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Abstract
Cervical cancer mortality is the second highest in gynecological cancers. This study devel-

oped a newmodel based on copy number variation data and mRNA data for overall survival

prediction of cervical cancer. Differentially expressed genes from The Cancer Genome Atlas

dataset detected by univariate Cox regression analysis were further simplified to six by least

absolute shrinkage and selection operator (Lasso) and stepwise Akaike information criterion

(stepAIC). The study developed a six-gene signature, which was further verified in indepen-

dent dataset. Association between immune infiltration and risk score was investigated by

immune score. The relation between the signature and functional pathways was examined

by gene set enrichment analysis. Ninety-nine differentially expressed genes were detected, and C11orf80, FOXP3, GSN, HCCS,

PGAM5, and RIBC2were identified as key genes to construct a six-gene signature. The prognostic signature showed a significant

correlation with overall survival (hazard ratio, HR¼ 3.45, 95% confidence interval (CI)¼ 2.08–5.72, p< 0.00001). Immune score

showed a negative correlation with the risk score calculated by the signature (p< 0.05). Four immune-related pathways were

closely associated with risk score (p< 0.0001). The six-gene prognostic signature was an effective tool to predict overall survival

of cervical cancer. In conclusion, the newly identified six genes may be considered as new drug targets for cervical cancer

treatment.
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Introduction

Primary effective preventions of cervical cancer such as
human papillomavirus (HPV) vaccination have been
implemented long ago; cervical cancer incidence still
ranks the fourth highest among women.1 In 2020, about
604,127 new cervical cancer cases were diagnosed all over
the world.1 Recommended therapies have been proposed

by the International Federation of Gynecology and
Obstetrics (FIGO) based on the FIGO staging system.2

Although lymph node metastasis, tumor size, and invasion
are key factors in deciding the recurrence risk of cervical
cancer, cervical cancer patients evaluated as having a low
risk of recurrence still develop cancer recurrence within
two years of first diagnosis.3 Therefore, an effective
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prediction system is needed to improve current personal-
ized treatment.

A series of prognostic biomarkers have been discovered
for survival prediction of cervical cancer patients, for
instance, immune signatures,4–6 a 10-gene prognostic
model for aggressive cervical cancer,7 biomarkers of long
non-coding RNAs,8–10 biomarkers of microRNAs,11,12 bio-
markers of histone genes,13 and some other prognostic
genes or pathways.14–16 However, to date, a CNVs-based
prognostic signature for cervical cancer has not been
explored. According to previous studies, CNVs are closely
associated with tumorigenesis in cancers such as lung
cancer, leukemia, breast cancer.17–20 According to the cor-
relation between differential gene expression and CNVs,
Shao et al. explored the relationship between CNVs and
its downstream effect, particularly on tumor suppressor
genes and oncogenes.21 Advancement in DNA array
technology has gradually uncovered small duplications
or deletions related to cancers. Database of the
Catalogue of Somatic Mutations in Cancer (COSMIC)
collected 1,179,545 CNVs from previous literature
(published August 2018) with tumor samples and genomic
data.22

Considering close relationship between CNVs and
cancer development, this study integrated CNV data and
mRNA data to identify prognostic genes in cervical cancer.
The objective of the present work was to develop a novel
effective signature for overall survival prediction and
assisting clinical treatments of cervical cancer. CNV and
mRNA expression data were mined from available data-
base through bioinformatics, and we demonstrated the

relation between immune response and prognostic
signature. In addition, the robustness of the prognostic sig-
nature developed in this study was compared with the
existing ones.

Materials and methods

Data source and preprocessing

Cervical cancer samples with CNV data, mRNA data, clin-
ical features, and patients’ survival data were collected
from TCGA database (https://portal.gdc.cancer.gov/).
GSE44001 profiles with mRNA data were downloaded
from Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). We excluded samples with-
out survival data or follow-up information. After prepro-
cessing, 291 samples in TCGA dataset were included, and
another 300 samples came from GSE44001 profiles
(Supplementary Table S1). The workflow of constructing
prognostic model of cervical cancer is shown in Figure 1.

