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Introduction

Sarcomas are rare malignant tumors derived from mesen-
chymal tissues.1 They have been divided into two major 
categories; soft-tissue sarcoma (muscle, fat, blood vessels, 
peripheral nerves, and fibrous connective tissues) that com-
prises less than 10% of all adult solid tumors and bone sar-
coma as the name refers a malignancy arising in bone which 
comprise 15% of all pediatric tumors.2 The primary approach 
to treat most sarcoma malignancies is surgery. However, 
patients with metastatic tumors have been treated with 
chemotherapy. Notably, for the pediatric sarcomas, treat-
ment has evolved to include surgery followed by chemo-
therapy and/or radiotherapy.2,3 There is a clear need for a 
novel, less toxic, and more effective treatment for sarcoma 
malignancies, especially osteosarcoma (OS) which is the 
most common pediatric sarcoma type. In this review, we aim 
to summarize the current therapeutic strategies for OS and 
suggest several techniques, which may be used to develop 
potentially novel therapeutics.

Background of OS

OS, can be also called as osteogenic sarcoma, is the most com-
mon primary bone malignancy among children, adolescents, 
and young adults.4 Osteogenic sarcomas are commonly 

locally aggressive tumor types and frequently produce early 
systemic metastases to the lungs.5 They usually occur near 
the metaphysis of the long bones such as distal femur and 
proximal tibia.4,6 The molecular pathogenesis of the OS ini-
tiation and progression remains one of the major unsolved 
questions of the disease pathophysiology.

According to the World Health Organization (WHO), 
histological classification of OS can be divided into several 
categories: conventional, telangiectatic, parosteal, periosteal, 
high-grade surface, low-grade central, and small cell.7 The 
conventional OS is the most common one among other clas-
sifications, which represents approximately 80% of all cases 
and can be subdivided into osteoblastic, chondroblastic, and 
fibroblastic types depending on the predominant character-
istics of the tumor cells.5,7 The symptoms of OS usually are 
intermittent pain, tenderness, and swelling near the affected 
bone.8 Diagnosis and tracking progression are achieved by 
a combination of imaging (X-ray, magnetic resonance imag-
ing scan, positron emission tomography, and computed 
tomography scan) and histology assessing the characteristic 
appearance of tumor cells forming osteoid.9

Current therapeutic strategies

In cancer, therapeutic approaches and strategies are usu-
ally based on several factors including tumor stage, age of 
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Minireview

Impact Statement

Osteosarcoma is not entirely curable. The main 
treatment of the disease is surgery combined with 
aggressive chemotherapy, which has not changed 
in almost 30 years. Thus, patients’ overall survival 
also has not significantly improved. Currently, there 
are no drugs undergoing clinical trials for osteo-
sarcoma. In the review, we have offered potential 
techniques to develop novel therapies for osteosar-
coma patients.
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patient, general condition, patient’s quality of life, and life 
expectancy. Currently, there are three major therapeutic 
options are available for patients of OS: surgery, chemother-
apy, and radiation therapy.10

The main aim of surgical amputation and limb-salvage 
in OS therapy is a complete tumor removal with a wide-
ranging margin of non-cancerous normal tissue in order to 
avoid local reoccurrence, and improve overall survival.10 
Surgery alone creates surgical stress, which causes ischemia–
reperfusion injury, activation of sympathetic nervous sys-
tem, endocrine and metabolic changes, acute and chronic 
inflammation, and immune suppression within the body, 
and consequently promotes tumor metastasis.11,12 That is 
preciously why current management of OS includes sur-
gery followed by chemotherapy and radiotherapy with the 
aim of reducing overall tumor size as well as eliminating 
micrometastases.8,13

Chemotherapy has been the most common treatment 
for OS patients since the 1970s.14 The main chemotherapy 
regimens applied for the disease are high-dose methotrexate 
(HDMTX) with leucovorin rescue, doxorubicin, cisplatin, 
and ifosfamide with or without etoposide.10

Methotrexate (MTX) is a folate antimetabolite that has 
been used to treat neoplastic diseases, psoriasis, and rheu-
matoid arthritis for a long time.15 It inhibits the production 
of pyrimidine and purine nucleotides, and thymidylic acid 
by binding dihydrofolate reductase to block proliferation of 
cancer cells.16 Despite its efficacy, HDMTX has serious life-
threatening side effects including renal failure, mucositis, 
hepatotoxicity, pulmonary toxicity, and neurotoxicity.16–18 
Notably, the standard chemotherapy dose of 8–12 g/m2 
HDMTX is extremely higher than the absolute lethal dose of 
2–4 mg/kg.19–21 Although, leucovorin, folinic acid, is widely 
used to decrease the toxic effects of HDMTX, therapy is still 
very harmful to the patients.19

