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Abstract
Uterine corpus endometrial carcinoma (UCEC) is the third most frequent gynecological

malignancies in the female reproductive system. Long non-coding RNAs (lncRNAs) are

closely involved in tumor progression. This study aimed to develop an immune subtyping

system and a prognostic model based on lncRNAs for UCEC. Paired lncRNAs and non-

negativematrix factorization were applied to identify immune subtypes. Enrichment analysis

was conducted to assess functional pathways, immune-related genes, and cells. Univariate

and multivariate Cox regression analysis were performed to analyze the relation between

lncRNAs and overall survival (OS). A prognostic model was constructed and optimized by

least absolute shrinkage and selection operator (LASSO) and Akaike information criterion

(AIC). Two immune subtypes (C1 and C2) and four paired-prognostic lncRNAs closely

associated with overall survival were identified. Some immune features, sensitivity of che-

motherapy and immunotherapy, and the relation with immune escape showed variations

between two subtypes. A nomogram established based on prognostic model and clinical features was effective in OS prediction.

The immune subtyping system based on lncRNAs and the four-paired-lncRNA signature was predictive of UCEC prognosis and

can facilitate personalized therapies such as immunotherapy or RNA-based therapy for UCEC patients.
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Introduction

Uterine corpus endometrial carcinoma (UCEC) is a female
reproductive malignancy with the third highest incidence
in 2020.1 According to the global cancer statistics, 417,367
new UCEC cases occurred worldwide in 2020, with
Northern America and Eastern Europe showing a particu-
larly high incidence and mortality.1 Although the

International Federation of Gynecology and Obstetrics
(FIGO) and tumor-node-metastasis (TNM) staging system
can classify patients according to the degree of tumor
development, they cannot precisely guide the targeted ther-
apies, especially for metastatic patients. Therefore, an accu-
rate subtyping system is needed for guiding targeted
treatment such as immunotherapy.

Impact statement
This study determined two immune sub-

types and a four-paired-lncRNA signature

for UCEC patients based on immune-

related lncRNAs. The two immune sub-

types with distinct immune features mani-

fested differential response to immuno-

therapy, showing a potential to guide

personalized therapy. Compared with the

previous molecular subtypes, the current

signature is simpler but equally effective in

classifying patients. In addition, the four-

paired-lncRNA signature is robust predict-

ing UCEC prognosis. The study further

demonstrated the critical role of immune-

related lncRNAs in tumor progression, and

these prognostic lncRNAs may be the

potential targets for UCEC treatment.
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The Cancer Genome Atlas (TCGA) Research Network
has previously proposed a molecular subtyping system
through multi-omics analysis based on 343 UCEC sam-
ples.2 The subtyping system can divide UCEC into four
subtypes, namely, POLE-mutated group, microsatellite
instability (MSI) group, low copy number group, and
high copy number group.2 For many cancer types, immu-
notherapy, especially programmed cell death protein 1
(PD-1)/programmed death-ligand 1 (PD-L1) inhibitors, is
seen as a promising strategy in treating metastatic cancer
treatment.3,4 Pembrolizumab, also known as KEYNOTE-28,
is a PD-1 inhibitor and has been approved by the U.S. Food
and Drug Administration (FDA) as an effective agent in the
treatment of certain UCEC patients, and in literature.5–7

By combining pembrolizumab with other drugs such as
lenvatinib, advanced patients manifest further promising
antitumor activity, and this combination therapy has also
been approved by FDA.7,8 Notably, POLE-mutated and
MSI groups have been found to be enriched to CD3þ and
CD8þ tumor-infiltrating lymphocytes (TILs), with higher
PD-1 and PD-L1 expression than other two groups, and
they were positively responsive to anti-PD-1/PD-L1 thera-
py.9 Although the TCGA subtyping can guide the immune
blockade therapy to some extent, a number of metastatic
patients still present negative response. Therefore, the real-
ization of a personalized immunotherapy will require a
more specific subtyping system based on tumor immune
microenvironment.

A large amount of studies have demonstrated that long
noncoding RNAs (lncRNAs) play an essential role in tumor
development and regulation.10–12 LncRNAs are key regu-
lators in maintaining chromatin structure and modulating
transcriptional activity,13,14 but they are commonly abnor-
mally regulated with gain or loss of copy numbers
in tumors.15,16 A series of lncRNAs, such as H19,17

BANCR,18 MEG3,19 GAS5,20 HOTAIR,21,22 and FER1L4,23

have been found to participate in tumor regulation of
UCEC. Aberrant expression of lncRNAs appears to be char-
acteristic and differential among various cancers; therefore,
lncRNAs have the potential to serve as biomarkers and
targets for personalized treatment. Previously, for example,
Dong et al. developed a 7-lncRNA signature for predicting
UCEC prognosis;24 Liu et al. identified 13 immune-related
lncRNAs closely related to UCEC overall survival.25 For
now, no molecular subtyping system based on immune-
related lncRNAs has been reported.

