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Abstract
Immunotherapy is the most promising treatment for uveal melanoma patients with metas-

tasis. Tumor microenvironment plays an essential role in tumor progression and greatly

affects the efficacy of immunotherapy. This research constructed an immune-related sub-

typing system and discovered immune prognostic genes to further understand the immune

mechanism in uveal melanoma. Immune-related genes were determined from literature.

Gene expression profiles of uveal melanoma were clustered using consensus clustering

based on immune-related genes. Subtypes were further divided by applying immune

landscape, and weighted correlation network analysis was performed to construct

immune gene modules. Univariate Cox regression analysis was conducted to generate a

prognostic model. Enriched immune cells were determined after gene set enrichment

analysis. Three major immune subtypes (IS1, IS2, and IS3) were identified, and IS2 could

be further divided into IS2A and IS2B. The subtypes were closely associated with uveal

melanoma prognosis. IS3 group had the most favorable prognosis and was sensitive to

PD-1 inhibitor. Immune genes in IS1 group showed an overall higher expression than IS3 group. Six immune gene modules were

identified, and the enrichment score of immune genes varied within immune subtypes. Four immune prognostic genes (IL32, IRF1,

SNX20, and VAV1) were found to be closely related to survival. This novel immune subtyping system and immune landscape

provide a new understanding of immunotherapy in uveal melanoma. The four prognostic genes can predict prognosis of uveal

melanoma patients and contribute to new development of targeted drugs.
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Introduction

Uveal melanoma (UM) is a relatively rare melanocytes-
derived malignancy and contributes to 3%–5% of all mela-
nomas.1 The Surveillance, Epidemiology, and End Results
(SEER) database showed that the incidence of UM is 5.2 per
million, with 98% of UM cases found in the Caucasian pop-
ulation.2 UM is the most frequent eye tumor, and about 50%

of patients will ultimately develop metastasis with approx-
imately 13.4 months of median overall survival time.1

Numerous researches have demonstrated that chromo-
some abnormalities, especially loss of chromosome 3 and
arrangements of 6q and 8q, are critically associated with
metastasis or worse prognosis.3–7 Furthermore, hotspot
mutated genes including GNA11, GNAQ, EIF1AX, SF3B1,
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and BAP1 have also been verified to be correlated with UM
progression, particularly BAP1 mutations, which are more
closely associated with metastasis.1,8

Although the TNM staging system from the American
Joint Committee on Cancer Classification (AJCC) can strat-
ify patients into several risk categories based on clinical and
histopathologic features, its accuracy is relatively low in
predicting prognosis and is therefore not reliable enough
in guiding personalized treatment. To this end, Onken et al.
exploited a new classification that stratified UM patients
into class 1 and class 2 on the basis of gene expression
profiling (GEP) assay.9,10 Then, a 15-gene assay has been
developed to predict metastasis risk, and class 1 was then
subdivided into class 1A and class 1B according to the
expression level of RAB31 and CDH1.11,12 Field et al. further
improved the predictive accuracy of the 15-gene assay by
introducing PRAME gene expressing cancer-testis antigen,
and subdivided class 1 into Class1PRAME� and
Class1PRAMEþ.13 The Cancer Genome Atlas (TCGA) also
developed a subtyping system, which classified UM
patients into four subtypes based on monosomy 3 (M3)
and disomy 3 (D3).14

Although the above subtyping systems shows certain
advantages than AJCC staging system in predicting
cancer metastasis, they are still inadequate in guiding per-
sonalized therapies, particularly for metastatic patients.
The five-year overall survival of UM has remained stable;
meanwhile, over the past decades, the treatments for UM
patients were largely developed from surgery to its combi-
nation with radiotherapy, chemotherapy and some other
therapies.2 Lack of means to effectively treat metastatic
patients is a crucial reason leading to the death of UM
patients, and the most promising immunotherapies are

now undergoing with clinical trials. Therefore, with the
development of immunotherapies, it is also essential to
explore an effective subtyping system to provide a better
understanding of immune-related tumor microenviron-
ment (TME). Early studies elucidated that high expression
of human leukocyte antigen (HLA) class I is related to a
poor prognosis, which indicates that different patterns of
immune cells may result in different prognosis.15 TCGA
study also demonstrated that UM patients with high met-
astatic risk could be further classified by the level of CD8þ

T-cell infiltration and differential expression of immune
profiles.14

In the present study, we attempted to unveil the relation
between immune components and prognosis through inte-
grated bioinformatics analysis. According to gene expres-
sion profiles of UM patients from TCGA, we developed a
novel subtyping system focusing on immune-related genes
and an immune-related prognostic signature for further
understanding the tumor microenvironment and predict-
ing survival of UM patients.

Materials and methods

Data source and preprocessing

The workflow chart of this study is shown in Figure 1.
RNA-seq data (TCGA-UVM) and gene expression profiles
(GSE22138, GSE78220) were downloaded from TCGA data-
set and Gene Expression Omnibus (GEO), respectively. In
TCGA-UVM dataset, samples lacked of survival data or
genes whose transcripts per million (TPM)¼ 0 in over
50% samples were excluded. Ensembl gene ID was trans-
ferred to gene symbol. Eighty samples and expression data
of 18409 genes in TCGA-UVM dataset were included

Figure 1. The workflow chart of exploring UM data. The study was divided into two parts. One part is immune subtyping-related analysis, and another part is the

identification of prognostic genes. (A color version of this figure is available in the online journal.)

