol dependence.235

Very recently, it was demonstrated that chemically eli-
cited cortical spreading depression (CSD), a pathological
neural depolarization that underlies migraine pathophysiol-
ogy 236–238 as well as secondary neuronal damage and infarct
expansion following cerebral ischemia,239,240 occurs with
increased frequency and velocity in EAAT2 astrocyte condi-
tional knock-out mice.241 In contrast, the germ-line EAAT1
and EAAT3 null mutants show no such effect.241

Excitatory amino acid transporter 3. Although approxi-
mately 100-fold less abundant than EAAT2 246,
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EAAT3/EAAC1, primarily found on dendrites and soma of
hippocampal neurons,212 is known to regulate the duration
of glutamate in the synaptic space that immediately sur-
rounds active terminals. This prevents glutamate spillover
to extrasynaptic regions,242,243 which are morphologically
defined as receptors lying more than 100 nm from the post-
synaptic density.244 Accordingly, the slower component of
CA1 pyramidal cell glutamatergic EPSCs is enhanced when
EAAT3/EAAC1 242 is absent and extrasynaptic NMDA
receptors are activated in EAAT3 knockout mice.245 This
latter result could, at best, result in modulation of synaptic
activity246 and, at worse, contribute to neurodegenera-
tion.247,248 Interestingly, a reduction in both EAAT3 mes-
sage and protein was found in human neocortical tissue
taken from epileptic foci in comparison to non-epileptic
regions of similar neuronal density using quantitative
real-time PCR and immunoblotting, respectively.230 Thus,
it may not be surprising that chronic antisense oligonucle-
otide treatment against EAAT3/EAAC1 in rats resulted in
behavioral episodes of staring/freezing that correlated
with electroencephalogram changes manifest by short
runs of rhythmic spikes.249,250 The physiological basis of
EAAT3/EAAC1 antisense oligonucleotide epileptogenesis
was attributed, in part, to hippocampal GABA synthesis
reduction.250 However, these phenotypes were not recapit-
ulated in an EAAT3/EAAC1 null mice.251 Additionally,
EAAT3 mRNA and protein expression are enhanced (not
reduced) by approximately 3-fold in granule cells of the
dentate gyrus of pilocarpine-treated rats that seize sponta-
neously as compared to control rats.252 EAAT3 message is
also higher in granule cells of the dentate gyrus taken from
human patients with temporal lobe epilepsy.252 Whether
this increase represents a compensatory change to increase
glutamate clearance or enhance GABA production/activi-
ty,250,253 or is merely an epiphenomenon, remains to be
definitively determined.

With respect to neuropsychiatric disorders, a functional-
ly relevant deletion of Slc1a1, which encodes for EAAT3/
EAAC1 has been shown to co-segregate with psychotic dis-
orders (e.g. bipolar disorder and schizophrenia) in an
extended 5-generation pedigree.254 Furthermore, mice
with EAAT3/EAAC1 haploinsufficiency show biochemi-
cal, behavioral, and histological changes that reflect an
altered redox state, congruous with changes found in
patients with schizophrenia.255 Finally, genetic linkage
and association studies performed in obsessive convulsive
disorder (OCD), itself linked with cortical excitability
abnormalities,256 point to gene variants in Slc1a1 (for
review see Escobar et al. 257). While mice null for EAAT3
do not show behaviors consistent with OCD, overexpres-
sion of EAAT3 in forebrain neurons alone does result in
anxiety-like and repetitive behaviors, which are also often
reported in persons diagnosed with OCD.245

Excitatory amino acid transporter 4. Soma and dendrites
of cerebellar Purkinje neurons show prominent expression
of EAAT4, although it is not restricted to these cells.258–260

While EAAT4 shows high affinity for glutamate,258,261 it
takes up just 10% or less of released glutamate at climbing

fiber (CF) synapses;262 the balance is removed by Bergmann
glial cells via EAAT1.263,264 Consistent with this notion, no
Purkinje cell death followed 5 min global ischemia in mice
null for EAAT4, whereas significant loss occurred in mice
lacking EAAT1.265 Supporting the idea that EAAT4 trans-
porters prevent glutamate spillover to adjacent synapses, a
pronounced tail current (seconds in length) appears during
the decay phase, the initial kinetics of which is not different,
of both CF- and parallel fiber (PF)-EPSCs when evoked in
slices derived from mice deficient in EAAT4.266

Excitatory amino acid transporter 5. EAAT5 is localized
near exclusively to the retina (see Dalet et al.260) with
expression in the synaptic terminals of photoreceptors
and rod bipolar cells.216,267 EAAT5 exhibits two distinct
properties, acting both as a rather ineffective, low-affinity
and low-capacity glutamate transporter and as a
glutamate-gated inhibitory “receptor”.267–269 This EAAT5-
mediated anion channel, optimized for conduction in the
negative voltage range,270 is postulated to reduce excitabil-
ity of neurons by maintaining membrane potential at its
optimum.

