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MicroRNAs and BAG3 at a glance

B-cell lymphoma 2 (Bcl-2)-associated athanogene 3 (BAG3) 
protein is a member of BAG family of co-chaperones that 
modulates major biological processes, including apopto-
sis, autophagy, and development to promote cellular adap-
tive responses to stress stimuli.1,2 BAG family derives the 
name from the BAG protein domain that all six members 
(BAG1-6) of the family share. BAG1 was the first member 
of the family initially identified as a Bcl-2-interacting antia-
poptotic protein.3 Later, other members of the family were 
identified.4 These proteins participate in diverse cellular 
functions owing to the interactions with many different 
proteins through its multiple domains. BAG3 plays impor-
tant roles in cancer cell survival and proliferation, neuronal 
degeneration, cardiomyopathy, and viral propagation. At 
the cellular and biochemical levels, BAG3 functions in sig-
nal transduction,5 ciliogenesis,6 organization of the con-
tractile protein apparatus in cardiomyocytes,7 inhibition 
of HSP70-mediated trafficking of proteins for proteasomal 
degradation,8 mRNA stability,9 and promoting autophagy1 

(Figure 1). There are excellent reviews that discuss the 
varied functions of BAG3 protein.10–13 Various cancer cells 
have increased expression of BAG3 that is associated with 
increased cell proliferation and decreased apoptosis by 
interacting with several cell cycle–related proteins, stabili-
zation of mRNA, and regulates expression of microRNAs. 
BAG3 associates with several proteins involved in striated 
myocyte function ranging from Ca2+ channels, gap junc-
tions, signaling receptors to proteins that are required for 
structural integrity of the myofibrils. In neurons, BAG3 
facilitates proteasomal clearance of stress-induced protein 
aggregates that may lead to neuronal damage in diseases 
like Alzheimer’s, amyotrophic lateral sclerosis (ALS), 
Huntington’s, and Parkinson’s diseases.

Human BAG3 is a 575 amino acid long protein (mouse 
BAG3 protein is 577 amino acids long) that has an N-terminal 
WW domain and a C-terminal BAG domain (Figure 2). 
The WW domain in coordination with the PXXP domain 
allows interaction of BAG3 protein with SH3 (Src homology 
3) domain–containing proteins, such as phospholipase C 
gamma and motor protein dynein, to regulate cell adhesion 
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Impact Statement

BAG3 is an important antiapoptotic molecule that 
plays a crucial role in development of cancer. 
The role of BAG3 in other disease pathology, 
including peripheral artery disease, is increasingly 
becoming apparent. Managing expression of 
BAG3 in diseased tissue is a potential means 
of intervention. Since microRNAs (miRs) are 
important therapeutic agents that can be delivered 
in a targeted manner, it is pertinent to identify 
and evaluate the miRs that regulate expression 
of BAG3 in various tissue and cell types. In this 
review, the authors have searched the literature for 
miRs that target BAG3 expression in tissue- and 
cell-specific manners and also have performed 
analyses of miR databases to identify potentially 
new miRs that may target BAG3 mRNA.
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and migration, respectively.13 The BAG domain interacts 
with BCL2 to facilitate antiapoptotic processes in the cells. In 
addition, it also interacts with the heat shock protein (HSP70) 
as a co-chaperone to deliver proteins for proteasomal degra-
dation.13 Two IPV (Ile-Pro-Val) motifs interact with HSPB6 
alone or HSPB6 and HSPB8. HspB8 is responsible for recog-
nizing the misfolded proteins, whereas BAG3 recruits and 
activates chaperone-assisted macroautophagy, a process of 
removal of damaged organelles and proteins to maintain cel-
lular homeostasis.1 Thus, BAG3 is involved in a multifaceted 
interaction with other proteins to modulate cellular events 
(Figure 2).

