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Impact statement Abstract

There is a dire need to better understand
the pathophysiology and evaluate the sur-
vival prediction for CRC to increase the
array of treatment options and improve
prognosis. We used deep learning algo-
rithms to integrate multi-omics for pre-
dicting the prognosis of CRC. We identified
two survival-specific groups of CRC and
validated these groups in independent
validation cohorts. Overall, our study pro-
vides novel insights into the differential
mechanisms of the two survival groups.

Prognosis stratification in colorectal cancer helps to address cancer heterogeneity and
contributes to the improvement of tailored treatments for colorectal cancer patients. In
this study, an autoencoder-based model was implemented to predict the prognosis of
colorectal cancer via the integration of multi-omics data. DNA methylation, RNA-seq, and
miRNA-seq data from The Cancer Genome Atlas (TCGA) database were integrated as input
for the autoencoder, and 175 transformed features were produced. The survival-related
features were used to cluster the samples using k-means clustering. The autoencoder-
based strategy was compared to the principal component analysis (PCA)-, t-distributed
random neighbor embedded (t-SNE)-, non-negative matrix factorization (NMF)-, or individ-

ual Cox proportional hazards (Cox-PH)-based strategies. Using the 175 transformed features, tumor samples were clustered into
two groups (G1 and G2) with significantly different survival rates. The autoencoder-based strategy performed better at identifying
survival-related features than the other transformation strategies. Further, the two survival groups were robustly validated using
“hold-out” validation and five validation cohorts. Gene expression profiles, miRNA profiles, DNA methylation, and signaling
pathway profiles varied from the poor prognosis group (G2) to the good prognosis group (G1). miRNA-mRNA networks were
constructed using six differentially expressed miRNAs (let-7c, mir-34c, mir-133b, let-7e, mir-144, and mir-106a) and 19 predicted
target genes. The autoencoder-based computational framework could distinguish good prognosis samples from bad prognosis

samples and facilitate a better understanding of the molecular biology of colorectal cancer.
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Introduction

Colorectal carcinogenesis involves the accumulation of
complicated histological, morphological, and genetic
changes over time.' Although routine screening decreases
the incidence and mortality rate” of colorectal cancer (CRC),
this malignancy remains one of the most severe and deadly
cancers worldwide, with an overall survival (OS) of less
than threeyears for patients with advanced CRC.
Accordingly, there is a dire need to better understand the
pathophysiology and evaluate the survival prediction for
CRC to increase treatment options and improve the
prognosis of patients.
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Deep learning (DL) algorithms have attracted wide
attention in processing medical image and computer
vision, owing to their stronger computing power and
lower hardware cost.* DL techniques have been used for
the detection, classification, segmentation, and survival
predictions of CRC based on histopathological slides and
radiological or colonoscopic images.”® The Cancer Genome
Atlas (TCGA) database collects multi-omics data, including
genomic, transcriptomic, proteomic, and epigenomic data
of more than 30 cancer types, thereby providing multiple
views of the same patients.” DL algorithms offer a potential
solution to the integrative analysis of multi-omics data and
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have been successfully applied to explore the molecular
mechanisms of cancers.® Multi-omics integration using DL
algorithms has shown great promise for the survival predic-
tion of breast cancer’ and neuroblastoma.'® However, only
few studies have been published on the application of DL
procedures for prognosis prediction in CRC.

An autoencoder is an unsupervised DL method that
includes input, hidden, and outer layers. Using the input
data, the autoencoder creates different representative fea-
tures in the hidden layer and regenerates the output data."
The autoencoder-based model has identified survival-
related multi-omics features of liver cancer and successful-
ly defines two survival-sensitive subtypes."> Our study
employed an autoencoder-based model to integrate DNA
methylation, RNA-seq, and miRNA-seq data from CRC
patients and extract representative features. Based on the
survival-related features, we identified two survival-
specific groups and verified these groups in the validation
cohorts. We also assessed the differential molecular mech-
anisms of the two survival groups.

Materials and methods

Datasets and preprocessing

We downloaded coupled methylation beta value data
(Methylation Illumina 450k BeadChip), RNA-seq FPKM
data (RNA-seq [llumina HiSeq 2000 RNA Sequencing plat-
form), and miRNA-seq RPM data of 379 CRC samples
(miRNA-seq Illumina Hiseq platform), together with
the corresponding clinical characteristics from TCGA
(https:/ /gdc-portal.nci.nih.gov/) database. The retrieved
data were defined as the training cohort of our study
(TCGA cohort).