WGCNA: weighted correlation network analysis; DEGs: differentially expressed genes; LASSO: Least absolute shrinkage and selection operator; AIC: Akaike

information criterion.
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and BAP1 have also been verified to be correlated with UM
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(Supplementary Table S1). In GSE22138 dataset, samples
without survival data or probes without value were exclud-
ed. The remaining probes were matched to gene symbol.
One probe that was mapped into multiple genes was also
excluded. If multiple probes were mapped to one gene,
median value of expression data was calculated. Finally,
63 samples and expression profiles of 23,520 genes were
retained (Supplementary Table S2). TCGA-UVM was
defined as a training dataset, and GSE22138 was defined
as a validation dataset (Supplementary Table S3). GSE78220
dataset containing the treatment data of immunotherapy
and chemotherapy for UM patients was exported
from GEO.

Collection of immune-related genes

We collected total of 2006 immune-related genes including
immune cell-specific genes, genes of co-inhibitory and
co-stimulatory molecules, genes of cytokines and cytokine
receptors, genes for antigen processing and presentation,
and other immune-related genes from a previous
research.16

Consensus clustering

Consensus clustering in ConsensusClusterPlus R package
was performed to cluster immune-related genes from
TCGA-UMV dataset.17 Consensus clustering is an unsuper-
vised class discovery to mine the unknown possible groups
based on intrinsic features. Partitioning around medoids
(PAM) algorithm and Canberra distance were applied to
consensus clustering. Five hundred times of bootstraps
were implemented, and 80% of the total samples in
TCGA-UVM dataset were included in each time of boot-
straps. Groups (k) was set from 2 to 10, and the most opti-
mized clusters were defined by cumulative distribution
function (CDF) curve and consensus CDF. Kaplan-Meier
survival curve and log-rank test were used to evaluate
the performance of the immune subtyping system.

Comparison of mutation patterns among different
immune subtypes

To better understand characteristics of gene mutations in
the three immune subtypes, we used mutect2 software to
analyze the mutation patterns in TCGA-UVM dataset
(https://software.broadinstitute.org/cancer/cga/
mutect).18 Mutect2 is a method widely used in preprocess-
ing next generation sequencing data, and it can detect
mutations with a very low false-positive rate. Chi-square
test was performed to identify significantly differential
mutations among different subtypes.

Predicting the sensitivity of immune subtypes to
immunotherapy and chemotherapy

We obtained GSE78220 dataset with treatment data of mel-
anoma patients receiving anti-PD-1 therapy from GEO.
Submap analysis was performed to predict the sensitivity
of different immune subtypes to anti-PD-1 therapy by com-
paring the similarity of expression profiles between
GSE78220 and TCGA-UVM datasets. In the sensitivity

prediction of chemotherapy, pRRophetic R package was
applied to estimate IC50 (half maximal inhibitory concen-
tration) of six chemotherapy drugs (tamoxifen, cisplatin,
sunitinib, crizotinib, sorafenib, and temozolomide) in
each patient.19 ANOVA test was performed to analyze the
difference among three subtypes.

Construction of immune landscape

Monocle is an unsupervised algorithm and has been previ-
ously used to reduce dimensionality and construct a
two-dimensional landscape.20 The algorithm of Monocle
represented the expression data of each sample as a point
in a high-dimensional Euclidean space. Then, the dimen-
sionality was reduced using Independent Component
Analysis, in which each sample was casted as a point in
the two-dimensional graph. Finally, a tree structure mani-
festing the features of each sample was constructed by
Monocle.

Weighted correlation network analysis

Weighted correlation network analysis (WGCNA) R pack-
age was performed to find immune-related gene mod-
ules.21 WGCNA is a correlation network methodology
that can be used to efficiently screen biomarkers or hub
genes. Negative relation between log(k) and log(p(k)),
R2> 0.85 and soft threshold (power)¼ 3 were defined to
be the most optimized cluster. Topological overlap matrix
(TOM) was constructed based on adjacency matrix. We
applied average-linkage hierarchical clustering and
dynamic branch cutting to identify co-expression modules
containing at least 30 genes. Parameters of height¼ 0.25,
deepSplit¼ 2, minModuleSize¼ 30 were set to merge mul-
tiple modules.

Gene enrichment analysis

Single-sample gene set enrichment analysis (ssGSEA) in the
GSVA R package was implemented to score 28 types of
immune cells.22 ssGESA method uses cumulative distribu-
tion functions of gene expression to calculate enrichment
score per sample, which is further normalized by the range
of values taken across all samples and gene sets.23 ANOVA
was performed to assess the relation between immune sub-
types and 56 types of immune-related biomarkers.24

Enriched biological processes in gene ontology (GO)
terms of six immune-related gene modules were annotated
by DAVID (v6.8).25

Exploration of prognostic genes

Univariate Cox regression analysis was conducted to iden-
tify gene modules and prognostic genes (within TCGA-
UVMdataset) significantly correlated with overall survival.
Least absolute shrinkage and selection operator (LASSO)
regression in the glmnet R package and stepAIC (stepwise
Akaike information criterion) in the MASS R package were
employed to reduce the quantity of prognostic genes and
optimize the prognostic model.26–28 LASSO is widely
applied to estimate the structure of a nonlinear polynomial
model and can reduce the unnecessary variables to meet



Xia et al.  Molecular subtyping and prognostic signature  249

(Supplementary Table S1). In GSE22138 dataset, samples
without survival data or probes without value were exclud-
ed. The remaining probes were matched to gene symbol.
One probe that was mapped into multiple genes was also
excluded. If multiple probes were mapped to one gene,
median value of expression data was calculated. Finally,
63 samples and expression profiles of 23,520 genes were
retained (Supplementary Table S2). TCGA-UVM was
defined as a training dataset, and GSE22138 was defined
as a validation dataset (Supplementary Table S3). GSE78220
dataset containing the treatment data of immunotherapy
and chemotherapy for UM patients was exported
from GEO.