BAG3 is constitutively expressed in several cell types, 
including cancer cells, cardiomyocytes, and skeletal mus-
cle cells. Moreover, BAG3 is the only member of the BAG 
family of proteins that is induced by stress signals.13 BAG3 
plays a critical role in regulating the response of skeletal 
muscle cells to ischemia by autophagy.2 Indeed, BAG3 
is involved in ischemia- induced autophagy in a murine 
hindlimb ischemia model of peripheral artery disease 
(PAD, also Dhanabalan and Dokun, unpublished results). 
PAD is characterized by atherosclerotic blockage of blood 
flow to tissues of the lower extremities, including skeletal 
muscles. Thus, cell survival under many stress conditions 

Figure 1. Known and potential biological pathways regulated by BAG3-targeting miRNA. The known miRNA-mediated regulation of BAG3 has been studied primarily 
in context of cell proliferation, apoptosis, and cell migration in cancer cells. BAG3 has potential roles in pathologies of other tissues that remain unexplored. (A color 
version of this figure is available in the online journal.)

Figure 2. The schematic representation of BAG3 protein and its interaction sites. B-cell lymphoma 2 (Bcl-2)-associated athanogene 3 (BAG3) protein is a 575 amino 
acid long protein that has an N-terminal WW domain that allows interactions with SH3 (Src homology 3) domain–containing proteins such as phospholipase C gamma 
and motor protein dynein to regulate cell adhesion and migration. The BAG domain interacts with BCL2 to facilitate antiapoptotic processes in the cells. In addition, it 
also interacts with the heat shock protein (HSP70) to regulate its proteasome degradation. An IPV (Ile-Pro-Val) motif interacts with HSPB6 and/or HSPB8. HSPB8 is 
responsible for recognizing the misfolded proteins, whereas BAG3 recruits and activates the chaperone-assisted macroautophagy. TargetScan, miRDB, and miRWalk 
algorithms were queried and compared for miRNAs that could target BAG3. TargetScan resulted in 118 entries, miRDB predicted 23 miRNAs, and miRWalk listed 
1611 miRNAs. Ten miRNAs were present when comparing all bioinformatic scans together. (A color version of this figure is available in the online journal.)
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may depend on regulation of BAG3 expression. The expres-
sion of BAG3 is regulated both at the transcription and 
post-transcription levels, including by miRNAs.14,15 In the 
following sections, we discuss how miRNAs may play a 
key role in regulating BAG3 expression under pathological 
conditions.

miRNA regulation of BAG3

miRNAs are small non-coding RNA (20–25 nucleotides) that 
binds to the 3′-UTR (untranslated region) of mRNA to inhibit 
their translation or promote their degradation.16 However, 
miRNAs may also bind to other regions of mRNAs.17 miR-
NAs can potentially regulate expression of more than 50% 
of protein-coding genes and, therefore, are involved in regu-
lation of all major cellular processes, including cell differ-
entiation, growth, proliferation, migration, apoptosis, and 
autophagy.18,19 Genomic sequences of miRNAs are either 
embedded in the introns of a host gene or may be encoded 
by independent genes. Thus, their expression may depend 
on transcription of the host genes or may be independently 
regulated. Dysregulation of miRNA expression results in the 
pathogenesis of numerous diseases, including peripheral 
artery disease (PAD).20,21

Although a large number of studies have been done on 
identifying miRNA and their targets, relatively few miR-
NAs have been shown to regulate BAG3 expression in can-
cer,22,23 apoptosis,22,24,25 and cardiomyopathy26 (Table 1 and 
Figure 1). All these studies have been performed on human 
primary cells, cell lines, or tissue. Moreover, not all miR-
NAs have been shown to directly regulate BAG3 expres-
sion. Based on the predictive algorithms, three major miRNA 
databases miRWalk, TargetScan, and miRDB report 116, 
158, and 39 miRNA that may potentially target mouse Bag3 
mRNA.27–29 Of these predicted miRNAs, only one miRNA 
(hsa-miR-221) was common to all three algorithms (Table 
2). Interestingly, despite being a valuable preclinical model 
for numerous human diseases, studies on miRNA-mediated 
regulation of BAG3 in mice are lacking. Similar analysis as 
for human miRNA above yielded 14 potential mouse miR-
NAs by all three algorithms. A comparison of the predicted 
BAG3-targeting miRNAs in human and mice identified 37 
miRNAs that are common to both human and mouse. Of 
these miRNA, miR-217 is a predicted miRNA in humans 

and mouse that has been associated with BAG3 regulation.24 
More studies are needed to identify miRNAs that directly 
bind to regulate BAG3 expression in different tissues to 
understand the mechanism of BAG3 gene regulation and 
for potential therapeutic use of miRNAs in BAG3-mediated 
diseases.