To preprocess raw data, we removed the probes or genes
missing values across more than half of all samples, sam-
ples missing more than 20% three-omics features, and input
features whose values were zero in all samples. The meth-
ylation value of a gene promoter region that covers 1500
base pairs (bp) from the transcription start sites (TSS) was
annotated wusing IluminaHumanMethylation450kanno.
ilmn12.hg19 package'® and calculated using average meth-
ylation beta values of all CpG islands within the gene pro-
moter region. Additionally, missing values were filled out
using the impute package of R software (https://www.r-
project.org/, version 3.5.2)."* We obtained five validation
cohorts containing RNA expression profiles of CRC sam-
ples from the ArrayExpress (https://www.ebi.ac.uk/
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arrayexpress/) database. These cohorts included E-
GEOD-17538 (N =232, https://www.ebi.ac.uk/arrayex
press/experiments/E-GEOD-17538/ A-AFFY-44 platform,
https:/ /www.ebi.ac.uk/arrayexpress/arrays/ A-AFFY-
44/ ?ref=E-GEOD-17538), E-GEOD-28722 (N = 125,https:/ /
www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-
28722/ A-GEOD-13425 platform: https://www.ebi.ac.uk/
arrayexpress/arrays/ A-GEOD-13425/ ?ref=E-GEOD-
28722), E-GEOD-38832 (N =122, A-AFFY-44 platform;
www.ebi.ac.uk/arrayexpress/arrays/ A-AFFY-44/ ?ref=E-
GEOD-38832), E-GEOD- 39582 (N =558, A-AFFY-44 plat-
form: https://www.ebi.ac.uk/arrayexpress/arrays/ A-
AFFY-44/?ref=E-GEOD-39582), and  E-GEOD-41258
(N=141, A-AFFY-33 platform, https://www.ebi.ac.uk/
arrayexpress/arrays/ A-AFFY-33/?ref=E-GEOD-41258).
First, the probes were converted into gene symbols.
Thereafter, the gene expression data were calculated by
averaging the probes corresponding to the same gene.
Table 1 shows the demographic and clinical data of
TCGA and validation cohorts.

Features transformation

The autoencoder was implemented as described previous-
ly"? using the TCGA cohort. DNA methylation, RNA-seq,
and miRNA-seq data were unit-norm scaled by sample as
follows:

For a given sample vector v = (v1,...,v,)
v v !
normed — U . ——5
[l

where |[v][3 is the I, norm of v.
The three matrices were stacked as input features for the
autoencoder, and defined as the following functions:
Assuming that the input with n-dimensional features is
denoted as

The purpose of the autoencoder is to reshape x by output
x' through continuous hidden layers. The input x of each
layer and the output y in layer i was connected using tanh
as the activation function

y = fix) = tanh(W;.x + b;)

Table 1. Demographic and clinical characteristics of TCGA set and five validation datasets.

TCGA E-GEOD-17538 E-GEOD-28722 E-GEOD-38832 E-GEOD-39582 E-GEOD-41258
Clinical feature (N =379) (N =232) (N=125) (N=122) (N =558) (N =141)
Gender (male/female) 157/131 122/110 - - 308/250 71/70
Age (mean =+ sd) 65.46 +13.26 64.73+13.43 65.33 +12.95 - 66.81 +13.32 64.18 +-13.48
OS (years, mean =+ sd) 2.61+2.42 3.95+2.56 5.39+3.53 3.37+£2.68 - -
OS status (alive/dead) 219/69 139/93 55/70 94/28 - -
DFS (years, mean =+ sd) 2.40+2.31 3.651+2.86 4.98 +3.76 3.84+2.77 4.06 +3.37 6.12 +4.06
DFS status (0/1) 203/62 145/55 92/33 83/9 380/177 105/36
Tumor stage (/II/1I/IV) 44/112/82/40 28/72/76/56 23/64/31/5 18/35/39/30 32/261/201/60 27/48/47/19

OS: overall survival; DFS: disease-free survival.



900 Experimental Biology and Medicine Volume 247  June 2022

where x and y are two vectors of size d and p, and W; is the
weight matrix of size p x d.
In the k-layer autoencoder, x” was defined as

X = Fr(x) = A% ia i)

fie1’fie(x) = frie1 (fe(x)) is a composite function of f; _1 and
fi(x). When training the autoencoder, our goal is to mini-
mize the objective function using different weight vectors
W;; the error between the input x and the output x” was
evaluated using Logloss as the objective function

d
logloss(x,x") = Zxklog(x’k) + (1 — x)log(1 — x')
k=1

To prevent over-fitting, we added the L1 regularization
penalty oy, (0.001) to the weight vector Wj, and L2 regular-
ization penalty o, (0.001) to the activation node F;_x(x). The
following objective function was used

L(x,x") = logloss(x,x")
k
£ 3 (sl Wy + 2l Frs) )

i=1

When training the autoencoder, the TCGA cohort was auto-
matically separated into a training set and a validation set
(2:1), and the gradient descent algorithm was used with
50% dropout and 100 epochs (batch size=10).
Supplemental Figure 1 shows that the model reaches con-
vergence with 100 epochs in either the training or valida-
tion sets. Using the Python Keras library (https://github.
com/fchollet/keras), an autoencoder model containing
four hidden layers (700, 350, 350, and 700 nodes) and 175
bottleneck layer nodes was implemented. As a result, 175
transformed features were obtained.