Collection of immune-related genes

We collected total of 2006 immune-related genes including
immune cell-specific genes, genes of co-inhibitory and
co-stimulatory molecules, genes of cytokines and cytokine
receptors, genes for antigen processing and presentation,
and other immune-related genes from a previous
research.16

Consensus clustering

Consensus clustering in ConsensusClusterPlus R package
was performed to cluster immune-related genes from
TCGA-UMV dataset.17 Consensus clustering is an unsuper-
vised class discovery to mine the unknown possible groups
based on intrinsic features. Partitioning around medoids
(PAM) algorithm and Canberra distance were applied to
consensus clustering. Five hundred times of bootstraps
were implemented, and 80% of the total samples in
TCGA-UVM dataset were included in each time of boot-
straps. Groups (k) was set from 2 to 10, and the most opti-
mized clusters were defined by cumulative distribution
function (CDF) curve and consensus CDF. Kaplan-Meier
survival curve and log-rank test were used to evaluate
the performance of the immune subtyping system.

Comparison of mutation patterns among different
immune subtypes

To better understand characteristics of gene mutations in
the three immune subtypes, we used mutect2 software to
analyze the mutation patterns in TCGA-UVM dataset
(https://software.broadinstitute.org/cancer/cga/
mutect).18 Mutect2 is a method widely used in preprocess-
ing next generation sequencing data, and it can detect
mutations with a very low false-positive rate. Chi-square
test was performed to identify significantly differential
mutations among different subtypes.

Predicting the sensitivity of immune subtypes to
immunotherapy and chemotherapy

We obtained GSE78220 dataset with treatment data of mel-
anoma patients receiving anti-PD-1 therapy from GEO.
Submap analysis was performed to predict the sensitivity
of different immune subtypes to anti-PD-1 therapy by com-
paring the similarity of expression profiles between
GSE78220 and TCGA-UVM datasets. In the sensitivity

prediction of chemotherapy, pRRophetic R package was
applied to estimate IC50 (half maximal inhibitory concen-
tration) of six chemotherapy drugs (tamoxifen, cisplatin,
sunitinib, crizotinib, sorafenib, and temozolomide) in
each patient.19 ANOVA test was performed to analyze the
difference among three subtypes.

Construction of immune landscape

Monocle is an unsupervised algorithm and has been previ-
ously used to reduce dimensionality and construct a
two-dimensional landscape.20 The algorithm of Monocle
represented the expression data of each sample as a point
in a high-dimensional Euclidean space. Then, the dimen-
sionality was reduced using Independent Component
Analysis, in which each sample was casted as a point in
the two-dimensional graph. Finally, a tree structure mani-
festing the features of each sample was constructed by
Monocle.

Weighted correlation network analysis

Weighted correlation network analysis (WGCNA) R pack-
age was performed to find immune-related gene mod-
ules.21 WGCNA is a correlation network methodology
that can be used to efficiently screen biomarkers or hub
genes. Negative relation between log(k) and log(p(k)),
R2> 0.85 and soft threshold (power)¼ 3 were defined to
be the most optimized cluster. Topological overlap matrix
(TOM) was constructed based on adjacency matrix. We
applied average-linkage hierarchical clustering and
dynamic branch cutting to identify co-expression modules
containing at least 30 genes. Parameters of height¼ 0.25,
deepSplit¼ 2, minModuleSize¼ 30 were set to merge mul-
tiple modules.

Gene enrichment analysis

Single-sample gene set enrichment analysis (ssGSEA) in the
GSVA R package was implemented to score 28 types of
immune cells.22 ssGESA method uses cumulative distribu-
tion functions of gene expression to calculate enrichment
score per sample, which is further normalized by the range
of values taken across all samples and gene sets.23 ANOVA
was performed to assess the relation between immune sub-
types and 56 types of immune-related biomarkers.24

Enriched biological processes in gene ontology (GO)
terms of six immune-related gene modules were annotated
by DAVID (v6.8).25

Exploration of prognostic genes

Univariate Cox regression analysis was conducted to iden-
tify gene modules and prognostic genes (within TCGA-
UVMdataset) significantly correlated with overall survival.
Least absolute shrinkage and selection operator (LASSO)
regression in the glmnet R package and stepAIC (stepwise
Akaike information criterion) in the MASS R package were
employed to reduce the quantity of prognostic genes and
optimize the prognostic model.26–28 LASSO is widely
applied to estimate the structure of a nonlinear polynomial
model and can reduce the unnecessary variables to meet

the optimal model. It has been successfully used to identify
prognostic biomarkers in various diseases.29,30 Risk score
was defined as coefficient 1�gene 1 expressionþ coefficient
2� gene 2 expressionþ . . .þ coefficient n�gene n expres-
sion. Finally, the prognostic model performance was
assessed by Kaplan-Meier survival curve and log-rank test.