Regulation of BAG3 in muscle development

BAG3 plays a critical role in muscle development.30,31  
A number of miRNAs are specifically expressed in striated 
muscles and are called myomiRs; typically, they control 
myogenic precursor fate and muscle tissue homeostasis.32 
A myomiR, miR-206, has predicted target sequence in the 3′-
UTR of the BAG3 mRNA. Overexpression of miR-206 down-
regulates BAG3 expression.23 The expression of miR-206 
in muscles is developmentally regulated.33,34 In addition, 
the expression of miR-206 is upregulated in the diaphragm 
of dystrophin-deficient (mdx) mice, a model of muscular 
dystrophy.35 Interestingly, experimental downregulation 
of miR-206 improves motor function in these mdx mice.36 
Another study demonstrated that miR-206 is upregulated 
in the skeletal muscle of mdx mice and also upon injection 
of cardiotoxin, a potent inducer of muscle injury with subse-
quent adaptive muscle regeneration.37 Although these stud-
ies did not investigate the expression of BAG3, it is likely 
that miR-206 effects are mediated through BAG3 regulation. 
Another miRNA, miR-29, is essential for normal myoblast 
development since the loss of miR-29 in myoblasts contrib-
utes to muscle dystrophy.38,39 miR-29 regulates myoblast 
differentiation through a positive feed-forward mechanism 
involving genetic interactions between the transcription fac-
tors NF-κB and YY1. In PAD, miR-29a modulation improves 
perfusion recovery,20 whereas BAG3 expression regulates 
miR-29b exprssion.40 Collectively, these studies demonstrate 
that the expression patterns of BAG3-targetting miRNAs 
are distinctly altered during various types of cardiac and 
skeletal muscle disease, and that the manipulation of dis-
ease-associated miRNAs represents a potentially power-
ful therapeutic approach to treat muscle disease. However, 
despite the demonstrated roles of these miRNAs in regula-
tion of BAG3 expression, a direct role of these miRNAs and 
several other miRNAs in regulation BAG3 mRNA has not 
been shown.

Table 1. Known miRNA that regulates BAG3 in human cells.

miRNA Cell/tissue Species Method Effect on BAG3 
expression

Mechanism of miR 
action

Reference

miR-143 Glioblastoma Human Knockdown by miR 
transfection

Decreased BAG3 — PMID: 26541455

miR-206 Cervical cancer cells Human Knockdown by miR 
transfection

Decreased BAG3 Binding to the 3′-UTR PMID: 29295729

miR-217-5p Colorectal cancer cells Human Knockdown by miR 
transfection

Decreased BAG3 Binding to the 3′-UTR PMID: 28905214

miR-340 Ovarian cancer cells Human Knockdown by miR 
transfection

Decreased BAG3 — PMID: 29441908

miR-345 Colorectal cancer cells Human Knockdown by miR 
transfection

Decreased BAG3 Binding to the 3′-UTR PMID: 21665895

miR-371-5p Cardiomyocytes Human Co-immunoprecipitation Increased BAG3 Binding to the 3′-UTR PMID: 26512958
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miRNAs regulation of BAG3 in cancer and 
apoptosis

The major understanding of the role of BAG3 protein has 
been obtained from studies on apoptosis and cancer. BAG3 
is a potent antiapoptotic protein.1,10,41 Apoptosis is a natural 
process of programmed cell death in metazoans that plays 
an important role during tissue and organ development and 
aging. Impairment in apoptosis or increased antiapoptotic 
proteins may lead to cancer progression.42 As an antiapop-
totic protein, increased BAG3 expression has been shown 
to be involved in acute and chronic leukemias.43 In addi-
tion, BAG3 can retain BAX (BCL2-like protein 4) in cytosol 
and prevent mitochondrial translocation, thereby protect-
ing the cells from apoptosis.44 Several miRNAs have been 
shown to affect tumor growth and metastasis by regulating 
BAG3 expression. For example, miR-340 is well known to be 