Focusing on immune-related lncRNAs, the current
research aimed to explore a novel immune subtyping
system, so as to provide a direction for targeted immuno-
therapies. The prognostic lncRNAs developed in this study
can predict OS of UCEC patients who are treated with a
RNA-based therapy.

Materials and methods

Data source and preprocessing

TCGA-UCEC dataset was downloaded from TCGA data-
base (version 27.0, https://portal.gdc.cancer.gov/) in
17 January 2021. Samples without follow-up data or surviv-
al data were excluded. Ensembl ID was converted to gene
symbol, andmedian expression was taken when there were
multiple gene symbols in one gene. After preprocessing,
539 samples with clinical data were included
(Supplementary Table S1). Immune-related genes were
obtained from ImmPort database (http://www.immport.
org). The workflow of identifying immune subtypes and
prognostic lncRNAs is shown in Figure 1.

Figure 1. A workflow of constructing a prognostic model of UCEC based on TCGA-UCEC dataset and immune-related genes.
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The source of immune signatures

A total of 26 classical immune biomarkers were obtained
from a pan-cancer research based on immune landscape.26

Forty-seven immune checkpoints were obtained from the
work of Danilova et al.27 We used Th1/IFN-c gene signa-
tures to calculate IFN-c score for characterizing important
cytokine.27 Average expression of GZMA and PRF1 was
used to evaluate the cytolytic activity score for studying
the T-cell immune response.28 Angiogenesis signature
with a list of genes was obtained from Masiero et al. to
evaluate the angiogenesis in tumors.29

Identification of immune-related lncRNAs

RNA-seq data was divided into mRNA data and lncRNA
data, according to gene transfer format (GTF) file (version
05.05.21) obtained from GENCODE (https://www.genco
degenes.org/). Pearson correlation coefficient between
immune-related genes and lncRNA was calculated. Under
the condition of coefficient >0.8 and p< 0.01, 86 lncRNAs
and 59 immune-related genes were screened.

Loop pairing of immune-related lncRNAs

Immune-related lncRNAs were paired as paired lncRNA-A
and lncRNA-B. C was defined as the combination of
lncRNA-A and lncRNA-B. C was defined as 1 if an
lncRNA-A expression was higher than lncRNA-B, other-
wise 0. Then a matrix was constructed based on 0 and 1.
Paired lncRNAs were included for further analysis when 1
consists of 20%–80% in all samples.

Nonnegative matrix factorization (NMF) for identifying
immune subtypes

Firstly, coxph function was conducted for univariate Cox
regression analysis to identify 328 paired-lncRNAs associ-
ated with UCEC prognosis in TCGA-UCEC dataset
(p< 0.01). Then, NMF R package was applied to cluster
samples based on the expression of 328 paired-
lncRNAs.30 Similar to principle component analysis
(PCA), NMF is an unsupervised learning technique that
could extract useful information from high dimension
data.30 “Brunet” algorithm was selected and 100-time
iteration was implanted. Cluster numbers (k) were set

Figure 2. Identification of immune subtypes. (a) Clustering of 539 samples through NMF analysis. (b) NMF indicators of cophenetic, RSS, and silhouette with k¼ 2–10.

(c–d) Kaplan-Meier survival curve of OS and PFS in C1 and C2 immune subtypes. Log-rank test was performed. (A color version of this figure is available in the online

journal.)
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from 2 to 10, with at least 10 samples in each cluster. Three
indicators of cophenetic, residual sum of squares (RSS) and
dispersion were used to assess the optimal cluster.

Gene mutation analysis

Tumor mutation burden (TMB), single nucleotide varia-
tions (SNVs), and mutation patterns of immune subtypes
were analyzed by mutect2 software (https://software.
broadinstitute.org/cancer/cga/mutect).31 Mutect2, which
can detect low allele-fractions based on a Bayesian classifier
and has high sensitivity and specificity, is particularly suit-
able for studying sequencing data in cancers.31 We used
mutect2 to screen highly mutated genes with a mutation
frequency up to 3%. Chi-square test was performed, and
p< 0.01 were selected to obtain significantly mutated
genes.

Single sample gene set enrichment analysis

Single sample gene set enrichment analysis (ssGSEA) in
GSVA R package was conducted to calculate enrichment
score of immune-related genes.32 ssGSEA is a method

widely used in analyzing the enrichment of a gene set or
signature, allowing one signature to define a normalized
enrichment score per sample.

CIBERSORT analysis

Enrichment score of 22 immune-related cells was deter-
mined by CIBERSORT (version 2018, http://cibersort.stan
ford.edu/).33 The CIBERSORT tool could determine the
proportion of immune cell types in complex tissues based
on gene expression profiles, and has been applied in many
studies for characterizing the immune features of tumor
microenvironment.