Identifying DEGS from TCGA dataset

CNVs were converted to genes by BEDTools,23 and genes
with a CNV of |segment_mean|> 0.2 were retained for
further analysis. After conducting Chi-square test, differen-
tial CNVs from tumor samples and normal samples were
detected, and differential genes were outputted (p< 0.05).
According to false discovery rate (FDR)< 0.01 and |log2
(fold change, FC)|> 1, DEGs were screened from mRNA
data using Limma R package.24,25 Intersected DEGs
between CNV and mRNA data were collected for further
analysis.

Figure 1. The flow diagram of developing a prognostic model of cervical cancer. (A color version of this figure is available in the online journal.)

TCGA: The Cancer Genome Atlas; CNV: copy number variation.
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Construction of prognostic model

TCGA dataset was randomly classified into training group
and test group with a proportion of 1:1 using sample func-
tion in R with random seed 2119. The data showed no sig-
nificant difference between two groups except for Grade
item. GSE44001 served as a validation dataset. Univariate
Cox regression analysis was conducted to analyze DEGs in
the training dataset. For the purpose of model simplifica-
tion, Lasso together with five-fold cross-validation and AIC
were used to reduce variations and to construct the opti-
mized model.26,27 Risk score was defined as coefficient
1*mRNA expression of gene 1þ coefficient 2*mRNA
expression of gene 2 þ. . .coefficient n*mRNA expression
of gene n. Then, the risk score was converted to z-score.
The samples were classified into two risk groups (low-risk
and high-risk) with z-score¼ 0 as the cut-off. The prognos-
tic model was validated using test dataset and validation
dataset. Group overall survival was assessed by plotting
Kaplan-Meier survival curve. Survival analysis was con-
ducted with log-rank test. p< 0.05 was defined as
significant.

Calculation of immune score

Immune score was calculated by Estimation of STromal and
Immune cells in MAlignant Tumors using Expression data
(ESTIMATE) in the R package.28 ESTIMATE could
deduce the fraction of stromal and immune cells in
cancer samples based on gene expression signature.
Additionally, Microenvironment Cell Populations-counter
(MCP-counter) was employed to quantify abundance score
of various immune-related cells, including B lymphocytes,
CD3þ T cell, neutrophils, CD8þ T cell, endothelial cell, NK
cells, fibroblast, monocytic lineage, cytotoxic lymphocyte,
and myeloid dentritic cell.29

Gene enrichment analysis

WebGestalt R package was employed to analyze GO (gene
ontology) function and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway of DEGs.30,31 Relation between
KEGG pathways and risk score was analyzed by GSVA R
package.32,33 Functional pathways showing a correlation
coefficient > 0.3 were seen as correlated with the risk
score. Statistical differences in different pathways between
two risk groupswere analyzed byWilcoxon test. Significant
results were defined with a p< 0.05.

Results

Screening DEGs based on CNV and mRNA datasets

In CNV dataset, we screened 8413 genes showing differen-
tial CNVs through comparing the CNV of cervical cancer
samples with the normal samples using Chi-square test
(p< 0.05). In mRNA dataset, Limma in the R package was
used to detect DEGs. A total of 2000 DEGs incorporating
961 down-regulated and 1039 up-regulated genes were fil-
tered with the conditions of FDR< 0.01 and |log2FC|> 1
(Figure 2(a)). Seven hundred and seventy-four DEGs incor-
porating 359 down-regulated genes and 405 up-regulated

genes were identified from genes showing CNVs and
mRNA dataset (Figure 2(b)). Furthermore, the enrichment
analysis of 764 genes in GO function showed that these
genes were related to seven molecular function terms, 148
biological process terms, 48 cellular component terms
(FDR< 0.05). Among these terms, “condensed chromo-
some kinetochore,” “DNA-dependent DNA replication,”
and “DNA replication origin binding” were the most
enriched terms of cellular components, biological process-
es, andmolecular functions, respectively (Figure 3(a) to (c)).
In KEGG pathways, seven pathways, including “p53 sig-
naling pathway,” “Oocyte meiosis,” “DNA replication,”
“Fanconi anemia pathway,” “Cell cycle,” “One carbon
pool by folate,” and “Homologous recombination” were
found to be enriched to these genes (FDR< 0.05, Figure 3
(d)).