a proapoptotic and antimetastasis miRNA in several type of 
cancers.22 This study showed that miR-340 negatively regu-
lates BAG3 and inactivates PI3K/AKT pathway.22 Defects 
in PI3K/AKT signaling pathway increase the release of 
cytochrome c and caspase activity, thereby increasing cel-
lular apoptosis.45 In addition, miR-340-mediated negative 
regulation of BAG3 exerted a tumor-suppressive role in an 
ovarian cancer cell model, SKOV3 cells, by inhibiting cell 
viability and improved apoptosis.22 miR-21-5p increased 
S-phase kinase-associated protein (Skp2) expression via 
BAG3, thereby facilitating the proliferation of cancer cells.46 
The pro-apoptotic role of miR-217-5p also has been studied 
in carcinogenesis of various types of cancer, including colo-
rectal cancer, and its apoptotic activity has been linked to 
its negative effects on BAG3 expression. miR-217-5p-medi-
ated BAG3 downregulation stimulates BAX translocation 
into mitochondria, thereby promoting cellular apoptosis.24 

Table 2. Predicted human miRNA regulators of BAG3 by three algorithms. TargetScan, miRDB, and miRWalk algorithms were queried and compared for 
miRNAs that could target human BAG3. TargetScan resulted in 158 entries, miRDB predicted 39 miRNAs, and miRWalk listed 116 miRNAs. One miRNAs 
(has-miR-221) was present in all three predictions.

Database Predicted miRNA

TargetScan hsa-miR-6769b-5p hsa-miR-3938 hsa-miR-8081 hsa-miR-5197-3p hsa-miR-3921 hsa-miR-298 hsa-miR-8055 hsa-miR-509-3-5p 
hsa-miR-656-3p hsa-miR-3192-3p hsa-miR-6751-5p hsa-miR-548ae-3p hsa-miR-4255 hsa-miR-889-5p hsa-miR-6842-5p hsa-miR-
520f-5p hsa-miR-4712-3p hsa-miR-6835-5p hsa-miR-6778-3p hsa-miR-548aj-3p hsa-miR-6769a-5p hsa-miR-4524b-3p hsa-miR-555 
hsa-miR-4795-3p hsa-miR-5007-3p hsa-miR-6807-3p hsa-miR-6803-5p hsa-miR-129-1-3p hsa-miR-1279 hsa-miR-4664-5p 
hsa-miR-6791-3p hsa-miR-135a-5p hsa-miR-4509 hsa-miR-6817-3p hsa-miR-142-3p.2 hsa-miR-6779-3p hsa-miR-411-5p.1 hsa-
miR-371b-5p hsa-miR-654-5p hsa-miR-5195-5p hsa-miR-4653-5p hsa-miR-4501 hsa-miR-4797-5p hsa-miR-1283 hsa-miR-4282 
hsa-miR-548aa hsa-miR-5689 hsa-miR-337-3p hsa-miR-4774-3p hsa-miR-146a-3p hsa-miR-548z hsa-miR-143-3p hsa-miR-135b-5p 
hsa-miR-4744 hsa-miR-548j-3p hsa-miR-3925-3p hsa-miR-6507-3p hsa-miR-1250-3p hsa-miR-6887-3p hsa-miR-520a-5p hsa-
let-7a-2-3p hsa-miR-196a-3p hsa-miR-5197-5p hsa-miR-29a-5p hsa-miR-7110-3p hsa-miR-3662 hsa-miR-4447 hsa-miR-6752-5p 
hsa-miR-548d-3p hsa-miR-198 hsa-miR-4770 hsa-miR-1179 hsa-miR-646 hsa-miR-19b-1-5p hsa-miR-525-5p hsa-miR-541-3p 
hsa-miR-514b-5p hsa-miR-4424 hsa-miR-6835-3p hsa-miR-126-5p hsa-miR-148a-3p hsa-miR-6883-3p hsa-miR-548bb-3p hsa-miR-
6507-5p hsa-miR-6873-3p hsa-miR-4766-5p hsa-miR-3591-5p hsa-miR-556-3p hsa-miR-373-5p hsa-miR-202-5p hsa-miR-4762-3p 
hsa-miR-548h-3p hsa-miR-129-2-3p hsa-miR-548am-3p hsa-miR-548aq-3p hsa-miR-371a-5p hsa-miR-548e-5p hsa-miR-301b-5p 
hsa-miR-3920 hsa-miR-589-3p hsa-miR-153-5p hsa-miR-548t-3p hsa-miR-593-3p hsa-miR-509-5p hsa-miR-944 hsa-miR-3184-3p 
hsa-miR-7110-5p hsa-miR-33a-3p hsa-miR-548ac hsa-miR-4418 hsa-miR-3162-3p hsa-miR-6836-3p hsa-miR-203a-3p.1 hsa-
miR-455-3p.1 hsa-miR-5683 hsa-miR-493-5p hsa-miR-19b-2-5p hsa-miR-221-5p hsa-miR-4678 hsa-miR-548ah-3p hsa-miR-2052 
hsa-miR-6832-3p hsa-miR-301a-5p hsa-miR-4422 hsa-miR-548x-3p hsa-miR-6070 hsa-miR-616-5p hsa-miR-6829-5p hsa-miR-
513c-5p hsa-miR-548ap-3p hsa-miR-6829-3p hsa-miR-3158-5p hsa-miR-3529-3p hsa-miR-6758-3p hsa-miR-6088 hsa-miR-4446-3p 
hsa-miR-148b-3p hsa-miR-140-3p.2 hsa-miR-4708-5p hsa-miR-217 hsa-miR-5697 hsa-miR-552-3p hsa-let-7c-3p hsa-miR-4472 
hsa-miR-891b hsa-miR-342-5p hsa-miR-187-5p hsa-let-7g-3p hsa-miR-5700 hsa-miR-19a-5p hsa-miR-372-5p hsa-miR-3152-5p 
hsa-miR-3185 hsa-miR-92a-2-5p hsa-miR-152-3p hsa-miR-8073 hsa-miR-1273f hsa-miR-4687-5p