Doxorubicin (DOX), also known as Adriamycin, is an 
anthracycline drug extracted from a bacterium species of 
Streptomyces peucetius var. caesius in the 1970s and is widely 
used in various cancer types, such as lung carcinoma gas-
tric adenocarcinoma, breast cancer, ovarian cancer, thyroid 
carcinoma, non-Hodgkin’s/Hodgkin’s lymphoma, multiple 
myeloma, soft-tissue sarcomas, and pediatric cancers.22–24 Its 
cumulative dose is from 240 to 480 mg/m2; dose per cycle 
is from 60 to 90 m2, and its mechanism of action is through 
intercalation into DNA double helix and disruption of topoi-
somerase-II-mediated DNA repair and inhibits the synthesis 
of DNA and RNA.5,10,24 Despite its good effects on patients 
survival, like many cytotoxic drugs, DOX also has serious 
effects for patients such as cardiomyopathy, symptomatic 
cardiac toxicity, transient electrocardiographic abnormali-
ties, alopecia, and myelosuppression.16,25

Cisplatin, (SP-4-2)-diamminedichloridoplatinum(II), 
is widely used and was the first metal-platinum-based 
chemotherapeutic drugs for the treatment of almost all 
cancers including testicular, cervical, ovarian, head and 
neck, blood, bladder, lung, cervical cancer, melanoma, 
lymphomas, sarcomas, and others.26–28 Its cumulative 
dose is from 480 to 600 mg/m2; dose per cycle is from 100 
to 120 mg/m2.5 Cisplatin binds to the N7 reactive center 
on purine residues of malignant cells’ DNA resulting in 

inhibition of DNA synthesis, DNA damage, and blocking 
their cell division activities, further promoting apoptotic 
cell death.26,27 However, the drug also has extreme side 
effects such as acute and chronic renal failure, peripheral 
neuropathy, ototoxicity, hypomagnesemia, gastrointesti-
nal disorders, and hemorrhage.16,27

Ifosfamide, (IFO), a bifunctional alkylating agent, is a 
member of the nitrogen mustard family and has been used to 
treat several tumor types including lymphoblastic leukemia, 
soft-tissue sarcoma, and OS.29,30 Its common cumulative dose 
starts from 480 to 600 mg/m2; dose per cycle is from 100 to 
120 mg/m2.5 The drug’s mechanism of action is through the 
cross-linking of DNA strands, inhibition of DNA synthesis, 
and protein translation.16 IFO also has dramatic side effects 
such as hemorrhagic cystitis, acute kidney injury, Fanconi’s 
syndrome, interstitial nephritis, glomerular disease, and 
encephalopathy.16,29

New therapeutic approaches

As we discussed the current therapy techniques for OS and 
unfortunately the results are extremely disappointing, leading 
to a five-year overall survival rate of 65–70%.31 The outcomes 
for OS patients have not significantly improved or changed 
for over 30 years and this lack of new treatment strategies is 
reflected by the failure to improve survival rates. There is an 
urgent need for more effective and less toxic treatment for OS 
patients. Predictive biomarkers and prognostic markers are 
needed for use in the development of new treatments. In this 
section, we summarize the potential ways to develop new 
therapeutic approaches for the disease (Table 1).

Antisense oligonucleotides

In 1978, Zamecnik and Stephenson reported that antisense oli-
gonucleotides (ASOs) can obstruct the replication of Rous sar-
coma virus in vitro.32 Twenty years later, the first oligonucleotide 
agent, Novartis Pharmaceutical’s Vitravene (Fomivirsen), was 
approved by the US Food and Drug Administration (FDA) to 
treat cytomegalovirus retinitis afflicting HIV patients.33 Since 
then, ASOs have gained popularity as therapeutics for a wide 
range of inherited and acquired diseases. They are short, 
single-stranded, synthetic RNA or DNA molecules with an 
average length of 8–50 nucleotides that can specifically anneal 
to a complementary target via Watson–Crick base pairing. 
ASOs are able to alter RNA, reduce, and adjust protein expres-
sion through several different mechanisms.34–36 The molecular 
weight of ASOs is usually between 6 and 10 kDa.37 ASOs are 
able to localize in both the cytoplasm and nucleus with the 
aim of reaching cytoplasmic and/or nuclear targets.38 Hence, 
the molecules have chemical modification for protecting them 
against the action of nucleases as well as allowing them to eas-
ily travel through the plasma membrane without the require-
ment for vectorization.39 Phosphorodiamidate morpholino 
oligomer, third generation, is the most commonly used oligo, 
has high binding affinity and neutral charge. However, its 
main disadvantages are rapid renal clearance and poor uptake 
into the cell nucleus.37