Statistical analysis

All statistical analyses were performed in R (v3.4.2) soft-
ware. Student t test was performed when comparing two
groups. ANOVA test was performed when comparing
three or more than three groups. Log-rank test was per-
formed in Kaplan-Meier survival analysis and univariate
Cox regression analysis. p< 0.05 was considered as a sig-
nificance. Bonferroni correction was used to correct p value.
Other statistical analyses were presented in the correspond-
ing figure legends. All parameters were default if there was
no specific indication.

Results

Molecular subtyping of UM based on
immune-related genes

After collecting 2006 immune-related genes from literature,
we exported 1809 immune-related genes from RNA-seq
data in TCGA-UVM dataset and then performed
clustering analysis for 80 UM samples through
“ConsensusClusterPlus” R package. The most optimized
cluster was when k¼ 3, according to CDF and CDF delta
area (Figure 2(a) and (b)), and the samples were clustered
into three immune subtypes (IS1, IS2, and IS3) (Figure 2(c)).
Survival analysis in TCGA-UVM dataset revealed signifi-
cant difference of overall survival in the three groups, while
IS1 group showed the worst prognosis, and IS3 group had
the longest overall survival (p¼ 0.0044, Figure 2(d)).
Similarly, progression-free survival was the worst in IS1
group and the optimal in IS3 group (p¼ 0.0055, Figure 2
(e)). In addition, no close relation between immune
subtypes or clinical features including age, gender,
and stages in TCGA-UVM dataset, was detected
(Supplementary Figure S1(a) to (d) and Figure 2(f)).
Furthermore, we validated this molecular subtyping
system in GSE22138 dataset, and the results were consistent
with the previous. The overall survival was different in the
three groups classified by immune subtypes, with the worst
survival shown in IS1 group and the optimal prognosis
in IS3 group (p< 0.001, Figure 2(g)). The data did
not show significant difference between three groups or
clinical features (age and gender) (Supplementary
Figure S1(e) and (f)).

Characteristics of gene mutations in different
immune subtypes

To better understand characteristics of gene mutations in
the three immune subtypes, we used mutect2 software to
analyze the mutation patterns in TCGA-UVM dataset.18

Tumor mutation burden (TMB) and number of mutation
genes of IS1, IS2, and IS3 groups were, respectively,

calculated, and we observed a significant difference
between IS1 and IS2 groups (p< 0.05, Figure 3(a) and (b)).
We screened five genes (GNAQ, GNA11, BAP1, SF3B1, and
EIF1AX) with mutation rates over 3%, and their mutation
characteristics in three immune subtypes are shown in
Figure 3(c). Missense mutations consisted most of muta-
tions, and the top two genes with high mutation frequency
were GNAQ (50%) and GNA11 (44%). However, BAP1 had
the most variable mutation types (Figure 3(c)). Notably, no
mutations of SF3B1were detected in IS2 group, and most of
mutations in IS3 group were missense mutations (Figure 3
(c)). In each subtype, the three genes (GNAQ, SF3B1, and
EIF1AX) showing a highmutation frequency were screened
through Chi-square test (p< 0.05).

Chemotherapy-induced gene expression of immune
biomarkers and checkpoints

From patients with chemotherapy history, the gene expres-
sion of immune biomarkers in three immune subtypes was
detected. In TCGA-UVM dataset, 20 immune biomarkers
were found to be differentially expressed in IS1, IS2, and IS3
(p< 0.001, Figure 4(a)). In GSE22138 dataset, 26 immune
biomarkers were expressed, and 15 of them were differen-
tially expressed in the immune subtypes (p< 0.05, Figure 4
(b)). Gene expression of the 47 immune checkpoints
collected from previous research in two datasets was
also analyzed.31 A total of 44 genes were expressed in
TCGA-UVM dataset, and 42 were differentially expressed
in the immune subtypes (Figure 4(c)). In GSE22138
dataset, a total of 45 genes were expressed, and 19 of
them were differentially expressed in three immune sub-
types (Figure 4(d)).

Distribution of immune cells in three immune subtypes

Subsequently, we evaluated the distribution of immune
cells in different subtypes and then collected related
genes from previous study.32 By using ssGSEA method,
we calculated the score of 28 types of immune cells of
each samples, according to expression data. The results
showed differential distribution of immune cells in the
three subtypes (Figure 5). In IS1 group, accumulative
gene expression of immune cells was significantly higher
than IS3 group in TCGA-UVM dataset (Figure 5(a)).
Especially, six types of immune cells, including activated
CD4þ T cell, effector memory CD4þ T cell, activated B cell,
activated CD8þ Tcell, regulatory T cell, and type 1T helper
cell had significantly higher enrichment in IS1 group
(p< 0.001, Figure 5(c)). Moreover, we also observed similar
results in GSE22138 dataset (p< 0.05, Figure 5(b) and (d)).
According to an immunogenomic analysis of pan-cancer,
the six immune subtypes (C1 to C6) could reflect various
prognosis of tumors.24 We extracted the data of immune
subtypes of TCGA-UVM in the study and observed that
80 samples in total were classified into C3 and C4 groups
mostly with only two samples as C5 group.24 We matched
the three immune subtypes in our study (IS1, IS2, and IS3)
to the immune subtypes in the previous study (C3, C4, and
C5), and found that C3 subtype was enriched in IS1 group
and C4 subtype consisted mostly of IS3 group (Figure 6(a)).
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Such a result was reasonable because in the present study
patients in IS1 group demonstrated the worst prognosis
(Figure 2(d) and (g)), while overall survival of C3 subtype
was lower than C4 in the literature.24 Furthermore, we
scored each sample on a total of 56 immune-related
biomarkers from the literature, and 23 biomarkers were