Electrogenecity and anions. Electrophysiological mea-
surement of tonic NMDAR activity in acute brain slice
has informed our understanding of the amount of ambient
glutamate in the extracellular space, which has been
reported to range from 25 to 90nM.271–275 Studies using
in vivo microdialysis report higher concentrations
(0.2–35 mM),276–279 which could be due to tissue damage
inflicted by the sampling probe.280 These low values are
maintained despite the fact that intracellular concentration
of glutamate ranges from high lM to mM concentrations in
astrocytes and neurons.128,129,281 This is because glutamate
transport is electrogenic,131,193–197 allowing for efficient
uptake of glutamate against this concentration gradient.
The ion-coupled substrate transport current generated by
each EAAT subtype varies with the bioenergetics tightly
controlling the rate and amount of glutamate removed
(for detailed review see Divito and Underhill282).
Glutamate uptake creates a chloride flux (anion channel)
that is thermodynamically uncoupled to transport but is
generated when Naþ ions and/or glutamate bind to the
transporter.198,199,283 For a detailed review of the molecular
transport mechanisms see Grewer et al.284 EAAT1, EAAT2,
and EAAT3 produce smaller anion currents as compared to
EAAT4 and EAAT5, both of which show large chloride con-
ductance.216,283,285 It has been suggested that this chloride
conductance shapes excitatory signaling by counterbalanc-
ing the entry of positive charges that occurs along with
glutamate influx, thereby preventing depolarization of the
cell.286 Additionally, it could serve to clamp the membrane
potential at negative values, further inhibiting glutamate
release and/or supporting electrogenic glutamate uptake
by favoring Naþ entry.285 Most interestingly, the anion cur-
rent could effectively function as glutamate-dependent
inhibitory receptor, thereby directly counteracting gluta-
mate’s excitatory effects.284,287
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System xc
�. System xc

� (Sxc
�)—described by Bannai and

Kitamura in 1980—is a Naþ-independent, Cl� -dependent,
heteromeric amino acid transporter that functions physio-
logically to import L-cystine in exchange for L-glutamate in
a 1:1 ratio.156,288 Transport is electroneutral and limited to
amino acids in their anionic forms. While Sxc

� is expressed
in cultured microglia,289,290 neurons,290–293 HT22 neuronal
cell line,294 rodent astrocytes, 290,295 and human glioma cell
lines,292,295–299 astrocytes appear to be the main cell type
expressing Sxc

� in the mature brain in vivo. To wit: Pow
et al. demonstrated via immunocytochemical analyses
that a-aminoadipate, a substrate inhibitor of Sxc

�, was
absent from neurons and oligodendrocytes but accumulat-
ed in astrocytes, radial, and Bergman glia.299 Transcriptome
analysis of parenchymal cells from mouse and human
cortex, revealed enrichment of the transcript for the sub-
strate specific light chain of Sxc

� (xCT encoded by Slc7a11)
in astrocytes when compared to neurons, microglia, endo-
thelial cells, and other cell types.144,300 Finally, immunohis-
tochemical analysis for xCT in adult mouse brain showed
that Sxc

� is expressed in a subset of astrocytes but not in
neurons, microglia, or oligodendrocytes.301 Labeling of xCT
was found in most brain regions including the molecular
layer and the stratum lacumosum moleculare of the hippo-
campus, the striatum, the hypothalamus, the thalamus, and
the cortex; it was also concentrated a the blood/brain/cere-
bral spinal fluid barriers.301

Apart from transporting cystine into cells, a process
important for cellular redox balance, export of
glutamate by Sxc

�—estimated to be 0.6 mM/s 302—contrib-
utes to/maintains basal extracellular glutamate
concentrations,276,279,303–309 which itself contributes impor-
tantly to brain E/I balance. 273,274,303,308,310–318 Numerous
studies demonstrate that Sxc

� -derived extracellular gluta-
mate, specifically, is important for maintaining balanced
transmission. For example, increased glutamate receptor
clustering and excitatory junction potentials occurred in
association with reductions in glutamate at the neuromus-
cular junction of the Drosophila melanogaster mutant for
Sxc

�, an effect phenocopied by bathing larvae in low glu-
tamate concentrations.308 Findings that Sxc

� -derived glu-
tamate is important for maintenance of synaptic strength
were also reported in mouse CA1 hippocampus taken from
male mice mutant for xCT�/�. Specifically, AMPAR immu-
noreactivity was enhanced as was both spontaneous and
evoked excitatory currents, effects phenocopied by main-
taining slices in glutamate-free bathing solution and/or by
incubation with a pharmacological inhibitor of Sxc