miRWalk hsa-miR-6516-5p hsa-miR-376a-5p hsa-miR-6883-3p hsa-miR-6501-3p hsa-miR-7108-3p hsa-miR-4305 hsa-miR-4743-3p hsa-
miR-6873-3p hsa-miR-4433a-3p hsa-miR-8054 hsa-miR-6851-3p hsa-miR-5587-3p hsa-miR-5193 hsa-miR-761 hsa-miR-149-5p 
hsa-miR-6736-3p hsa-miR-4638-5p hsa-miR-1910-3p hsa-miR-3689b-5p hsa-miR-6771-3p hsa-miR-3918 hsa-miR-4671-5p 
hsa-miR-3667-3p hsa-miR-4999-5p hsa-miR-6742-3p hsa-miR-4724-3p hsa-miR-4700-5p hsa-miR-3127-5p hsa-miR-5001-3p 
hsa-miR-4524b-3p hsa-miR-4438 hsa-miR-183-5p hsa-miR-4793-5p hsa-miR-6867-3p hsa-miR-7109-3p hsa-miR-3609 hsa-miR-
3184-3p hsa-miR-6515-5p hsa-miR-6871-3p hsa-miR-1251-3p hsa-miR-585-5p hsa-miR-6820-3p hsa-miR-449b-3p hsa-miR-221-5p 
hsa-miR-4675 hsa-miR-3692-3p hsa-miR-23b-5p hsa-miR-4701-5p hsa-miR-6780b-3p hsa-miR-573 hsa-miR-2681-5p hsa-miR-
132-3p hsa-miR-1238-3p hsa-miR-4695-3p hsa-miR-216a-5p hsa-miR-3160-5p hsa-miR-450a-2-3p hsa-miR-1236-5p hsa-miR-
5196-3p hsa-miR-9902 hsa-miR-4666b hsa-miR-200b-5p hsa-miR-18b-3p hsa-miR-6511b-3p hsa-miR-5047 hsa-miR-4659b-3p 
hsa-miR-96-5p hsa-miR-4448 hsa-miR-492 hsa-miR-6729-3p hsa-miR-3689a-5p hsa-miR-4769-5p hsa-miR-4720-5p hsa-miR-6758-
3p hsa-miR-1237-3p hsa-miR-6782-5p hsa-miR-449c-5p hsa-miR-4685-3p hsa-miR-6864-3p hsa-miR-5004-5p hsa-miR-6760-3p 
hsa-miR-9903 hsa-miR-6870-3p hsa-miR-552-3p hsa-miR-660-5p hsa-miR-6790-3p hsa-miR-3972 hsa-miR-378e hsa-miR-483-3p 
hsa-miR-548at-5p hsa-miR-6891-3p hsa-miR-345-5p hsa-miR-4659a-3p hsa-miR-6894-3p hsa-miR-6841-3p hsa-miR-604 hsa-miR-
6505-3p hsa-miR-28-3p hsa-miR-7111-3p hsa-miR-4749-3p hsa-miR-5002-5p hsa-miR-4715-5p hsa-miR-6834-3p hsa-miR-6759-3p 
hsa-miR-493-3p hsa-miR-3689e hsa-miR-6789-3p hsa-miR-664b-3p hsa-miR-744-5p hsa-miR-532-3p hsa-miR-1281 hsa-miR-32-5p 
hsa-miR-6125 hsa-miR-4697-3p hsa-miR-1256 hsa-miR-4687-5p