Functional analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways and gene ontology (GO) function were analyzed
using WebGestaltR package.34 GO function includes three
sections, biological process (BP), molecular function (MF),
and cell component (CC). WebGestalt annotates pathways
and GO function, supporting complementary methods for
enrichment analysis. p< 0.05 was considered as a

Figure 3. Mutations of TCGA-UCEC samples. (a) TMB of C1 and C2 groups. (b) Numbers of mutated genes in C1 and C2 groups. (c) Mutation patterns of the top

10 mutated genes. Student’s t test was performed. (A color version of this figure is available in the online journal.)

ns: no significance.
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significant threshold to screen annotated pathways and GO
terms.

Predicting the response to immunotherapy and
chemotherapy

TCGA-UCEC and IMvigor210 datasets were included
to assess the response to immunotherapy and chemother-
apy. Submap analysis was performed to compare the
similarity of expression profiles between IMvigor210
and TCGA-UCEC datasets. If two samples from two
different datasets presented similar expression features,
we considered these two samples having similar
response to immunotherapy. For predicting the sensitivity
of chemotherapy, pRRophetic R package was applied
to evaluate estimated IC50 (half maximal inhibitory
concentration) of four chemotherapy drugs (cisplatin,

paclitaxel, doxorubicin, and erlotinib) in each patient.
Student’s t test was performed to test the difference
between two groups.

Describing genomic features

To describe the genomic features related to homologous
recombination deficiency (HRD), DNA sequencing data
of TCGA-UCEC dataset was used as an input to the algo-
rithms through referring to Marquard et al.35 to output the
score of HRD, loss of heterozygosity (LOH), large-scale
state transitions (LST), the number of sub-chromosomal
regions undergoing allelic imbalance extending to the telo-
meres (NtAI). TCGA CNV data was used as an input
to analyze somatic copy number variants (SCNVs).
Student’s t test was performed for comparing the difference
of these genomic features between two immune subtypes.

Figure 4. Immune response and tumor angiogenesis in two subtypes. (A) Log2(TPM) expression of immune biomarkers in two subtypes. (b–d) Score of IFN-c, CYT and

tumor angiogenesis in two subtypes. Student’s t test was performed. ANOVA was performed. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. (A color version of this

figure is available in the online journal.)

ns: no significance; TPM: transcript per million.
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Construction of UCEC prognostic model

Differentially expressed lncRNAs between C1 and C2
groups were screened by Fisher’s exact test and
Benjamini & Hochberg (BH) correction. A total of 1714
lncRNA pairs were identified with false discovery rate
(FDR)< 0.01. TCGA-UCEC dataset was randomly divid-
ed into training group and test group at a ratio of 1:1
(Supplementary Table S2). No significant difference
between two groups was observed after performing
Chi-square test (p> 0.05). Univariate and multivariate
Cox regression analysis were performed through
“survival coxph function” in R package.36 Least absolute
shrinkage and selection operator (LASSO) regression
analysis in glmnet R package and Akaike information cri-
terion (stepAIC) in MASS package were performed to
optimize the prognostic model.36,37 Risk score was con-
verted to z-score; samples were assigned into high-risk and
low-risk groups with set z-score¼ 0 as a cut-off. Kaplan-
Meier (KM) survival curve was plotted to show OS and
progression-free survival (PFS). Log-rank test was per-
formed in KM plot.

Nomogram and decision curve analysis

A nomogram was constructed using rms R package
(http://CRAN.R-project.org/package=rms) based on
three risk signatures (HR> 1), resulting from multiple
Cox regression analysis. Each signature can obtain a point
and total points correspond to death rates in one-year,
three-year, and five-year period can be calculated.
Nomogram is frequently used for prognostic prediction
and is also convenient for clinical use. The efficacy of nomo-
gram was validated by decision curve analysis (DCA) and
receiver operating characteristic (ROC) curve. DCA and
ROC curve are common methods to evaluate prediction
models especially for prognostic models.38

Statistical analysis

All statistical analyses were performed in R (v3.4.2)
software. Parameters in algorithms were defined as default
if there was no specific introduction. Statistical methods
were presented in the corresponding sections. Bonferroni
correction was used to correct p value. p< 0.05 was
considered as significant. *p< 0.05, **p< 0.01, ***p< 0.001,
****p< 0.0001.

Results

Identifying immune subtypes of UCEC based on

immune-related lncRNAs

Immune-related lncRNAs were paired by loop pairing.
A total of 328 paired-lncRNAs associated with UCEC prog-
nosis were screened through conducting univariate Cox
regression analysis. After clustering UCEC samples
through NMF algorithm, the optimal clustering (C1 and
C2 groups) was generated according to cophenetic, RSS,
and silhouette (Figure 2(a) and (b)). Survival analysis
revealed that OS and PFS were significantly differential
between C1 and C2 groups, with a more favorable progno-
sis in C1 group (OS, p< 0.0001; PFS, p¼ 0.0063, Figure 2(c)
and (d)).