�.311

Given this, it is somewhat surprising that a higher dose of
the chemoconvulsant pilocarpine or kainic acid, provided
via intravenous infusion, is needed to precipitate behavior-
al seizures in transgenic xCT�/� mice when compared to
wild-type control mice.276 Also surprising is that following
a single intraperitoneal (i.p.) dose of NMDA, latency to
convulsive seizure is increased and incidence of mortality
is reduced in a cohort of xCT�/� mice.276 This contrasts
with our own findings, which are in keeping with the elec-
trophysiological results described above, that demonstrate
a reduction in convulsive seizure threshold of Slc7a11sut/sut,

as compared to Slc7a11þ/þ littermates, in response to a
single dose of the chemoconvulsant PTZ or kainic acid
delivered i.p. (manuscript in review).

A deleterious role for aberrant Sxc
� expression is dem-

onstrated by the following few studies. A rapid increase in
Sxc

� activity, demonstrated by positron emission tomogra-
phy, in rat brain followed a focal cerebral ischemic insult
induced by transient occlusion of the middle cerebral
artery.319 In this same study, cell death and neuronal cur-
rents induced by oxygen–glucose deprivation in slice and
slice culture—so called anoxic depolarizations—were both
reduced by block of Sxc

�.319 Previously, we found that
when astrocyte activity of Sxc

� is enhanced, glutamate-
mediated excitotoxic neuronal death during simulated
ischemia is also increased.290,320,321 Finally, both glutamate
concentrations and Sxc

� levels are enhanced in glioma
tissue,296,322 with evidence in humans showing that
enhanced xCT expression in tumors positively correlates
with degree of tumor invasion and with shortened surviv-
al.323 Moreover, pharmacological inhibition of Sxc

� reduces
seizure frequency in glioma-bearing mice and peritumoral
glutamate levels in human patients.324,325 Increased xCT
expression was found in post-mortem samples of dorsolat-
eral prefrontal cortex of patients diagnosed with schizo-
phrenia,326 although the significance to disease
pathogenesis or symptomology remains to be determined.
Finally, reduced activity of Sxc

� in the nucleus accumbens
of rats followed repeated cocaine exposure was demon-
strated convincingly to be associated with pathological
changes in extracellular glutamate levels as well as their
compulsive drug seeking behavior.278,305,327–329 Likewise,
xCT levels were reduced in nucleus accumbens and the
ventral tegmental area of rats self-administering nico-
tine.330 In this same study, human smokers treated with
N-acetyl-cysteine, a cysteine prodrug that activates Sxc

�,
reported they smoked fewer cigarettes.330

With respect to more conventional behaviors, mice lack-
ing Sxc

� (both transgenic xCT�/� as well as Slc7a11sut/sut

mice) show reduced alternations in the three arm sponta-
neous alternation task, indicating a deficit in spatial work-
ing memory.276,331 Additionally, impaired functioning in
both amygdala and hippocampal-dependent fear condi-
tioning tasks, as well as in a hippocampal-dependent pas-
sive avoidance tasks, representing aberrant learning and/
or memory, has been reported inmale Slc7a11sut/sut mice.332

Notably, CA1-Schaeffer collateral cellular long-term poten-
tiation—a synaptic mechanism thought to underlie learn-
ing and memory–is reduced in these same mice.332 Other
studies demonstrate that physiological Sxc

� signaling influ-
ences behavioral anxiety and despair. For instance, as com-
pared to wild-type, male transgenic mice null for xCT
occupy the illuminated portion of the light/dark box and
spend an increased amount of time in the open during the
open field test.333 As compared to wild-type control mice,
they also show reduced immobility and enhanced climbing
behaviors in the tail suspension and forced swim tests.333

Overall, evidence across multiple species using different
paradigms indicate that physiological Sxc

� activity contrib-
utes importantly to themaintenance of E/I balance in brain.
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Conclusions

Stable global neuronal activity is achieved in forebrain by a
coordinated and dynamically regulated balance between
excitatory (chiefly glutamatergic) and inhibitory (chiefly
GABAergic) inputs. This coordination is essential for the
normal functioning of most complex brain processes,
with imbalances contributing to the pathobiology of neuro-
developmental disorders, neurodegenerative/neurological
disease, as well as, acute neurological disorders. Most stud-
ies researching E/I imbalance focus on neurotransmitter
levels and/or concentrate on receptor signaling. However,
the capacity of glutamate and GABA transporters to both
modulate release and uptake of neurotransmitter, as well as
neural network activity, in a cell-type specific manner
underscores their important contribution to maintenance
of physiological balance. Hence, a comprehensive under-
standing of how these transporters work normally and how
their physiological function may be altered under patho-
physiological conditions are the first steps to identifying
novel therapeutic avenues and targets to prevent or miti-
gate imbalance.
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