miRDB hsa-miR-126-5p hsa-miR-6832-3p hsa-miR-548bb-3p hsa-miR-6507-5p hsa-miR-656-3p hsa-miR-4762-3p hsa-miR-548 h-3p hsa-
miR-4797-5p hsa-miR-129-2-3p hsa-miR-196a-1-3p hsa-miR-371a-5p hsa-miR-520f-5p hsa-miR-12132 hsa-miR-548z hsa-miR-6088 
hsa-miR-146a-3p hsa-miR-143-3p hsa-miR-6507-3p hsa-miR-593-3p hsa-miR-1250-3p hsa-miR-944 hsa-let-7a-2-3p hsa-miR-196a-
3p hsa-miR-548ac hsa-miR-4795-3p hsa-miR-29a-5p hsa-miR-891b hsa-miR-217-5p hsa-miR-7110-3p hsa-let-7g-3p hsa-miR-6807-
3p hsa-miR-548d-3p hsa-miR-129-1-3p hsa-miR-4770 hsa-miR-1279 hsa-miR-221-5p hsa-miR-646 hsa-miR-8073 hsa-miR-6835-3p

Common hsa-miR-221-5p
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miR-143 is another tumor suppressor miRNA whose over-
expression significantly increased apoptosis through inhi-
bition of BAG3 expression. BAG3 overexpression reversed 
the miR-143-mediated cytotoxic activity of shikonin (natural 
naphthoquinone) in glioblastoma stem cells (GSCs) suggest-
ing that the miR-143 tumor-suppressive (or pro-apoptotic) 
effects could be through the negative regulation of BAG3.47 
miR-345 targets the 3′-UTR of BAG3 and likely plays a role 
in pancreatic cancer as enhanced expression of BAG3 sup-
pressed the apoptosis effects of miR-345 in pancreatic cancer 
cells.48 miR-206 has been shown to affect BAG3 by targeting 
its 3′-UTR.23 Interestingly, deletion of BAG3 increased miR-
206-mediated inhibition of the cell cycle. Moreover, tumor 
engraftment studies in athymic nude mice showed that miR-
206 injection reduced tumor growth in a dose-dependent 
manner by targeting BAG3.23 Interestingly, downregulation 
of BAG3 increases miR-29b expression to promote cellular 
apoptosis by decreasing the activity of Mcl-1 (induced mye-
loid leukemia cell differentiation protein), an antiapoptotic 
BCL2 family member.40 It is evident from the above discus-
sion that dysregulation in miRNA expression has been asso-
ciated with cancer progression, but their direct interaction 
with BAG3 has not been confirmed.