Mutation patterns of two immune subtypes

The TMB of all UCEC samples was calculated by mutect2
software. The results showed no difference of TMB and
mutated genes between two molecular subtypes (Figure 3
(a) and (b)). Furthermore, 17,783 genes with mutation fre-
quency up to 3% were screened. Chi-square test to iden-
tified 78 genes with high mutation frequency (p< 0.01),
and the top 10 mutated genes (PTEN, PIK3CA, ARID1A,
TP53, CTCF, ADGRV1, JAK1, BCOR, PPP2R1A, and
BRCA2) were listed in Figure 3(c). Notably, compared
with other genes, PTEN and ARID1A genes showed a
high proportion of frame shift deletions and nonsense
mutations, and PIK3CA had a high ratio of missense
mutation.

Figure 5. Log2(TPM) expression of immune checkpoints in two subtypes.

ANOVA was performed. *p<0.05, **p<0.01. (A color version of this figure is

available in the online journal.)

ns: no significance; TPM: transcript per million.
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Expression of immune biomarkers and immune
checkpoints

We then evaluated whether there was a difference of
immune-related gene expression between the two sub-
types. After assessing 26 immune biomarkers, 14 genes
were found to be differentially expressed between C1 and
C2 groups (p< 0.05, Figure 4(a)). IFN-c is a cytokine pro-
duced by CD8þ T cells and plays an important role in
tumor microenvironment (TME). Previous study demon-
strated that Th1/IFNG gene signature was correlated
with PD-L1 expression.27 ssGSEA calculation of the IFN-c
score showed no expression difference (Figure 4(b)).
Cytolytic activity (CYT), defined by the expression of
GZMA and PRF1, is suggested to be associated with
immune response and prognosis.28 However, no expression
difference of CYTwas showed between C1 and C2 groups
(Figure 4(c)). As tumor angiogenesis is a potential target of
anti-VEGF therapy, we selected an angiogenestic gene sig-
nature from previous research.29 The signature was scored

in C1 and C2 groups, but no expression difference between
two groups was detected (Figure 4(d)). Moreover, 47
immune checkpoints were collected from the previous
study,27 and four genes (NRP1, CD276, ICOSLG, and
CD44) presented differential expression between C1 and
C2 groups (p< 0.05, Figure 5).

Immune features of two immune subtypes

Next, we scored 22 types of immune cells through
CIBERSORT tool, and six of them (naive B cells, follicular
helper T cells, regulatory T cells, M2 macrophages, resting
dendritic cells, and activated dendritic cells) showed differ-
ential enrichment between C1 and C2 groups (Figure 6(a)
and (b)). In addition, 10 oncogenic signaling pathways close-
ly related to tumor progressionwere analyzed in this study;39

there was no difference between C1 and C2 groups (Figure 6
(c)). According to the immune infiltration analysis, these two
subtypes showed similar tumor microenvironment (Figure 6
(d)). A large-scale study on tumors suggested that tumors

Figure 6. Immune features of C1 and C2 immune subtypes. (a–b) Enrichment score of 22 immune cells in C1 and C2 groups. (c) Enrichment score of 10 tumor-related

pathways. (d) Immune infiltration score of C1 and C2 groups. (e) The relation between two immune subtypes and pan-cancer subtypes in previous study. ANOVA was

performed. *p< 0.05, ***p< 0.001, ****p< 0.0001. (A color version of this figure is available in the online journal.)

ns: no significance.
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can be classified into six subtypes based on TCGA dataset
and immune features.26 In the study, UCEC was classified
into C1, C2, C3, C4, and C6 subtypes. Wematched C1 and C2
groups to the five previously reported subtypes. C6 subtype
was almost consisted of C2 group (Figure 6(e)), indicating the
same immune feature was almost the same between C2
group and C6 subtype.

Differential response of immunotherapy between

two subtypes

To explore the efficacy of immunotherapy and chemother-
apy in C1 and C2 groups, submap analysis on TCGA-
UCEC dataset and IMvigor210 dataset was performed.

The result demonstrated that C2 group was more sensitive
to immunotherapy than C1 group, with a higher ratio of
CR (complete response)/PR (partial response) (p< 0.05,
Figure 7(a)). Additionally, among four chemotherapeutic
drugs of cisplatin, paclitaxel, doxorubicin, and erlotinib,
C1 group showed a higher level of estimated IC50 than
C2 group, indicating that these four drugs were more effec-
tive in treating UCEC patients in C2 group (Figure 7(b)).

The relation between immune escape and

immune subtypes

The relation between two subtypes and immune escape
was investigated here. The term “cancer immunoediting”

Figure 7. Sensitivity of immunotherapy and chemotherapy in C1 and C2 groups. (a) Submap analysis between immune subtypes and IMvigor210 dataset. p Value

represents the similarity, with a lower p value indicative of a higher sensitivity of immunotherapy. (b) Estimated IC50 of chemotherapy drugs including cisplatin,

paclitaxel, doxorubicin, and erlotinib. Student’s t test was performed. **p< 0.01, ***p<0.001. (A color version of this figure is available in the online journal.)