K-means clustering

We built a univariate Cox proportional hazards (Cox-PH)
model for each transformed feature using the R survival
package  (https://cran.r-project.org/web/packages/sur
vival/index.html) with a log-rank p <0.01 as the signifi-
cance cutoff. K-means clustering was then applied to the
TCGA cohort based on the survival-related features using
the R NbClust package.'” The optimal number of clusters
was selected by calculating the Calinski-Harabasz criterion
and the silhouette index. A Kaplan-Meier (KM) curve was
plotted for each cluster (risk group). The robustness of the
predicted risk groups was assessed using the C-index, Log-
rank P-value, and Brier score.

The C-index was considered as the proportion of all
samples with corrected ordered survival times'® and was
calculated using the R survcomp'” package. A C-index
score of >0.7 suggests good performance of a model,
whereas 0.5 suggests random background.

Log-rank P-value of Cox-PH regression reflects the sur-
vival difference of different risk groups with KM survival
curves and was calculated using the R survival package.

A smaller log-rank p-value suggested better performance
of the survival prediction model.

Brier score was another metric used in the survival anal-
ysis to evaluate the inaccuracy between the predicted
and actual survival beyond a certain time.'® Brier score
(range: 0-1) was obtained using the function sbrier.score2-
proba in the R survcomp package, with larger scores indi-
cating higher inaccuracy.

Alternative transformation approaches to the
autoencoder framework

The autoencoder framework was compared to three other
dimensionality-reduction techniques, including principal
component analysis (PCA), t-distributed random neighbor
embedded (t-SNE), and non-negative matrix factorization
(NMF). As the autoencoder framework had 175 bottleneck
layer nodes, PCA, t-SNE, and NMF transformed the initial
features into 175 transformed features using the Python
Keras library. Likewise, the survival-related features were
obtained from the transformed features using univariate
Cox-PH models and then used to perform K-means clus-
tering analysis on TCGA samples, as depicted in Figure 1
(b). These methods are defined as alternative transforma-
tion strategies.

The autoencoder framework was compared to the indi-
vidual Cox-PH-based strategy. Specifically, the uni-variate
Cox-PH model was used for the omics data of TCGA
cohort. The Top N features according to C-index were
selected to cluster all TCGA samples using K-means clus-
tering, as mentioned above. N refers to the number of
survival-related features in the autoencoder-based strategy.

Hold-out validation and supervised classification

The robustness of the obtained risk groups was evaluated
using hold-out validation with the R caret package as pre-
viously described (http://topepo.github.io/caret/index.
html).'? Briefly, all TCGA samples were randomly split
into a training set and a test set randomly using a ratio of
60%:40%. Analysis of variance (ANOVA) was performed
on each omics data. For RNA-seq data, DNA methylation
data, miRNA-seq data, or the 3-omics data in the TCGA
cohort, according to the ANOVA F-value, the top 85
mRNA features, top 30 methylation features, top 30
miRNA features, or survival-related transformed features
were selected to construct separate support vector machine
(SVM) models and predict the risk subgroup labels of sam-
ples in the test set.

The TCGA data were cross-validated 10 times according
to the splitting strategy. Arithmetic means of the C-index
and Brier score, and the geometric mean of the log-rank
P-value were generated to assess the model performance.
With the radial basis function as the kernel function, the
svmfs function in R penalizeSVM package'® was used to
construct the SVM model. For the SVM model (S), the svimfs
function performs grid search to determine the optimal
hyperparameters using five-fold CV and penalties, includ-
ing L1 norm, elastic net (L1+ L2 norms), smooth clipped
absolute deviation (SCAD), and ELastic SCAD
(SCAD + L1 norm).



Song et al.
(a)
RNA-Seq Methylation miRNA
21,768 features 20,088 features 421 features

Input layer

Hidden layer nodes
(700)

Hidden layer nodes
(350)

Bottleneck layer nodes
(175)

Hidden layer nodes
(350)

Hidden layer nodes
(700)

Output layer

Survival prediction for colorectal cancer based on deep-learning algorithms

Validation cohort
(E-GEOD-17538,
E-GEOD-28722,
E-GEOD-38832,

E-GEOD-39582,
E-GEOD-41258)

Figure 1. Overall design. (a) autoencoder framework; (b) an analytic pipeline including the autoencoder, uni-variate Cox-PH model, K-means clustering, and con-
struction of the SVM models. (A color version of this figure is available in the online journal.)

Validation in five validation cohorts

The robustness of the obtained risk groups was verified in
five validation cohorts of RNA expression data: E-GEOD-
17538, E-GEOD-28722, E-GEOD-38832, E-GEOD-39582,
and E-GEOD-41258. We did not find any dataset of meth-
ylation or miRNA data with the corresponding clinical
information. Specifically, common features between the
TCGA cohort and each validation cohort were separately
selected and subjected to median scale normalization and
robust scale normalization using R software."? The Top 85
mRNA features according to ANOVA F value were used to
construct SVM models and predict risk subgroup labels of
samples in each validation cohort using the above-
mentioned procedure (Figure 1(b)).