Constructing a prognostic model of cervical cancer

The samples of TCGA dataset were randomly grouped into
training dataset (146 samples) and test dataset (145 sam-
ples). The results did not show any significant difference
between the two groups except for Grade item (G1 to G4,

Figure 2. Screened DEGs from mRNA data of TCGA dataset. (a) Volcano plot of

DEGs (1039 up-regulated genes and 961 down-regulated genes). Tumor/normal

represents the expression ratio of tumor samples and normal samples. Down

means down-regulated samples (blue) and up means up-regulated samples

(red). None means no significant change of expression (grey). (b) Venn plot within

down-regulated genes (violet), up-regulated genes (red), and differential CNVs

converted as genes (green). (A color version of this figure is available in the online

journal.)

FDR: false discovery rate; FC: fold change; CNV: copy number variants.
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and GX, p> 0.05, Supplementary Table S2). The survival
coxph function in the R package and univariate Cox regres-
sion analysis showed that 764 DEGs and outputted 99
genes were overall survival related (p< 0.05). For a further
simplification of the gene set with high accuracy, Lasso
analysis was used here to reduce gene numbers. Genes
showing a coefficient close to zero with the increasing
lambda (k) value were retained to construct a model with
the least number of genes or variables (Figure 4(a)). The
confidence interval of k is shown in Figure 4(b). When
k¼ 0.059, the model had 12 genes. Then, we used stepAIC
R package to further optimize the model. Finally, a total of
six genes, namely, C11orf80, FOXP3, GSN, HCCS, PGAM5,
and RIBC2, were enrolled in our prognostic model. The
formula of risk score was as follows

Risk Score ¼ 1:256� C11orf 80� 0:846� FOXP3
� 0:489� GSN � 0:553� HCCS� 1:081
� PGAM5� 0:473� RIBC2

The six genes were distributed in chromosome 9 (GSN),
chromosome 11 (C11orf80), chromosome 12 (PGAM5), chro-
mosome 22 (RIBC2), and chromosome X (HCCS and
FOXP3) (Supplementary Figure S1). Compared with
normal samples, cervical cancer samples had higher
expression of the six genes (p< 0.05, Supplementary
Figure S2). The curve of Kaplan-Meier survival demon-
strated that the training set samples were divided into
high- and low-risk groups by FOXP3, GSN, HCCS and
RIBC2 (p< 0.05), but the samples were not sensitive to the
other two genes C11orf80 and PGAM5 (Supplementary
Figure S3). Sixty-eight out of 146 samples in the training
set were grouped into high-risk and the remaining 78 sam-
ples were grouped into low-risk group through calculating
sample risk score (Figure 5). The mRNA expression of
C11orf80 was higher in high-risk group, whereas the
remaining five genes showed a higher expression in low-
risk group (z-score of mRNA expression¼ 0 was selected as
the cut-off for defining relatively low and high gene expres-
sion, Figure 5(a)). From Kaplan-Meier survival curve, it
was shown that low-risk patients tended to live longer

Figure 3. Gene expression enrichment of DEGs in GO function and KEGG pathways. (a) The top 10 biological process terms. (b) The top 10 cellular component terms.

(c) Seven molecular function terms. (d) Seven KEGG pathways. Size means counts of genes in different terms. (A color version of this figure is available in the online

journal.)