CR: complete response; PR, partial response; SD: stable disease; PD: progressive disease.
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can be classified into six subtypes based on TCGA dataset
and immune features.26 In the study, UCEC was classified
into C1, C2, C3, C4, and C6 subtypes. Wematched C1 and C2
groups to the five previously reported subtypes. C6 subtype
was almost consisted of C2 group (Figure 6(e)), indicating the
same immune feature was almost the same between C2
group and C6 subtype.

Differential response of immunotherapy between

two subtypes

To explore the efficacy of immunotherapy and chemother-
apy in C1 and C2 groups, submap analysis on TCGA-
UCEC dataset and IMvigor210 dataset was performed.

The result demonstrated that C2 group was more sensitive
to immunotherapy than C1 group, with a higher ratio of
CR (complete response)/PR (partial response) (p< 0.05,
Figure 7(a)). Additionally, among four chemotherapeutic
drugs of cisplatin, paclitaxel, doxorubicin, and erlotinib,
C1 group showed a higher level of estimated IC50 than
C2 group, indicating that these four drugs were more effec-
tive in treating UCEC patients in C2 group (Figure 7(b)).

The relation between immune escape and

immune subtypes

The relation between two subtypes and immune escape
was investigated here. The term “cancer immunoediting”

Figure 7. Sensitivity of immunotherapy and chemotherapy in C1 and C2 groups. (a) Submap analysis between immune subtypes and IMvigor210 dataset. p Value

represents the similarity, with a lower p value indicative of a higher sensitivity of immunotherapy. (b) Estimated IC50 of chemotherapy drugs including cisplatin,

paclitaxel, doxorubicin, and erlotinib. Student’s t test was performed. **p< 0.01, ***p<0.001. (A color version of this figure is available in the online journal.)
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defined by Schreiber et al. refers to the biological phenom-
enon that tumors can escape from elimination through
recruiting leukocytes with anti-tumor properties.40 Loss
of antigenicity and immunogenicity are major mechanisms
underlying immune escape. Therefore, we focused on some
factors, including mutation load, HRD, neoantigen load,
and chromosomal instability level, which may potentially
affect immunogenicity. As shown in Figure 8, C2 group had
higher scores in HRD, SCNVs, NtAI, LST, and LOH, which
suggested genetic instability in C2 group.

Constructing the prognostic model based on
immune-related lncRNA

To construct a prognostic model of UCEC, we firstly iden-
tified 1714 paired lncRNAs differentially expressed
between C1 and C2 groups through performing Fisher’s
exact test (FDR< 0.01). TCGA-UCEC dataset was random-
ly divided into training group (270 samples) and test group
(269 samples). In the training group, 427 paired lncRNAs

were screened by univariate Cox regression analysis
(p< 0.05). Then, we conducted LASSO regression analysis
and five-fold cross-validation to construct a prognostic
model with the paired lncRNAs. When lambda¼ 0.0555,
the model was the optimal (Supplementary Figure S1),
and seven paired lncRNAswere identified for the next opti-
mization. Moreover, by performing stepAIC algorithm
to determine a fitting degree with the less variants,
we obtained a final prognostic model with four paired
lncRNAs defined as

Risk score ¼ 0:822�AC099329:2 vs: AC113349:1ð Þ
þ 1:193� LINC01513 vs: AL645924:1ð Þ
þ 0:631�AC068987:3 vs: LINC02345ð Þ
þ 1:187�MIR31HG vs: ZNF295�AS1ð Þ

Survival analysis revealed that these four paired
lncRNAs could accurately stratify the training group

Figure 8. (a–h) Comparison of mutation loads (a), HRD (b), SNV neoantigen (c), indel neoantigens (d), SCNV gene proportion (e), NtAI score (f), LOH score (g) and LST

score (h) between C1 and C2 immune subtypes. (A color version of this figure is available in the online journal.)
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into two groups with differential OS (p< 0.05,
Supplementary Figure S2(a) to (d)). Similarly, the expres-
sion of eight lncRNAs in four paired-lncRNAs was all
significantly associated with prognosis (p< 0.05,
Supplementary Figure s2(e) to (l)). We calculated the
risk score of each sample and converted risk score to
z-score. High-risk group and low-risk group were
defined by the cutting value of z-score¼ 0. According
to Kaplan-Meier survival curve, 139 samples were strat-
ified into high-risk group and 131 samples were stratified
into low-risk group (p< 0.0001, Figure 9(a)). ROC curves
of one-year, three-year, five-year, and seven-year OS were
shown. The prediction performance of this prognostic
model was reflected by the AUC, which was 0.73, 0.71,
0.62, and 0.65 for one-year, three-year, five-year, and
seven-year OS, respectively (Figure 9(b)).