Statistical analysis

Uni- and multivariate Cox regression analyses were per-
formed to identify prognostic factors (p < 0.05). Using the
TCGA data, differentially expressed genes and miRNAs
(DEGs and DEmiRNAs) were screened between different
risk groups using the R DESeq2 package,” with |log,FC |
>1 and FDR<0.05 as the strict cutoff of significance.
Differentially methylated genes (DMGs) (|beta differ-
ence| >0.1 and FDR <0.05) were identified using the R
limma package®' and moderate t-test.

The correlations between DNA methylation data and
mRNA expression data from the TCGA cohort were
analyzed  using  Pearson  correlation  analysis
(Pearson correlation <-0.5, p-value <0.001). Target genes
were predicted for the identified DEmiRNAs using the
miRDB database?? (prediction score >80, version 6.0,
http:/ /mirdb.org/index. html) and TargetScan database

(probability of conserved targeting) >0.8, http:/ /www. tar
getscan.org/vert_72/, version 7.2). The DEGs that were
predicted to be target genes of the DEmiRNAs by both
databases were selected to construct the miRNA-mRNA
networks, which were visualized using Cytoscape software
(version 3.7.1). Kyoto Encyclopedia of Genes and Genomes
(KEGG) signaling pathway enrichment analysis was car-
ried out for upregulated and downregulated DEGs, respec-
tively, using KOBAS software® (FDR < 0.05).

The source code files of bioinformatics analyses are pro-
vided in Supplemental Files.

Results

The two survival groups obtained using the
autoencoder-based strategy

The autoencoder model was trained using 421 miRNA fea-
tures, 21,768 mRNA features, and 20,088 methylation fea-
tures obtained from the TCGA data. Of the resulting 175
transformed features, 24 survival-related features with
Log-rank P-value <0.05 were found using the univariate
Cox-PH model and used to cluster samples of the TCGA
cohort using K-means clustering analysis. The optimal clus-
ter number K was determined to be 2, and samples were
dichotomized into two clusters (G1 and G2 risk groups,
Supplemental Table 1). Figure 2(a) shows that the G2
group had a poorer prognosis with a significantly
shorter OS than the G1 group (C-index=0.781, Brier
score = 0.198, Log-rank P-value =1.53e-7). Therefore, the
G2 group was suggested to be the more aggressive subtype,
while the G1 group was regarded as the less aggressive
subtype.
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Figure 2. KM curves for TCGA set by the autoencoder- (a), PCA- (b), t-SNE-(c), NMF- (d), or individual Cox-PH-based strategy (e). (A color version of this figure is

available in the online journal.)

Autoencoder-based strategy performed better than
other strategies

The autoencoder-based strategy was compared with other
strategies. Using PCA, t-SNE, or NMF, 175 transformed
features were obtained. Among the 175 transformed fea-
tures, 24 features by autoencoder, 9 features by PCA, 8 fea-
tures by NMF, and 14 features by t-SNE were significantly
related to survival in univariate Cox-PH regression analysis
(Supplemental Table 8). Such finding indicates that the
autoencoder could better capture survival-related features
than other approaches.

The PCA-based strategy dichotomized samples into G1
and G2 groups and yielded a C-index of 0.665, a Brier score
of 0.206, and a Log-rank P-value of 4.51e-3 (Figure 2(b)).
The t-SNE-based strategy resulted in a C-index of 0.766, a
Brier score of 0.198 and a Log-rank P-value of 4.99e-5
(Figure 2(c)). The NMF-based strategy generated a
C-index of 0.632, a Log-rank P-value of 2.43e-3, and a
Brier score of 0.185 (Figure 2(d)). The cluster labels of sam-
ples predicted by each strategy are presented in
Supplemental Table 9. Comparative analysis of the cluster-
ing results using different strategies was conducted using
the chi-square test. Clustering results using the
autoencoder-based strategy were consistent with those of
the PCA-based strategy (*=30.03, P=4.25¢-08) or the
t-SNE-based strategy (;>=5.44, p =0.020, Supplementary

Figure 2). However, the NMF-based strategy did not yield
a significant p-value (y*=2.09, P=0.149, Supplementary
Figure 2).

With regard to the individual Cox-PH-based strategy,
the top 24 mRNA features, miRNA features, and methyla-
tion features according to C-index were combined to cluster
samples using K-means clustering analysis. The individual
Cox-PH-based strategy showed a C-index of 0.755, a Brier
score of 0.213, and a Log-rank P-value of 1.56e-4 (Figure 2
(€)).These results suggest that the autoencoder-based strat-
egy is superior to other strategies.

The risk group classification by the autoencoder was
an independent prognostic factor for CRC

Risk groups (P-value =2.43E-06), age (P-value =2.06E-02),
pathologic _T (p-value=1.49E-04), pathologic _N
(P-value =1.29E-04), pathologic M (P-value =2.44E-05),
tumor stage (P-value =1.78E-06), additional pharmaceuti-
cal therapy (P-value =1.56E-02), and additional radiation
therapy (P-value =1.53E-03) were significantly related to
survival in univariate Cox regression analysis (Table 2). In
multivariate Cox regression analysis, the risk groups were
further identified as independent prognostic factors
(HR=3.065, 95% CI=1.746-5.380, P-value=9.58E-05,
Table 2).
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Table 2. Results of uni-and multi-variate Cox regression analysis.