Oligonucleotide therapeutics have been investigated 
as cancer treatments for decades with a high potential 
and promising in vitro outcomes. Currently, there are no 
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approved ASOs in oncology yet and most therapeutics for 
cancer are still in clinical Phase I or II.40 Disappointingly, 
none of the current ASOs therapeutics in clinical trials for 
oncology are targeting OS or any sarcoma types.41

Small interfering RNAs

The first introduction of double-stranded RNA that can trig-
ger gene silencing of the complementary mRNA sequences 
was reported by Fire and Mello and the term “RNA interfer-
ence” (RNAi) was coined.42 Recent studies have highlighted 
that RNAi is a fundamental pathway found in eukaryotic 
cells. In the cytoplasm of mammalian cells, the Dicer enzyme 
initiates RNA silencing by breaking down long double-
stranded RNA to create small interfering RNA (siRNA) of 
approximately 21–23 nucleotides long.42,43 Theoretically, 
siRNA can silence any disease-related transcript in a 
sequence-specific manner, manufacturing a promising ther-
apeutic modality.44 The advantages of siRNAs have certain 
over small molecules and monoclonal antibodies are siRNAs 
carry out their function through complete Watson–Crick 
base pairing with messenger RNA (mRNA) as opposed to 
the requirement of small molecules and monoclonal antibod-
ies to recognize the complex spatial conformation of their 
target proteins.44–46 Although siRNA technique has widely 
promising prospects in drug development, it has a few dis-
advantages including being negatively charged, membrane-
impermeable, activation of the immune system and can be 
unstable in the systemic circulation.47

The first FDA approved siRNA drug, 20 years after RNAi 
was first discovered, is Patisiran used to treat hereditary tran-
sthyretin amyloidosis (hATTR).48 The second, Givosiran, was 
approved to treat acute hepatic porphyria in 2019.49 In 2020, 
Lumasiran was approved to treat primary hyperoxaluria  
type I.50 Presently, there are seven siRNA drugs in late stages of 
Phase III in clinical trials some of which are very close to obtain-
ing FDA approval. There are also 11 siRNA drugs in early stages 
of Phases I and II to treat different cancer types and again none 
of the drugs are targeted to treat OS or any sarcoma types.51

Synthetic mRNA

mRNAs are single-stranded RNA molecule that are encoded 
in genomic DNA of a gene. Furthermore, the mRNA tran-
scripts of genes carry the genetics information to be trans-
lated into proteins.52 The therapeutics field of mRNA vaccine 
had already been developing rapidly and on top of this due 
to COVID-19, the field has received an enormous amount of 
attention. The mRNA molecule is non-infectious, and non-
integrating platform, and there is no possibility of risk of 
infection or insertional mutagenesis. Furthermore, mRNA is 
degraded by usual-normal mechanism of cellular processes 
and its half-life in vivo can be potentially regulated with 
several different modifications and delivery methods. The 
mRNA vaccines generally have high efficiency through the 
use of several modifications which make mRNA more stable 
as well as extensively translatable.53 In addition, the method 
has a remarkably low severity of reactions and side effects 
as well as low attainment costs; therefore, it is easier to be 
part of preclinical and clinical trials against wide range of 
diseases including cancer.54

Currently, three core pharmaceutical and biotechnol-
ogy companies that focus on developing mRNA thera-
peutic agents: Moderna, Inc. (founded: 2010, Boston, MA, 
USA), CureVac (founded: 2000, Tubingen, Germany), and 
BioNTech (founded: 2008, Mainz, Germany).51,53,54 These 
companies all have an incredibly diversified portfolio of 
gene therapy products in the pipeline that cover metabolic 
disorders, cardiovascular diseases, and immune modulators 
for applications in immunotherapy on cancer.51,54 Not sur-
prisingly, there are many mRNA therapeutics in cancer that 
are undergoing clinical trials; sadly, none of the drugs were 
designed to target OS or any sarcoma types.

Peptides and proteins

Peptides and proteins both have limitless potential as thera-
peutic agents. Contemporary, the market for peptide and 
protein drugs is estimated to be higher than US$40 billion 
per annum.55 This market is still continuously growing and 
is expected to comprise an even greater proportion of the 
market in the future. Currently, there are already more than 
100 approved peptide-based therapeutic agents on the mar-
ket, and the most of the drugs are shorter than 20 amino 
acids and molecular weight of 1.5–70 kDa.55–57 Peptides and 
proteins could be particularly selective due to the various 
points of contact they have with their potential target; con-
sequently, higher selectivity results in reduction of toxicity 
as well as after affects.55 Peptides can be easily designed to 
target a wide range of molecules, and as such they hold end-
less possibilities in a range of fields including immunology, 
infectious disease, endocrinology, and oncology.55