considered to have strong significant difference among
IS1, IS2, and IS3 groups (FDR< 0.01, p< 0.01, Figure 6(b)).
Three terms including dendritic cells, activated dendritic
cells, and T Cells CD4 naive showed the highest enrichment
in IS3 group, and the remaining was mostly enriched in IS1
group (Figure 6(b)).

Figure 2. Immune subtyping of uveal melanoma in TCGA dataset. (a) Cumulative distribution function (CDF) curves analyzed in TCGA dataset. Category numbers

(k¼ 2 to 10) were shown in different colors. (b) CDF delta area curves (k¼ 2 to 10) analyzed in TCGA dataset. (c) Cluster heatmap when k¼ 3. Samples were stratified

into three immune subtypes (IS1, IS2, and IS3). (d) Kaplan-Meier survival curves of immune subtypes and overall survival in TCGA dataset. (e) Kaplan-Meier survival

curves of immune subtypes and progression-free survival in TCGA dataset. (f) The distribution of three immune subtypes in the stage II, III, and IV in TCGA dataset.Chi-

square test was performed. (g) Kaplan-Meier survival curves of immune subtypes and overall survival in GSE22138 dataset. Log-rank test was performed in survival

analysis. (A color version of this figure is available in the online journal.)
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Sensitivity of immunotherapy in different immune
subtypes

We then evaluated whether the immune subtyping
system could guide immunotherapy for managing UM
patients. Submap analysis revealed that IS3 group was
more sensitive to programmed cell death protein 1 (PD-1)
inhibitor than other two groups (Bonferroni-corrected
p¼ 0.01798, Figure 7(a)). In addition, among six
chemotherapy drugs (cisplatin, tamoxifen, sunitinib,
crizotinib, sorafenib, and temozolomide), IS1 group was
more sensitive to crizotinib and temozolomide treatment,
while cisplatin, tamoxifen, sunitinib, sorafenib, and temo-
zolomide treatment were more effective in IS3 group
(Figure 7(b) to (g)).

Immune landscape of UM

A visualized immune landscape could help delineate the
immune subtypes of all samples. Therefore, we applied
dimensionality reduction through a graphical tree struc-
ture.33 As shown in Figure 8(a), three immune subtypes
with different colors were clearly distinguished by the
tree branches. Further analysis of the correlation between
two components and 28 types of immune-related cells
showed that component 1 was positively closely related
to immature dendritic cells, activated dendritic cells and
type 1T helper cells, while component 2 was negatively
closely related to CD56dim natural killer cells, neutrophil,
MDSC, and gamma delta T cells (|R|> 0.7, p< 0.001,
Figure 8(b)). Additionally, there were two branches in the

Figure 3. Characteristics of gene mutations in three immune subtypes. (a) Tumor mutation burden of three immune subtypes. ANOVA was performed. (b) Number of

mutated genes in three immune subtypes. ANOVA was performed. (c) Mutation distribution and mutation types of top five mutated genes (GNAQ, GNA11, BAP1,

SF3B1, and EIF1AX) in three immune subtypes. Chi-square test was performed. *p< 0.05. (A color version of this figure is available in the online journal.)

ns: no significance; TMB: tumor mutation burden.
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IS2 group, indicating that IS2 group could be further clas-
sified into two new subtypes, which were IS2A and IS2B,
respectively (Figure 8(c)). Then we scored the gene enrich-
ment of IS2A and IS2B in immune-related cells, and 21
(75%) types of immune-related cells were differentially
enriched in these two subtypes (p< 0.05, Figure 8(d)).
Hence, a new series of immune subtypes were defined as
IS1, IS2A, IS2B, and IS3. Survival analysis revealed that dif-
ferent branches (group 1, 5, and 6) had different prognosis,

although it was not obvious between group 1 and group 6
(Figure 8(e) and (f)).

Co-expression network analysis within

immune-related genes

Co-expressed gene modules were identified using
WGCNAwithin TCGA-UVM dataset. Firstly, we clustered
the samples according to the expression profiles of 1809

Figure 4. Differential gene expression of immune-related genes within immune subtypes. (a) Chemotherapy-induced gene expression of immune biomarkers in

TCGA-UVM dataset. (b) Chemotherapy-induced gene expression of immune biomarkers in GSE22138 dataset. (c) Chemotherapy-induced gene expression of

immune checkpoints in TCGA-UVM dataset. (d) Chemotherapy-induced gene expression of immune checkpoints in GSE22138 dataset. ANOVA test was performed.