FDR: false discovery rate.
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Figure 5. Performance of six-gene prognostic signature in the training dataset. (a) Classification of low-risk group (blue) and high-risk group (red) by risk score which

was converted as z-score. The distribution of dead and alive samples in two risk types was shown under risk types. Association between risk types and expression of

six genes. (b) ROC curves of one-year, three-year, and five-year survival with an AUC of 0.89, 0.82, and 0.83, respectively. (c) Kaplan-Meier survival curve of low-risk

and high-risk groups (p< 0.0001, HR¼ 5.3, 95%CI¼ 3.21–8.75). (A color version of this figure is available in the online journal.)

CI: confidential interval; HR: hazard ratio.

Figure 4. Optimization of prognostic model by Lasso. (a) Coefficient variation following with k variation of 99 differentially expressed genes in Lasso model. One curve

represents one gene. Dashed line means the site when k¼ 0.059. (b) Partial likelihood deviance of k (green and blue line). Confidential interval was shown in black line.

Red dot means the site when k¼0.059. (A color version of this figure is available in the online journal.)
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than high-risk patients (HR¼ 5.3, 95%CI¼ 3.21–8.75,
p< 0.0001). Moreover, the robust effectiveness of the prog-
nosis model in overall survival prediction of cervical cancer
patients was confirmed by the area under curve (AUC), as
AUC for five years, three years, and one year was 0.83, 0.82,
and 0.89, respectively (Figure 5(b) and (c)).

Validating the six-gene prognostic signature

Prediction ability of the six-gene prognostic signature was
evaluated using the test dataset from TCGA and validation
dataset from GSE44001. In the test dataset, 145 samples
were grouped into low-risk group (73 samples) and high-
risk group (72 samples) (p< 0.001, Supplementary Figure
S4). The accuracy of the signature in evaluating five-year,
three-year, one-year overall survival was shown by an AUC
of 0.84, 0.71, and 0.78, respectively (Supplementary Figure
S4(b)). Similarly, the signature was robust in classifying a
total of 291 samples from TCGA into two risk groups
(p< 0.0001, Supplementary Figure S5). In the validation

dataset, 144 out of 300 samples were predicted as having
a low risk, while the rest 156 samples were evaluated as
having a high risk (p< 0.05, Figure 6). One-year, three-year,
and five-year AUC of overall survival was 0.73, 0.64, and
0.63, respectively (Figure 6(b)).

Correlation analysis between risk score and clinical

features

Based on TGCA dataset, we also analyzed correlation
between risk score and clinical features. Distribution anal-
ysis of different clinical features in the two risk groups
showed that the mortality was noticeably higher in high-
risk group (p< 0.05, Figure 7(a)). Significantly different dis-
tribution of N stage, stage I to IV, and grade was detected
between two risk groups (p< 0.05, Figure 7(c), (e), (g)),
while there was no difference in T stage, M stage or age
(Figure 7(b), (d), (f)). Survival analysis also showed a
higher overall survival of low-risk group with different
clinical features (Figure 8). Although no significant

Figure 6. Performance of the six-gene prognostic signature in the validation dataset (GSE44001). (a) Classification of low-risk group (blue) and high-risk group (red) by

risk score which was converted as z-score. The distribution of dead and alive samples in two risk types was shown under risk types. Association between risk types

and expression of six genes. (b) ROC curves of one-year, three-year, and five-year survival with an AUC of 0.73, 0.64, and 0.63, respectively. (c) Kaplan-Meier survival

curve of low-risk and high-risk groups (p¼ 0.04, HR¼ 1.55, 95%CI¼ 1.09–2.19). (A color version of this figure is available in the online journal.)

CI: confidential interval; HR: hazard ratio.
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Figure 6. Performance of the six-gene prognostic signature in the validation dataset (GSE44001). (a) Classification of low-risk group (blue) and high-risk group (red) by

risk score which was converted as z-score. The distribution of dead and alive samples in two risk types was shown under risk types. Association between risk types

and expression of six genes. (b) ROC curves of one-year, three-year, and five-year survival with an AUC of 0.73, 0.64, and 0.63, respectively. (c) Kaplan-Meier survival

curve of low-risk and high-risk groups (p¼ 0.04, HR¼ 1.55, 95%CI¼ 1.09–2.19). (A color version of this figure is available in the online journal.)