Uni-variate Multi-variate
Clinical variable HR 95% CI z P HR 95% CI z P
Group 1.53E-07
G1 1.000 - - - 1.000 - - -
G2 3.588 2.109-6.103 4.714 2.43E-06 3.065 1.746-5.380 3.901 9.58E-05
Age 2.06E-02
>60 1.759 1.066-2.902 2.211 2.70E-02 2.162 1.243-3.760 2.731 6.31E-03
<60 1.000 - - - 1.000 - - -
Pathologic_T 1.49E-04
T 0.161 0.010-2.582 -1.290 1.97E-01 0.066 0.001-7.678 -1.120 2.63E-01
T2 0.250 0.030-2.085 -1.281 2.00E-01 0.141 0.002-10.881 -0.883 3.77E-01
T3 0.390 0.054-2.831 -0.932 3.52E-01 0.075 0.001-5.721 -1.171 2.42E-01
T4 1.410 0.188-10.606 0.334 7.38E-01 0.172 0.002-13.652 -0.789 4.30E-01
Pathologic_N 1.29E-04
NO 0.420 0.057-3.083 -0.853 3.94E-01 12.603 0.156-1017.827 1.131 2.58E-01
N1 0.769 0.104-5.693 -0.257 7.97E-01 7.654 0.092-633.555 0.903 3.66E-01
N2 1.391 0.189-10.256 0.323 7.46E-01 11.759 0.142-970.721 1.095 2.74E-01
Pathologic_M 2.44E-05
MO 0.578 0.330-1.012 -1.917 5.53E-02 0.625 0.328-1.190 -1.431 1.52E-01
M1 2.119 1.124-3.995 2.321 2.03E-02 1.363 0.280-6.630 0.383 7.01E-01
Stage 1.78E-06
| 0.131 0.038-0.450 -3.230 1.24E-03 0.127 0.024-0.673 -2.423 1.54E-02
1l 0.242 0.102-0.571 -3.237 1.21E-03 0.232 0.063-0.855 -2.196 2.81E-02
1 0.422 0.183-0.975 -2.020 4.34E-02 0.570 0.161-2.014 -0.873 3.83E-01
\% 0.999 0.425-2.350 -0.002 9.98E-01 0.597 0.124-2.873 -0.644 5.20E-01
Additional pharmaceutical therapy 1.56E-02
No 2.249 1.252-4.040 2.712 6.68E-03 0.560 0.203-1.542 -1.122 2.62E-01
Yes 1.738 0.981-3.078 1.894 5.82E-02 0.396 0.143-1.094 -1.787 7.39E-02
Additional radiation therapy 1.53E-03
NO 2.382 1.508-3.763 3.720 1.99E-04 3.296 1.349-8.052 2.618 8.86E-03
YES 1.707 0.730-3.988 1.234 2.17E-01 2.586 0.856-7.807 1.685 9.20E-02

Table 3. CV-based performance metrics on training and test set of TCGA cohort.

Dataset 10-fold cv C-index Brier score Log-rank-p (geo.mean)
Training 3-omics training (60%) 0.74+0.08 0.20+0.01 1.53e-4

RNA only 0.72+0.06 0.20+0.02 5.10e-4

miRNA only 0.72+0.09 0.20+0.01 1.16e-3

Methylation only 0.69+0.10 0.18£0.02 6.90e-4
Test 3-omics test (40%) 0.65+0.11 0.20+£0.02 4.40e-2

RNA only 0.69+0.10 0.20+0.02 1.31e-2

miRNA only 0.71+£0.08 0.20+£0.01 2.74e-2

Methylation only 0.63+0.11 0.18+0.03 2.77e-2

Robustness of the risk groups based on hold-out
validation

We used hold-out validation to verify the robustness of the
obtained risk groups using 3-omics data and each single
omic data of the TCGA cohort. In the training set, an
SVM model was built and then in the test set the risk
group labels were predicted. Both the 3-omics training set
and the 3-omics test set generated a high C-index (0.74 £
0.08; 0.65 £0.11), low Brier score (0.20 £ 0.01; 0.20 £ 0.02),
and significant log-rank P-value (1.53e-4; 4.40e-2, Table 3).

When single omic data were employed, the top 85 RNA
features, top 30 methylation features, and top 30 miRNA
features according to ANOVA F-value were selected to con-
struct the SVM model (Supplemental Table 2). When the
methylation data were tested, the training set yielded a

C-index of 0.69 £0.10, a log-rank P-value of 6.90e-4, and a
Brier score of 0.18£0.02, while the test set yielded a
C-index of 0.63+£0.11, a log-rank P-value of 2.77e-2, and
a Brier score of 0.18 +0.03 (Table 3). The SVM model also
displayed good performances for the training set and test
set of RNA-seq and miRNA-seq (Table 3). It demonstrates
the robustness of the obtained risk groups and suggests
that multi-omics data outperform single omics data at
predicting survival.