*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. (A color version of this figure is available in the online journal.)

ns: no significance.
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Figure 5. Distribution of immune-related cells and signatures within IS1, IS2, and IS3 groups. (a) Heatmap of 28 types of immune cells in three immune subtypes in

TCGA-UVM dataset. Color from green to red (z-score¼ –4 to 6) means from low enrichment to high enrichment of immune cells. (b) Enrichment scores of activated B

cells, activated CD4 T cells, activated CD8 T cells, effector memory CD4 T cells, regulatory T cells, and type 1T helper cells in TCGA-UVM dataset. (c) Heatmap of 28

types of immune cells in three immune subtypes in GSE22138 dataset. Color from green to red (z-score¼ –4 to 4) means from low enrichment to high enrichment of

immune cells. (d) Enrichment scores of activated B cells, activated CD4 T cells, activated CD8 T cells, effector memory CD4 T cells, regulatory T cells, and type 1T

helper cells in GSE22138 dataset. (A color version of this figure is available in the online journal.)
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immune-related genes (Figure 9(a)). Next, under the condi-
tion of the negative relation between log(k) and log(p(k)),
R2> 0.85 and soft threshold (power)¼ 3 were set to meet a
scale-free network (Figure 9(b) and (c)). TOM was con-
structed based on adjacency matrix. We applied average-
linkage hierarchical clustering and dynamic branch cutting
to identify co-expression modules, with each module con-
taining at least 30 genes. To further simply the modules, the
connectivity of eigengenes was analyzed, and cluster anal-
ysis was performed to merge modules with close distance.
Finally, 1809 immune-related genes were sorted into six
modules colored in turquoise, red, green, brown, blue,
and black (Figure 9(d) and (e)). Furthermore, the expression
level of module eigengenes was significantly differential
within IS1, IS2, and IS3 groups in five modules except for
black module (Figure 9(f)). IS1 group showed the highest
expression level in blue module and the lowest in green,
red, and turquoise module, while IS3 group had the highest
expression level in brown and red modules (Figure 9(f)).

Function of immune-related gene modules and
prognostic analysis

We identified six immune-related gene modules, and uni-
variate Cox regression analysis demonstrated that several
modules had a close relation with UM prognosis. Black and
blue modules had a negative correlation with prognosis,
with HR¼ 2.1 (95%CI, 1.12–3.92) and HR¼ 2.24 (95%CI,
1.47–3.42), respectively (p< 0.05, Figure 10(a)). Red
module was positively correlated with prognosis with
HR¼ 0.28 (95%CI, 0.16–0.50, p< 0.001, Figure 10(a)).
Functional enrichment analysis was performed in black,
blue, and red modules, and the top 10 enriched biological
processes were listed. In black module, functional path-
ways such as T-cell activation, lymphocyte differentiation,
and regulation of lymphocyte activation were enriched
(Figure 10(b)), and black module eigengenes were negative-
ly related to component 2 of immune landscape (R¼ –0.326,
p¼ 0.00315, Figure 10(c)). Biological processes, for example,

Figure 6. (a) Distribution of C3, C4, and C5 subtypes in IS1, IS2, and IS3 groups. Chi-square test was performed. (b) Distribution of 23 immune-related signatures with

significant difference within IS1, IS2, and IS3 groups. ANOVA was performed within three groups. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. (A color version of

this figure is available in the online journal.)
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Figure 7. Sensitivity of chemotherapy drugs in IS1, IS2, and IS3 groups within GSE78220 dataset. (a) Submap analysis of the relation between PD-1 inhibiter treatment

and immune subtypes. (b–g) IC50 (half maximal inhibitory concentration) of six chemotherapy drugs with cisplatin (b), tamoxifen (c), sunitinib (d), crizotinib (e), sorafenib

(f), temozolomide (g) within three subtypes. (A color version of this figure is available in the online journal.)



256  Experimental Biology and Medicine  Volume 247  February 2022

Figure 8. Immune landscape of uveal melanoma within TCGA-UVM dataset. (a) A spanning tree in the two-dimensional landscape. Each point represents a sample

and three different colors represent three immune subtypes (IS1, IS2, and IS3). (b) Heatmap of the relation between 28 types of immune-related cells and two

components. Student’s t test was performed. PCA1 represents component 1 group and PCA2 represents component 2 group. Negative correlation and positive

correlation are shown in red and blue with R value under box, respectively. –log10 (p value) is displayed as green (p> 0.05) and violet (p< 0.05). (c) Immune landscape

of IS1, IS2A, IS2B, and IS3. (d) The enrichment score of IS2A and IS2B in 28 types of immune-related cells. ANOVA was performed. (e) Different branches with red

(group 1), green (group 5), blue (group 6) colors in the immune landscape. (f) Kaplan-Meier survival curves of group 1, 5, and 6. *p< 0.05, **p< 0.01, ***p< 0.001,

****p< 0.0001. (A color version of this figure is available in the online journal.)
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Figure 9. Co-expression gene analysis in TCGA-UVM dataset. (a) Cluster analysis of 80 samples. (b) Analysis of the scale-free fit index for various soft-thresholding

powers. (c) Analysis of the mean connectivity for various soft-thresholding powers. (d) Cluster dendrogram generated by average-linkage hierarchical clustering based

on topological overlap matrix and dynamic branch cutting. Modules were merged when height¼ 0.25, deepSplit¼ 2, minModuleSize¼ 30. (e) Quantity of gene

numbers in each module. (f) Distribution of eigengenes of six modules in three immune subtypes. *p< 0.05, ****p< 0.0001. (A color version of this figure is available in

the online journal.)

ns: no significance.