Mifamurtide (L-MTP-PE), a macrophage activator, was 
designed to treat children and adolescents with non-meta-
static OS.58,59 In a Phase III clinical trial in approximately 800 
newly diagnosed OS patients, mifamurtide was combined 
with other OS antineoplastic agents (doxorubicin and meth-
otrexate), with or without cisplatin and ifosfamide. Six years 
after the treatment, 78% of patients were still alive with no 
evidence of cancer. However, after Phase III trial, the drug 
was rejected by the FDA panel in 2007 (US National Library 
of Medicine, ClinicalTrials.gov, access date 08 October 2021). 
Interestingly, mifamurtide has been licensed by the European 
Medicines Agency (EMA) since 2009 and it was approved 
in the 27 European member states (European Medicines 
Agency, ema.europa.eu, access date 8 October 2021).

Proteolysis targeting chimeras

Proteolysis targeting chimeras (PROTACs), also called a 
bivalent chemical protein degrader, is a method which able 
to ubiquitinate the unwanted proteins by the ubiquitin–pro-
teasome system (UPS).60 The UPS is responsible for control-
ling nearly all basic cellular processes including cell cycle 
progression, cell signaling, apoptosis, immune responses, 
cell metabolism, protein quality control, and eliminating 
denatured, mutated, or structurally abnormal proteins in 
cells.61,62 Fundamentally, PROTAC uses the cell’s protein 
destruction system to remove unwanted “big garbage” pro-
teins from cells by proteolysis. Consequently, it is possible 
to target various unwanted or abnormal proteins using the 
technology such as transcription factors, biological catalysts, 
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cytoskeletal, and regularity proteins. Many studies high-
lighted that degrading protein is more efficient than trans-
lational blocking or inhibiting the function of a protein for 
anticancer activities.63,64

The first oral PROTAC drugs, ARV-110 and ARV-471, 
have indicated promising results in clinical trials for the 
treatments of prostate and breast cancer, respectively.65 The 
outcome encourages scientists and creates a greater enthusi-
asm for PROTACs drug development.

Small molecules

Virtually almost all traditional drugs, as well as >90% of 
therapeutics already marketed are small molecule drugs.66,67 
They are mainly referring to chemically synthesized or 
organic compounds with a low molecular weight, between 
200 and 700 Da.68 Small molecules are able to affect the func-
tion of many proteins and their interactions with other pro-
teins by forming complexes with their targets.67

The first small molecule cancer drug, tyrosine kinase-
inhibitor imatinib, was approved by FDA panel in 2001. Since 
then, numerous small molecule targeted drugs have been 
developed for the treatment of different cancer types. The 
histone deacetylase inhibitors (HDACi) are, rapidly develop-
ing, new class of cytostatic agents that inhibit the prolifera-
tion of cancer cells by inducing tumor cell cycle arrest, cell 
differentiation, and cell death, reduction of angiogenesis and 
modulation of immune response.69 Growing evidence from 
both in vitro and in vivo studies has highlighted that HDACi 
exert their antitumor activity in OS, sensitize tumor cells 
to radiation, promote cell death, and increase natural killer 
cell–mediated (innate immunity) cytotoxicity.70,71

By December 2020, 89 small molecule targeted antitu-
mor drugs have been approved by the FDA. One of the 89 
small molecule drugs, Tazverik (Tazemetostat-EPZ-6438), 
was designed to treat metastatic or locally advanced epithe-
lioid sarcoma.72 The small molecule is also in current clinical 
trials testing for other sarcoma and cancer types including 
soft-tissue sarcoma (clinical trial ID: NCT04705818), syno-
vial sarcoma (clinical trial ID: NCT02875548), and follicu-
lar lymphoma (clinical trial ID: NCT04762160).73 Notably, 
the HDACi agent Abexinostat (PCI24781) is in clinical tri-
als (Phase II) for sarcoma and lymphoma (clinical trial ID: 
NCT00724984).69 Currently, no small molecule drug has been 
approved by FDA or undergoing any clinical trials for OS.

Conclusions

This review has discussed the current treatment for OS and 
possible ways to develop novel therapeutic agents for the 
disease with the aim of less toxic and more effective treat-
ment. Due to the complex and unknown mechanism of OS, 
researchers could not establish effective therapeutic treat-
ments based on underlying disease mechanisms. In fact, 
the disease still does not have an accurate prognostic bio-
marker. Therefore, there is, certainly, a need to employ new 
comprehensive investigation of technologies and methods 
to develop significantly more informative classification 
systems and to identify and develop novel therapeutic 
agents. Genomic analysis of OS samples can help to identify 
the molecular profiles predicting the outcomes and drug 

response. This profile can help to develop a classification for 
a genomics-driven management of the OS and eventually 
change the outcome of this malignancy. A simple question: 
what are we waiting for?
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