CI: confidential interval; HR: hazard ratio.

difference in N0 stage or M1 stage was detected, the risk
score was closely associated with patients’ overall survival
in most clinical features, including stage I to IV, M0 stage,
N1 stage, T stage, and grade 1 to 4, age (p< 0.05, Figure 8).
Univariate Cox regression analysis revealed that risk was
closely related to overall survival (95%CI¼ 2.08–5.72,
HR¼ 3.45, p< 0.00001), and that M stage, N stage, T stage
were positively related to overall survival (HR> 1, p< 0.05)
(Figure 9(a)). From the data of multivariable Cox regression
analysis, overall survival was significantly related to
risk type (HR¼ 2.52, 95%CI¼ 0.89–7.11, p< 0.00001)
(Figure 9(b)).

A nomogram for predicting overall survival

We combined Tstage and risk score to develop a nomogram
based on TCGA dataset. From Figure 10(a), total points of

risk score and T stage could be calculated, and mortality in
five years, three years, and one year is shown. The pre-
dicted overall survival was corrected by the actual overall
survival (Figure 10(b)). We conducted decision curve anal-
ysis (DCA) to evaluate overall survival prediction perfor-
mance of the nomogram, T stage and risk score, and
observed a high prediction accuracy of the nomogram
(Figure 10(c)).

Correlation analysis between immune score and
risk score

Immune score could act as a prognostic factor; therefore, its
relationship with between risk score was assessed. Immune
score of all the TCGA samples was calculated with the
ESTIMATE in the R package. Figure 11 shows the difference
of immune score in low- and high-risk groups. Low-risk

Figure 7. Comparison of different clinical features including survival status (a), T stage (b), N stage (c), M stage (d), stage I to IV (e), age (f), and grade 1 to 3 (g) in

low-risk and high-risk groups. Group differences were analyzed by ANOVA. *p<0.05. (A color version of this figure is available in the online journal.)
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patients showed higher Immune score, Stromal score, and
ESTIMATE score than high-risk ones (p< 0.001, Figure 11).
Furthermore, we evaluated immune infiltration of tumor
through MCP-counter. Consistent with the ESTIMATE
results, the immune score calculated by MCP-counter
showed a higher enrichment of most immune cells (CD3þ

T cells, endothelial cells, B lymphocytes, CD8þ T cells, NK
cells, myeloid dentritic cells, cytotoxic lymphocytes, fibro-
blasts, and neutrophils, monocytic lineage) in low-risk
group (p< 0.05, Figure 12). These two methods, for analyz-
ing the distribution of immune cells, revealed a lower
immune infiltration in high-risk group than low-risk

group, suggesting that a worse survival was associated
with a lower level of immune infiltration.

Identifying functional pathways related to risk score

To explore the relation between functional pathways and
risk score, we conducted single sample gene set enrichment
analysis (ssGSEA) analysis to calculate ssGSEA score of
TCGA dataset samples. An Association study between
risk score and ssGSEA score detected 16 pathways in neg-
ative correlation with risk score (Figure 13(a)); here, four
immune-related pathways, namely, natural killer cell medi-
ated pathway, B cell receptor signaling pathway, T cell

Figure 8. Kaplan-Meier survival curve of different clinical features including age (a–b), T stage (c–d), N stage (e–f), M stage (g–h), stage I to IV (i–j), grade 1 to 4 (k–l) in

low-risk and high-risk groups. Log-rank test was performed. p< 0.05 was considered to be significant. (A color version of this figure is available in the online journal.)
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Figure 8. Kaplan-Meier survival curve of different clinical features including age (a–b), T stage (c–d), N stage (e–f), M stage (g–h), stage I to IV (i–j), grade 1 to 4 (k–l) in

low-risk and high-risk groups. Log-rank test was performed. p< 0.05 was considered to be significant. (A color version of this figure is available in the online journal.)

receptor signaling pathway, and chemokine signaling path-
way, were negatively related to risk score (p< 0.0001,
Figure 13(b) to (e)).