258  Experimental Biology and Medicine  Volume 247  February 2022

leukocyte migration, regulation of lymphocyte activation,
and T-cell activation, were enriched in blue module, which
was found to be positively correlated with the component 1
(R¼ 0.732, p¼ 1.27e-14, Figure 10(d) and (e)). Biological
processes including leukocyte migration, extracellular
structure organization, and extracellular matrix organiza-
tion, were enriched in red module, which was positively
correlated with the component 2 (R¼ 0.615, p¼ 1.29e-09,
Figure 11(a) and (b)).

Considering blue model had a stronger correlation with
prognosis and immune landscape, we then explored prog-
nostic genes from the model. For such a purpose, we
exported the genes with correlation coefficient of module
eigengenes >0.8 from blue model. Univariate Cox regres-
sion analysis was conducted to assess the relation between
overall survival and these genes. Sixty-one differentially
expressed genes in total were included as genes significant-
ly related to survival (p< 0.01). The number of genes were

Figure 10. Function analysis of black and blue modules. (a) Univariate Cox regression analysis of six modules. (b) Functional enrichment analysis of black module.

(c) The correlation between black module eigengenes and the component 2 of immune landscape (PCA2). (d) Functional enrichment analysis of blue module.

(e) The correlation between blue module eigengenes and the component 1 of immune landscape (PCA1). (A color version of this figure is available in the online journal.)

HR: hazard ratio; CI: confidence interval.
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Figure 11. Function analysis of red module, and the relation between four-gene signature and prognosis. (a) Functional enrichment analysis of red module. (b) The

correlation between redmodule eigengenes and the component 2 of immune landscape (PCA2). (c) Kaplan-Meier survival curve of overall survival grouped by the four-

gene signature in TCGA-UVM dataset. Group-H represents high-risk group and group-L represents low-risk group. (d) Kaplan-Meier survival curve of progression-free

survival grouped by the four-gene signature in TCGA-UVM dataset. (e) Kaplan-Meier survival curve of overall survival grouped by the four-gene signature in GSE78220

dataset. (A color version of this figure is available in the online journal.)
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reduced to seven genes (ARHGAP30, CST7, GZMH, IL32,
IRF1, SNX20, VAV1) through LASSO regression analysis,
and the seven genes were exported when
lambda¼ 02,586,782, resulting in the most optimized
model. Furthermore, AIC was performed to simplify the
prognostic model, and a four-gene signature was deter-
mined. The definition of risk score was listed below.

Risk Score ¼ 1:6053524� IL32þ 0:9498871� IRF1
� 1:6222937� SNX20� 2:0783539
� VAV1

The expression of IL32 and IRF1was positively related to
risk score, whereas the expression of SNX20 and VAV1was
negatively related to risk score. Survival analysis demon-
strated that the four-gene signature could efficiently stratify
the samples into low-risk and high-risk groups in both
TCGA-UVM dataset (p< 0.001, Figure 11(c) and (d)) and
GSE22138 dataset (p¼ 0.014, Figure 11(e)). In this way, the
four genes were verified to be capable of serving as prog-
nostic genes for UM.

Discussion

TME plays an important role in oncogenesis. Inflammatory
cells, especially tumor-associated macrophages (TAMs),
contribute to monocyte recruitment and therefore mediate
tumor progression.34 Evidence indicated that high-density
of immune infiltration is significantly correlated with
worse survival.35,36 Inspired by previous studies on the
TME of UM, we investigated whether metastatic risk
could be precisely defined by the differential patterns of
immune infiltration.

To date, only a few studies have explored immune-
related prognostic signatures of UM37,38; however, none
of the studies proposed an immune-related subtyping
system. The current study developed a novel classification
system with robust performance in both TCGA-UVM and
GSE22138 dataset. The subtyping system stratified UM
patients into three major subtypes, namely, IS1, IS2, and
IS3, which was significantly related to differential OS and
PFS. Our results presented that IS1 group had the worst
prognosis, and the expression of immune-related genes
was higher than other two groups. The classification was
consistent with pan-cancer subtyping system reported in a
previous study, which showed the worst OS in C3 subtype
and the most component of C3 in IS1 group.32

Within the hotspot mutated genes, it was surprisingly
observed that IS3 group had a lowest quantity of BAP1
mutations and only missense mutations were appeared,
while IS1 and IS2 presented certain loss-of-function muta-
tions. The level of functional BAP1 expression was proven
to be highly related to UM metastasis8; thus, it was reason-
able to observe the longest OS in IS3 group. Moreover, a
close relation between loss of BAP1 function and higher
expression level of the immune biomarkers of HLA-DRA,
CD38, LAG-3, and IDO1 has been found.8 These immune
biomarkers are importantly associated with immune-
suppressive pathways, which may result in

immunotherapy resistance.39,40 In the current study, most
of immune biomarkers related to immune checkpoints inhi-
bition had higher expression level in IS1 group and lower
expression in IS3 group, which is consistent with the result
of high sensitivity of PD-1 inhibiter for IS3 group. In addi-
tion, inflammatory cells, especially regularly Tcells, activat-
ed CD4þ T cells, activated B cells, effector memory CD4þ T
cells, activated CD8þ T cells, and type I helper cells, were
highly infiltrated in IS1 group, suggesting that a poor prog-
nosis of UM may be resulted from the activation and accu-
mulation of these immune cells.