Successful verification of the obtained risk groups in
five validation cohorts

With regard to the five validation cohorts, E-GEOD-17538
(N=232), E-GEOD-28722 (N=125), E-GEOD-38832
(N=122), E-GEOD-39582 (N =558), and E-GEOD-41258
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(N'=141), shared 12974, 12486, 11759, 12974, and 11628
common mRNA features with TCGA cohort, respectively.
The Top 85 common mRNA features according to ANOVA
F-values were selected to build the SVM model to predict
the risk group label of samples in the corresponding vali-
dation cohort. E-GEOD-17538 had a C-index of 0.651, a
Log-rank P-value of 1.33e-2, and a Brier score of 0.201 for
OS (Figure 3(a)) and a C-index of 0.662, a Log-rank P-value
of 3.33e-3, and a Brier score of 0.149 for disease-free
survival (DFS) (Figure 3(b)). In E-GEOD-28722, significant-
ly different DFS was found for the two risk groups
(C-index=0.717, Brier score=0.187, Log-rank P-value=
2.37e-2, Figure 3(c)). The log-rank P-value of E-GEOD-
38832, the smallest cohort, was marginally significant
(8.70e-2, Figure 3(d)), which might be attributed to the
small sample size. Either E-GEOD-39582 (C-index = 0.609,
Brier score =0.217, Log-rank P-value =4.76e-3, Figure 3(e))
or E-GEOD-41258 (C-index=0.678, Brier score =0.188,
Log-rank P-value =3.03e-2, Figure 3(f)) was partitioned
into two risk groups with significantly different DFS.
These results reveal that the autoencoder-based strategy
for risk stratification can be generalized to other cohorts
of patients with CRC.

Function analysis of the survival groups of the
TCGA cohort

The TCGA cohort was divided into G1 and G2 groups
using the autoencoder-based strategy. We identified 708

significant DEGs ( |log,FC|>1 and FDR < 0.05), including
368 upregulated genes and 340 downregulated genes in the
group G2 relative to the group G1 (Supplemental Table 3).
A total of 31 DEmiRNAs met the cutoff of |log,FC| > 0.585
and FDR < 0.05, including 22 upregulated and 9 downre-
gulated DEmiRNAs in the group G2 compared to the group
G1 (Supplemental Table 4). Moreover, SLAMF6 and CASP5
with FDR < 0.05 and | delta methylation | > 0.1 were signif-
icantly hypermethylated in the group G2 compared to the
group G1 (Supplemental Table 5). The top 10 DEGs, top 10
DEmiRNAs, and top 10 DMGs according to FDR value are
displayed in Figure 4. Distinctive expression patterns of
these features were observed between the G1 and G2
groups.

These results indicate that the two survival groups have
distinct genomic properties. Gene expression was not
affected by promoter methylation in any gene using
Pearson correlation analysis (correlation coefficient <-0.5,
P <0.001).

Of the 708 identified DEGs, 19 were predicted to be tar-
gets of six DEmiRNAs using the miRDB database (predic-
tion score >80) and the TargetScan database (Pct>0.8)
(Supplemental Table 6). These miRNA-mRNA pairs were
used to construct miRNA-mRNA networks, which includ-
ed eight target genes (B3GNT7, SCUBE3, GDF6, BNC2,
PCDH19, PEG10, PLA2G3, and CPEBI) of upregulated let-
7c, five target genes (SCN2B, NAV3, KCNK3, INA,
and CPLX2) of upregulated mir-34c, two target genes
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Figure 3. KM curves for the five validation datasets. (a) KM curves for OS in E-GEOD-17538; (b) KM curves for DFS in E-GEOD-17538; (c) KM curves for DFS in
E-GEOD-28722; (d) KM curves for OS in E-GEOD-38832; (e) KM curves for DFS in E-GEOD-39582; (f) KM curves for DFS in E-GEOD-41258. (A color version of this
figure is available in the online journal.)



Song et al.

Survival prediction for colorectal cancer based on deep-learning algorithms

B Group
CTD-2184D3
CTD-2666L21 2
SLC25A6P2

ALDOAP2 4
KRT8P36
hsa-mir-628
MT-TY
RP4-604A21
RP11-436H11
RP1-40G4P
RP11-372E1
CASP5_promoter 2
SLAMFE_promoter
CCL28_promater
MIR1478_promoter 4
AMTN_promotar
OR9Q1_promoter
PBOV1_promoter 5
C190rt8_promoter |
CD33_promoter
PLA2G2A_promater
hsa-mir-204
hsa-mir-145
hsa-mir-133a-2
hsa-mir-133b
hsa-let-Te
hsa-let-Te
hsa-mir-100
hsa-mir-126b-1
hsa-mir-125b-2

Figure 4. Heatmap of the clustering analysis results of the top 10 DEGs, top 10 DEmiRNAs, and top 10 DMGs. Blue and orange bars represent the G1 and G2 groups,

respectively. (A color version of this figure is available in the online journal.)