The test group containing 269 samples was further used
to validate the risk model. Similarly, the samples were accu-
rately stratified into high-risk and low-risk groups, and the
AUC of one-year, three-year, five-year, and seven-year OS
all validated the robustness of the model (Supplementary

Figure S3). A total of 539 samples of TCGA-UCEC dataset
were included into analysis and classified into two groups
(Supplementary Figure S4(a)). AUC of one-year, three-year,
five-year, and seven-year OS was 0.80, 0.76, 0.70, and 0.71,
respectively, pointing to the reliable prediction perfor-
mance of the prognostic model (Supplementary Figure S4
(b)). In addition, the distribution of risk score and survival
status revealed a higher density of dead status in high-risk
group (Figure 10).

Functional analysis of four paired-lncRNAs in the
prognostic model

Next, the functional analysis on four paired-lncRNAs was
performed through WebGestalt R package. Pearson coeffi-
cient and significance between four paired-lncRNAs and
mRNAs were analyzed. A total of 1770 genes were identi-
fied under a condition of coefficient>0.25 and p< 0.05, and
then subjected to GO and KEGG functional analysis.
Numbers of enriched GO items on biological process, cel-
lular component and molecular function were 129, 117, and
6, respectively (FDR< 0.05), and part of them were shown
(Figure 11(a) to (c)). Nine KEGG pathways, including syn-
aptic vesicle cycle, basal cell carcinoma, small cell lung
cancer, cell cycle, hippo signaling pathway, microRNAs in
cancers, axon guidance, human papillomavirus infection,
and human papillomavirus infection, were annotated
(FDR< 0.05, Figure 11(d)). Notably, most of the pathways
were closely related to tumor regulation.

The relation between risk score and clinical features

The risk score of different stage, grade, immune subtype,
and age all exhibited significant difference (Figure 12).
Especially, C2 group showed a higher risk score than C1
group, which was consistent with the previous result of
shorter OS in C2 group (Figure 12(c)). Univariate and mul-
tivariate Cox regression analysis was performed to assess
the relation between risk type, clinical features, and OS
using TCGA-UCEC dataset. It was found that age, grade,
stage, and risk type were all positively correlated with OS
(Figure 13). Particularly, the risk type was significantly
associated with OS both as calculated by univariate Cox

Figure 9. The performance of prognostic model in the training group. Kaplan-

Meier survival curves (a) and ROC curves (b) of training group. (A color version of

this figure is available in the online journal.)

Figure 10. The distribution of survival status in high-risk and low-risk groups.

(A color version of this figure is available in the online journal.)
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sion of eight lncRNAs in four paired-lncRNAs was all
significantly associated with prognosis (p< 0.05,
Supplementary Figure s2(e) to (l)). We calculated the
risk score of each sample and converted risk score to
z-score. High-risk group and low-risk group were
defined by the cutting value of z-score¼ 0. According
to Kaplan-Meier survival curve, 139 samples were strat-
ified into high-risk group and 131 samples were stratified
into low-risk group (p< 0.0001, Figure 9(a)). ROC curves
of one-year, three-year, five-year, and seven-year OS were
shown. The prediction performance of this prognostic
model was reflected by the AUC, which was 0.73, 0.71,
0.62, and 0.65 for one-year, three-year, five-year, and
seven-year OS, respectively (Figure 9(b)).

The test group containing 269 samples was further used
to validate the risk model. Similarly, the samples were accu-
rately stratified into high-risk and low-risk groups, and the
AUC of one-year, three-year, five-year, and seven-year OS
all validated the robustness of the model (Supplementary

Figure S3). A total of 539 samples of TCGA-UCEC dataset
were included into analysis and classified into two groups
(Supplementary Figure S4(a)). AUC of one-year, three-year,
five-year, and seven-year OS was 0.80, 0.76, 0.70, and 0.71,
respectively, pointing to the reliable prediction perfor-
mance of the prognostic model (Supplementary Figure S4
(b)). In addition, the distribution of risk score and survival
status revealed a higher density of dead status in high-risk
group (Figure 10).

Functional analysis of four paired-lncRNAs in the
prognostic model

Next, the functional analysis on four paired-lncRNAs was
performed through WebGestalt R package. Pearson coeffi-
cient and significance between four paired-lncRNAs and
mRNAs were analyzed. A total of 1770 genes were identi-
fied under a condition of coefficient>0.25 and p< 0.05, and
then subjected to GO and KEGG functional analysis.
Numbers of enriched GO items on biological process, cel-
lular component and molecular function were 129, 117, and
6, respectively (FDR< 0.05), and part of them were shown
(Figure 11(a) to (c)). Nine KEGG pathways, including syn-
aptic vesicle cycle, basal cell carcinoma, small cell lung
cancer, cell cycle, hippo signaling pathway, microRNAs in
cancers, axon guidance, human papillomavirus infection,
and human papillomavirus infection, were annotated
(FDR< 0.05, Figure 11(d)). Notably, most of the pathways
were closely related to tumor regulation.