To comprehensively characterize the immune subtypes,
we introduced immune landscape and further subdivided
IS2 into IS2A and IS2B. These two groups showed varied
OS and expression of immune-related cells, meaning that
the immune landscape of UM was a meaningful comple-
ment to the immune subtyping system. Given that previous
studies already proposed a series of immune prognostic
signatures for UM,37,38 we therefore adopted a new per-
spective by identifying co-expressed gene modules. Six
modules were identified, and three modules (black, blue,
and red) were closely associated with prognosis, in partic-
ular, the relationship between the blue module and worse
survival. Finally, the prognostic model was developed with
four immune-related genes (IL32, IRF1, SNX20, and VAV1).

Strong evidence was reported that interleukin (IL)-32 is
closely involved in immune infiltration, especially T-cell
infiltration in human melanoma, and IL-32a promotes mel-
anoma migration through Erk1/2 activation.41,42 In lung
cancer and gastric cancer, IL-32 expression is also highly
associated with tumor invasion and metastasis,43,44 indicat-
ing that IL-32 could serve as a prognostic biomarker.
Interferon regulatory factor 1 (IRF1) is one of HLA expres-
sion regulators, and its high expression level is related to
the M3 subtype that largely results in metastasis.45 IRF1 is
also considered as a positive factor of metastatic risk in the
current study. SNX20 belongs to the sorting nexin (SNX)
family and is highly related to immune infiltration in
25 types of cancers.46 In a study of lung cancer immuno-
therapy, patients with high SNX20 expression have positive
prognosis and SNX20 is effective in assessing the efficacy of
PD-1 inhibiter treatment combining PD-L1.46 Our study
also revealed that high expression of SNX20 was positively
related to favorable prognosis of UM patients, and that
SNX20 can serve as a biomarker in UM immunotherapy.
VAV1 is a signal transducer protein, and frequent VAV1
mutations have been identified in human cancers.47 High
expression of VAV1 has also been observed in pancreatic
cancer, ovarian cancer, and lung cancer patients with poor
prognosis.47 However, in our study, high VAV1 expression
was related to a low risk of UM metastasis. A research on
lymphomagenesis detected that VAV1 deficiency increased
tumorigenesis in the mice model of lymphoma-like tumors,
suggesting that VAV1 may function differentially in vari-
ous cancers.48

Immune infiltration is a crucial part in TME, and various
patterns of immune infiltration can indicate prognosis of
UM patients. By exploiting immune-related genes and gene
expression profiles, this study developed a novel stratifica-
tion to classify UM patients into corresponding subtypes
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spective by identifying co-expressed gene modules. Six
modules were identified, and three modules (black, blue,
and red) were closely associated with prognosis, in partic-
ular, the relationship between the blue module and worse
survival. Finally, the prognostic model was developed with
four immune-related genes (IL32, IRF1, SNX20, and VAV1).

Strong evidence was reported that interleukin (IL)-32 is
closely involved in immune infiltration, especially T-cell
infiltration in human melanoma, and IL-32a promotes mel-
anoma migration through Erk1/2 activation.41,42 In lung
cancer and gastric cancer, IL-32 expression is also highly
associated with tumor invasion and metastasis,43,44 indicat-
ing that IL-32 could serve as a prognostic biomarker.
Interferon regulatory factor 1 (IRF1) is one of HLA expres-
sion regulators, and its high expression level is related to
the M3 subtype that largely results in metastasis.45 IRF1 is
also considered as a positive factor of metastatic risk in the
current study. SNX20 belongs to the sorting nexin (SNX)
family and is highly related to immune infiltration in
25 types of cancers.46 In a study of lung cancer immuno-
therapy, patients with high SNX20 expression have positive
prognosis and SNX20 is effective in assessing the efficacy of
PD-1 inhibiter treatment combining PD-L1.46 Our study
also revealed that high expression of SNX20 was positively
related to favorable prognosis of UM patients, and that
SNX20 can serve as a biomarker in UM immunotherapy.
VAV1 is a signal transducer protein, and frequent VAV1
mutations have been identified in human cancers.47 High
expression of VAV1 has also been observed in pancreatic
cancer, ovarian cancer, and lung cancer patients with poor
prognosis.47 However, in our study, high VAV1 expression
was related to a low risk of UM metastasis. A research on
lymphomagenesis detected that VAV1 deficiency increased
tumorigenesis in the mice model of lymphoma-like tumors,
suggesting that VAV1 may function differentially in vari-
ous cancers.48

Immune infiltration is a crucial part in TME, and various
patterns of immune infiltration can indicate prognosis of
UM patients. By exploiting immune-related genes and gene
expression profiles, this study developed a novel stratifica-
tion to classify UM patients into corresponding subtypes

with differential prognosis, but this subtyping system
should be further verified in more UM patients.

In the present study, we proposed an immune subtyping
system which has not been reported before. The subtyping
system was highly effective in stratifying UM patients, and
it could guide immunotherapy in the patients selectively
sensitive to clinical treatment. Moreover, the four-gene
prognostic signature can serve as a predictor of UM surviv-
al or potential targets for discovering new immune-related
drugs.
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