B3GNT7 ZFPM2
CPEB1 KCNK3 o
GDF6 \1 t/ SCN2B ’ hsa-ir<106a
i P, A3 S
hsa-mir-34c
- OSR1
FERIIS—nsal Ie / \
7 —geetd
INA CPLX2 \ PTPRZ1
SCUBE3 BNCQ FST  hsa-mirs133b
hsa—rnirf144/
/\ miRNA B B

-3.0 logFC 3.0

(O gene

Figure 5. miRNA-gene networks. Six DEmiRNAs and 19 predicted target DEGs are included in the networks. (A color version of this figure is available in the online

journal.)

(GPM6A and PTPRZI) of upregulated mir-133b, three
target genes (KCNB1, OSR1, and ZFPM?2) of downregulated
mir-106a, six target genes (B3GNT7, PCDH19, PEGIO0,
GDF6, PLA2G3, and CPEBI1) of upregulated let-7e, and
one target gene (FST) of downregulated mir-144
(Figure 5). Only B3GNT7 and PLA2G3 were downregu-
lated DEGs, while the other 17 genes were upregulated
DEGs. Additionally, let-7c, mir-133b, and let-7e were
among the top 10 DEmiRNAs mentioned above.

Using the upregulated and downregulated DEGs,
we performed KEGG pathway enrichment analysis,

respectively. Specifically, 27 signaling pathways were
significantly enriched with the wupregulated DEGs,
including Wnt signaling pathway, calcium signaling
pathway, and PI;K-Akt signaling pathway, whereas 25 sig-
naling pathways significantly involved the downregu-
lated DEGs, such as pancreatic secretion, nitrogen
metabolism, and intestinal immune network for IgA pro-
duction pathways (Figure 6, Supplemental Table 7). These
results suggest that different signaling pathways are
implicated in the carcinogenic mechanisms of the Gl
and G2 groups.
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Discussion

CRC is characterized by high tumor heterogeneity, varied
outcomes, and differential drug responses; thus, it is a dif-
ficult task to predict the survival of patients with CRC.*
Mortality risk stratification in CRC patients would facilitate
a deeper understanding of the molecular biology of CRC
and a more precise use of individualized therapies, thereby
leading to an improvement in the outcome of patients.”
Our study successfully dichotomized CRC patients into
two survival subpopulations using an autoencoder-based
model. DNA methylation, RNA-seq, and miRNA-seq data
of CRC samples from TCGA were integrated as a single
input vector for the autoencoder framework to yield trans-
formed features. Two optimal risk groups were obtained
using k-means clustering and were used to build the
SVM model. The prognostic value of the autoencoder-
based model was robustly verified using hold-out valida-
tion and five validation cohorts. The risk groups were not
only significantly related to survival, but also had signifi-
cant prognostic value independent of clinical factors. To the
best of our knowledge, this is the first study to employ an
autoencoder-based model to capture the survival-related
multi-omics features of CRC.

Incorporating multi-omics data enables the extraction of
coherent biological features and is of remarkable signifi-
cance for tailored medicine and management.*® Multi-
omics analysis data possess strong predictive power and
can overcome the shortcomings of one-omics analysis, such
as non-universality, uniqueness, and noisy data.”” In this
study, an autoencoder was applied for multi-omics integra-
tion to regenerate new representative features of CRC.
Compared to other DL algorithms, the autoencoder does
not require training data to be labeled, regenerates a
smaller size of encodings, and has low computational com-
plexity, with similar input and output data.”® Owing to

these prominent advantages, autoencoders have been fre-
quently used in the field of medical data processing.’
Furthermore, the current study showed that the autoen-
coder framework outperformed PCA, t-SNE, NMF, and
the univariate Cox-PH-based strategy in identifying
survival-related features of CRC. Our results suggest that
the autoencoder is a feasible and reliable tool for multi-
omics integration.

Our findings implied that the good prognosis group
(G1) had more aggressive behaviors, whereas the poor
prognosis group (G2) had less aggressive behaviors. The
two groups have distinct carcinogenic mechanisms at the
gene, miRNA, methylation, and pathway levels. Our
results also indicate that the six DEmiRNAs (let-7c, mir-
34c, mir-133b, let-7e, mir-144, and mir-106a) and their pre-
dicted 19 target genes in the constructed miRNA-mRNA
networks are critical participants in the differential molec-
ular mechanisms of the two groups and are important
causes of their distinctive outcomes. Studies have reported
that let-7c-5p is associated with the prognosis of CRC and
may play a critical role in the progression of CRC.%*
Previous reports have also revealed that another
DEmiRNA, let-7e, is downregulated in CRC and exerts
suppressive effects on the proliferation and migration of
CRC cells.*"*? In the miRNA-mRNA networks constructed
in our study, let-7c and let-7e shared six common target
DEGs, including downregulated B3GNT7 and PLA2G3,
and upregulated PCDH19, PEG10, GDF6, and CPEBI.
These findings imply that let-7c and let-7e promote the pro-
gression and migration of CRC by downregulating
B3GNT7 and PLA2G3, and upregulating PCDH19, PEGI0,
GDF6, and CPEBI. Beta-1, 3-N-acetylglucosaminyltransfer-
ase 7 (B3GNT?) is suppressed in colon oncogenetic process-
es to promote the cancer metastasis by increasing the
expression of cell surface sialyl Lewis a and x antigens.*
Phospholipase A2 group III (PLA2G3) plays an oncogenic