miRNAs regulation of BAG3 in cardiomyopathy. BAG3 
supports cell survival and reduces apoptosis induced by 
stressors through its BAG-domain-mediated interactions 
with BCL2.49 Under physiological conditions, BAG3 is 
expressed in cardiomyocytes to maintain cellular homeo-
stasis by autophagy.50 A variety of stressors such as heat and 
ischemia can induce BAG3 expression.2,51–53 Moreover, dele-
tion of BAG3 results in reduced myogenin expression, a 
protein involved in myogenesis, thus suggesting a critical 
role for BAG3 in differentiating myocytes.54 Several BAG3 
mutations are associated with cardiomyopathy.55 A 3′-UTR 
mutation of BAG3 mRNA is reported in Takotsubo cardio-
myopathy that results in loss of binding for miRNA-
371a-5p.26 Interestingly, in this case, the binding of 
miR-371a-5p to 3′-UTR enhances BAG3 expression through 
increased translation of the protein.56,57

miRNAs regulation of BAG3 in skeletal muscle

Despite recent research related to the role of miRNA regu-
lation on BAG3 expression in cancer and cardiomyopathy, 
little is known about miRNA regulation of BAG3 in ischemic 
skeletal muscle. A link between the regulation of BAG3 by 
miRNAs and ischemic muscle injury has not been studied. 
Since the loss of BAG3 expression in the experimental models 
of hind limb ischemia in mice results in poor perfusion recov-
ery and increased skeletal muscle injury,2 understanding the 
regulatory effect of miRNAs on BAG3 expression could pro-
vide insight into mechanisms to improve tissue regeneration 
and blood flow following skeletal muscle ischemic injury.

Although the myomiRs miR-217-5p and miR-143 affect 
BAG3 expression to regulate apoptosis in cancer cells24,47 and 
in muscle cells, miR-217 inhibits the transforming growth 
factor (TGF)-β1-induced proliferation and extracellular 
matrix (ECM) deposition, thereby promoting apoptosis.47  

It is not known whether miR-217 regulates BAG3 in ischemic 
skeletal muscle cells. Moreover, miR-143 is highly expressed 
in skeletal muscle tissue.58 Downregulation of miR-143 
caused cell cycle block and restrained cell proliferation.59 
Given these findings, it is possible that these effects of miR-
143 may occur through regulation of BAG3 expression in 
skeletal muscle. Interestingly, BAG3 is also a predicted target 
of miR-29. In vivo and in vitro studies have shown that miR-
29 induces skeletal muscle atrophy in response to atrophic 
stimuli and inhibition of miR-29 alleviates denervation and 
immobilization-induced atrophy.60 It is possible that the 
protective effects seen following miR-29 inhibition occurs 
through modulation of BAG3. However, there are no stud-
ies directly linking miR-29 or any other miRNA to BAG3 
regulation in skeletal muscles. Similarly, the role of miRNA 
regulation of BAG3 in other cell types within the mouse or 
human limb has not been studied. Moreover, in addition to 
the known functions of miR-217, miR-143, and miR-29 in 
BAG3 regulation, their role in the skeletal muscle injury may 
provide valuable insight into the mechanism of miRNA reg-
ulation of tissue injury. In addition, whether these miRNAs 
regulate BAG3 through direct or indirect interaction could 
provide additional understanding that may be invaluable 
in designing therapy for diseases involving skeletal muscle 
injury. Given the known protective effects of BAG3 following 
skeletal muscle injury, a systematic study to examine the role 
of miRNAs as therapeutic agents in regulation of BAG3 in 
this context would be highly valuable.

Therapeutic potential of miRNAs regulation of 
BAG3 expression

A role of miRNAs as therapeutic agents has been contem-
plated. For example, the use of miRNAs to target tumor 
suppressor mRNAs encoding oncoproteins can be highly 
effective. However, the therapeutic potential of miRNAs 
largely depends on their stability in the body and an opti-
mal delivery method.61 Despite being a prominent thera-
peutic target for cancer and cardiomyopathy, the ubiquitous 
expression of BAG3 has posed the challenge of site-specific 
targeting of BAG3 regulation in the body.62 Although tar-
geted regulation of BAG3 expression by miRNAs could be 
highly effective against cancers, the delivery of miRNA in a 
specific manner is a well-known challenge. However, with 
the advent of new vehicles for miRNA delivery, the goal of 
using miRNAs as specific and effective therapeutic agent in 
multiple diseases, including those related to BAG3, seems 
to be attainable.
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