The relation between risk score and clinical features

The risk score of different stage, grade, immune subtype,
and age all exhibited significant difference (Figure 12).
Especially, C2 group showed a higher risk score than C1
group, which was consistent with the previous result of
shorter OS in C2 group (Figure 12(c)). Univariate and mul-
tivariate Cox regression analysis was performed to assess
the relation between risk type, clinical features, and OS
using TCGA-UCEC dataset. It was found that age, grade,
stage, and risk type were all positively correlated with OS
(Figure 13). Particularly, the risk type was significantly
associated with OS both as calculated by univariate Cox

Figure 9. The performance of prognostic model in the training group. Kaplan-

Meier survival curves (a) and ROC curves (b) of training group. (A color version of

this figure is available in the online journal.)

Figure 10. The distribution of survival status in high-risk and low-risk groups.

(A color version of this figure is available in the online journal.)

regression analysis (HR¼ 3.52, 95%CI¼ 2.11–5.85) and
multivariate Cox regression analysis (HR¼ 2.67, 95%
CI¼ 1.60–4.48).

Constructing a nomogram for predicting prognosis

Nomogram could directly exhibit and predict the prognosis
in clinical practice. Risk score, grade, and stage of all sam-
ples were recruited to construct a nomogram for predicting
one-year, three-year, and five-year prognosis of the patients
(Figure 14(a)). The predicted OS of nomogram was com-
pared with the actual OS (Figure 14(b)). Decision curve
analysis demonstrated that nomogram was more effective
than stage, grade, and risk score in predicting OS (Figure 14
(c)). Furthermore, ROC curve also showed nomogram was
the optimal in the prognosis prediction, with an AUC of
0.85 (95%CI¼ 0.71–0.80, Supplementary Figure S5).

Discussion

LncRNAs have been increasingly found to play critical
roles as transcriptional and post-transcriptional regulators

in cancer progression. The dysfunction or abnormal expres-
sion of lncRNAs is strongly related to tumor development
in cell proliferation, migration, and invasion.41 Many kinds
of lncRNAs act as key regulators in UCEC tumorigenesis or
are associated with OS.17–20,24,25 It has also been demon-
strated that lncRNAs are involved in regulating immune
responses, including in T cell development, differentiation,
and activation.42 Studied identified immune-related
lncRNAs such as lncRNA-EPS as suppressors of inflamma-
tory response43 and lncRNA-MAF-4 as a chromatin-
associated lncRNA participating in T lymphocyte
differentiation.44 The above evidence supports a concrete
relation between lncRNAs and tumor immune
microenvironment.

Based on the previous observations, we focused on
immune-related lncRNAs to comprehensively study the
correlation between immune-related lncRNAs and UCEC
prognosis. In this study, we introduced a paired lncRNA
strategy, which can avoid batch effect to construct the prog-
nostic model. Different sequencing platforms can result in
differences in sequencing and detecting the variations, and

Figure 11. GO and KEGG function analysis of 1770 genes related to four paired lncRNAs. (a) The top 10 enriched biological processes. (b) The top 10 enriched cellular

components. (c) Six enriched molecular function items. (d) Nine enriched KEGG pathways. Size represents the number of enriched genes. (A color version of this figure

is available in the online journal.)
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Figure 12. The relation between risk score and clinical features including stage (a), grade (b), immune subtypes (c), and age (d). Kruskal-Wallis test was performed in

(a and b). Wilcoxon test was performed in (c and d). *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. (A color version of this figure is available in the online journal.)

ns: no significance.

Figure 13. Univariate Cox regression analysis (a) and multivariate Cox regression analysis (b) of age, grade, stage, and risk type. (A color version of this figure is

available in the online journal.)

HR: hazard ratio.
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Figure 12. The relation between risk score and clinical features including stage (a), grade (b), immune subtypes (c), and age (d). Kruskal-Wallis test was performed in

(a and b). Wilcoxon test was performed in (c and d). *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. (A color version of this figure is available in the online journal.)

ns: no significance.

Figure 13. Univariate Cox regression analysis (a) and multivariate Cox regression analysis (b) of age, grade, stage, and risk type. (A color version of this figure is

available in the online journal.)

HR: hazard ratio.

different batches also have batch effect. Correction of nor-
malizedmethods are not always effective and different nor-
malized methodology can lead to different results;
therefore, the relative ranking of paired-lncRNAs was
used as a signal matrix in this study to effectively address
the issue. This relative ranking method has a cross-platform
advantage in decreasing the discord of data from different
platforms. Based on the paired lncRNA method, we devel-
oped an immune subtyping system showing a close rela-
tion with the OS of UCEC. The UCEC samples were
classified into two immune subtypes (C1 and C2), with
C1 group demonstrating a more favorable prognosis than
C2 group. The expression of immune biomarkers and the
enrichment score of immune cells significantly varied
between the two groups, pointing to the regulation of
lncRNAs on immune response.