Song et al.

and pro-inflammatory role in the biology of CRC and is a
risk factor for lymph node metastasis as well as a prognos-
tic biomarker.” Downregulation of protocadherin 19
(PCDH19), a tumor suppressor gene, promotes the metas-
tasis and proliferation of hepatocellular carcinoma and is a
predictor of poor prognosis.*** Paternally expressed gene
10 (PEG10) is involved in rectal adenocarcinoma metasta-
sis> and contributes to tumor cell proliferation and inva-
sion.?® Growth differentiation factor 6 (GDF6), a member of
the transforming growth factor (TGF)-f family, was signif-
icantly enriched in the TGF-f signaling pathway in our
study, which is involved in modulating cell growth, differ-
entiation, apoptosis, and homeostasis.” Cytoplasmic poly-
adenylation element-binding protein 1 (CPEB1), encoding a
key component of tight junctions, mediates epithelial-
to-mesenchymal transition (EMT) and the metastasis of
breast cancer by regulating matrix metalloproteinase 9.*°

miR-34c-5p promotes the proliferation of cancer cells
and CRC metastasis.*! In the miRNA-mRNA networks,
miR-34c was predicted to target SCN2B, NAV3, KCNK3,
INA, and CPLX2, indicating that the five target genes medi-
ate the promoting effect of miR-34c on CRC. Sodium
voltage-gated channel beta subunit 2 (SCN2B) encodes
cell adhesion molecules and is associated with the adhesion
and migration of breast cancer cells.*> Navigator 3 (NAV3)
acts as a target gene of p73 to inhibit colon cancer metasta-
sis® and is associated with colon cancer development-
related inflammation.** TWIK-related acid-sensitive
potassium channel 1 (TASK-1) encoded by potassium
channel subfamily K member 3 (KCNK3) participates in
the regulation of apoptosis and proliferation of lung
cancer cells.*” g-internexin (INA) inhibits microtubule poly-
merization in early stage CRC.*® Complexin-2 (CPLX2) is
upregulated in high-grade lung neuroendocrine tumors
and serves as a potential prognostic biomarker.*”

Accumulating evidence shows that miR-133b is a tumor
suppressor involved in the regulation of CRC cell prolifer-
ation and apoptosis.**** We found that miR-133b was upre-
gulated in the poor prognosis group relative to the good
prognosis group and was predicted to target GPM6A and
PTPRZ1. Glycoprotein M6A (GPM6A), an oncogene, is
related to EMT and cell migration in gonadotroph pituitary
adenomas.”® GPM6A expression at the mRNA and protein
levels is negatively regulated by miR-133b during prenatal
stress,”’ which aligns with our results. Protein tyrosine
phosphatase receptor-like type Z polypeptide 1 (PTPRZI)
shows increased expression in CRC tissues and contributes
to carcinogenesis.”

miR-106a, a tumor suppressor, suppresses cell prolifer-
ation and strengthens cell apoptosis in CRC,” which aligns
with our results that Hsa-mir-106a is downregulated in the
poor prognosis group, targeting upregulated KCNBI,
OSR1, and ZFPM2. Potassium channel subfamily B
member 1 (KCNB1) expression is decreased in gastric and
colorectal cancers and may be a promising prognostic bio-
marker.”* Oxidative stress-responsive kinase 1 (OSR1) is
related to the angiogenesis and proliferation of hepatoma
cells.”® The expression of zinc finger protein, FOG family
member 2 (ZFPM?2), a glioma susceptibility gene, is associ-
ated with the incidence and severity of glioma.*
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Additionally, the present study showed that downregu-
lated miRNA-144 targeted FST, which was significantly
enriched in the TGF-f signaling pathway. Consistently,
there is a rich body of evidence that miRNA-144 functions
as a tumor suppressor in CRC.””® Follistatin (FST) acts as
an antagonist of the TGF-f family and participates in the
tumorigenesis of solid tumors.”® FST and TGF-f are
inferred to mediate the inhibitory effect of miRNA-144 on
CRC. Our study supports these miRNAs and target genes
as potential prognostic biomarkers and therapeutic targets
of CRC, providing more insights into the complicated reg-
ulatory mechanisms of CRC.

Our study illustrates an applicable analytical model for
the survival prediction of CRC based on the integration of
multi-omics data. However, some limitations of this study
should not be ignored. Further improvements, such as the
inclusion of clinical information as an additional modality,
are beneficial for improving the performance of our
autoencoder-based model before its application to other
cancers. Further, the prognostic miRNAs and target genes
should be validated using in vivo and in vitro experiments
in future studies. Herein, the model was trained using cou-
pled DNA methylation, RNA-seq, and miRNA-seq data
from 379 tumor samples. Larger datasets with more
tumor samples are expected to yield better results.
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