Importantly, the immune subtyping system can help to
effectively select subjects with high sensitivity or positive
response to chemotherapy or immunotherapy. The features

of tumor microenvironment can influence the selective
stress of tumor cells on the process of chemotherapy and
immunotherapy.45,46 The current findings showed that the
samples in the C2 group were more sensitive to immuno-
therapy and chemotherapy than C1 group. Patients with C2
immune subtype may positively respond to four drugs,
namely cisplatin, paclitaxel, doxorubicin and erlotinib, in
chemotherapy or its combination with other therapies.

Immune escape is an event decisive of whether patients
can benefit from targeted therapies. Immune system could
hinder tumor progression or accelerate tumor develop-
ment.40 Tumor cells evolve to avoid elimination through
anti-tumor immune response through loss of antigenicity
and/or immunogenicity.47 We observed that C2 group
showed a higher proportion of homologous recombination
deficiency and mutated genes, indicating a stronger possi-
bility of loss of immunogenicity than C1 group. The loss of
immunogenicity can promote tumor progression and con-
tribute to the development of a poor prognosis, which was

Figure 14. Construction of a nomogram for predicting prognosis. (a) A nomogram defined by risk score, grade, and stage. One-year, three-year, and five-year

prognosis (possibility of mortality) were displayed. (b) The relation between observed OS and predicted OS. (c) DCA curve of nomogram, stage, grade, and risk score.

(A color version of this figure is available in the online journal.)
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consistent with the result of poor prognosis in C2 group.
Previous evidence proved that lncRNAs are closely related
to immune scape in tumors.48 Recently, a study has dem-
onstrated that LIMIT is a tumor immunogenic lncRNA cor-
related with immune infiltration and immune checkpoint
blockade response.49 This subtyping system based on
immune-related lncRNAs also supports the close relation
between lncRNAs and immune scape.

Furthermore, we screened four paired-lncRNAs based
on which a four-gene prognostic signature was established
to predict UCEC OS. The four-paired-lncRNA signature
with a high AUC can effectively classify UCEC patients
into high-risk and low-risk groups. Functional analysis
revealed that tumor-related pathways, such as basal cell
carcinoma, small cell lung cancer, cell cycle, hippo signal-
ing pathway, and miRNAs in cancer, were highly enriched
in these four paired-lncRNAs. Hippo signaling pathway
has been found to serve as a central role in controlling
cancer cell division through interacting with other cellular
pathways.50 Aberrant cell cycle activity is considered as
classical characteristic of cancer development, and cell
cycle proteins or regulators, especially cyclin-dependent
kinases (CDKs) are mainly responsible for cancer develop-
ment.51 These enriched oncogenic pathways demonstrated
that these prognostic lncRNAs were closely involved in
UCEC development. In addition, a nomogram based on
risk score and clinical features with a higher effectiveness
was constructed for clinical use.

In conclusion, this study proposed a novel subtyping
system based on immune-related lncRNAs. The subtyping
system can divide UCEC patients into C1 and C2 subtypes
with distinct OS, and can guide personalized therapies
together with prognostic paired-lncRNAs. These lncRNAs
may be potential targets for immunotherapies or RNA-
based therapies.
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consistent with the result of poor prognosis in C2 group.
Previous evidence proved that lncRNAs are closely related
to immune scape in tumors.48 Recently, a study has dem-
onstrated that LIMIT is a tumor immunogenic lncRNA cor-
related with immune infiltration and immune checkpoint
blockade response.49 This subtyping system based on
immune-related lncRNAs also supports the close relation
between lncRNAs and immune scape.

Furthermore, we screened four paired-lncRNAs based
on which a four-gene prognostic signature was established
to predict UCEC OS. The four-paired-lncRNA signature
with a high AUC can effectively classify UCEC patients
into high-risk and low-risk groups. Functional analysis
revealed that tumor-related pathways, such as basal cell
carcinoma, small cell lung cancer, cell cycle, hippo signal-
ing pathway, and miRNAs in cancer, were highly enriched
in these four paired-lncRNAs. Hippo signaling pathway
has been found to serve as a central role in controlling
cancer cell division through interacting with other cellular
pathways.50 Aberrant cell cycle activity is considered as
classical characteristic of cancer development, and cell
cycle proteins or regulators, especially cyclin-dependent
kinases (CDKs) are mainly responsible for cancer develop-
ment.51 These enriched oncogenic pathways demonstrated
that these prognostic lncRNAs were closely involved in
UCEC development. In addition, a nomogram based on
risk score and clinical features with a higher effectiveness
was constructed for clinical use.

In conclusion, this study proposed a novel subtyping
system based on immune-related lncRNAs. The subtyping
system can divide UCEC patients into C1 and C2 subtypes
with distinct OS, and can guide personalized therapies
together with prognostic paired-lncRNAs. These lncRNAs
may be potential targets for immunotherapies or RNA-
based therapies.
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