Comparison with other prognostic signatures

We also compared the current gene signature with previ-
ously developed ones. We selected the gene signature for
cervical cancer developed in recent two years. Considering
that the number of prognostic genes can significantly affect
AUC, we included four signatures with similar gene num-
bers compared with our signature. Therefore, we selected
four prognostic signatures of cervical cancer, specifically, a
five-gene signature (GALNTL6, ARSE, DPAGT1, GANAB,
and FURIN) of Ju et al.,34 a six-gene signature (ANGPTL4,
GOT1, HSPA5, IER3, PFKM, and PFKFB4) by Cai et al.,35 a
five-gene signature (EPHX2, CHAF1B, KIAA1524, CDC45,
and RMI2) by Liu et al.,36 an eight-gene signature
(CCDC136, ABCG2, CYP26A1, TNNI3, SYT13, FOXC2,
CXCL5, and TMEM233) by Xie et al.37 To ensure the com-
parability, the samemethodology was applied to determine
the risk score of 291 samples in TCGA dataset using the
four signatures. The results showed that all the samples
were clearly categorized into low- and high-risk groups
by the four signatures (p< 0.05, Figure 14). The receiver
operating characteristic (ROC) demonstrated that the five-
gene signature developed by Liu et al. had the highest AUC
of 0.76 in predicting one-year survival (95%CI¼ 0.65–0.88,
Figure 14(e)), and that the five-gene signature by Cai et al.
had the highest AUC of 0.72 in predicting three-year sur-
vival (95%CI¼ 0.64–0.81, Figure 14(c)); moreover, the five-
gene signature of Ju et al. showed the highest AUC of 0.75 in
predicting five-year survival status (95%CI¼ 0.65–0.84,
Figure 14(a)). As the five-gene signature of Ju et al. had a
higher AUC of five-year survival than our signature, we
further calculated C-index of these two signatures. Our

signature was found to have a relatively higher C-index
value in all three datasets (training dataset, test dataset,
and validation dataset) than Ju et al.’s signature, suggesting
that our six-gene signature was more effective in predicting
overall survival of cervical cancer patients (Supplementary
Figure S6). Compared with an AUC of 0.71, 0.72, 0.79 in
predicting five-year, three-year, and one-year survival of
our six-gene signature, respectively, the overall effective-
ness of these four signatures for predicting survival was
all less preponderant than the prognostic signature in this
study (Supplementary Figure S5).

Discussion

Studies have previously developed prognostic signatures
of cervical cancer based on long non-coding RNAs,
microRNAs, mRNAs, immune genes, histone genes; how-
ever, signatures developed based on CNVs have not been
explored. The study established a prognostic model based
on CNV data along with mRNA data of cervical cancer
samples from GEO and TCGA databases for the character-
ization and prediction of overall survival of cervical cancer.
This was the first study that combined CNV data and gene
expression data to identify differential genes. We detected
99 DEGs from TCGA dataset and further simplified the
gene set using Lasso and AIC analysis. Most genes in the
six-gene signature (C11orf80, FOXP3, GSN, HCCS, PGAM5,
and RIBC2) could characterize patients’ overall survival,
and the prediction system showed a robust performance
in the independent dataset (GSE44001). Further analysis
between overall survival and the prognostic signature
revealed that the risk score was relevant to immune
response, with low-risk group showing a high immune
score (Figures 11 and 12), indicating that one or several
prognostic genes were involved in immune-related
process.

Figure 9. Relation between risk score and clinical features. (a) Univariate Cox regression analysis of clinical features and risk score. (b) Multivariate Cox regression

analysis of risk score and clinical features. Green diamond means the media of HR. (A color version of this figure is available in the online journal.)

CI: confidential interval; HR: hazard ratio.
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Figure 10. Application of risk score in predicting overall survival. (a) A nomogram to predict one-year, three-year, and five-year death rate. Risk score and T stage were

included to calculate total points. (b) The relation between predicted OS by nomogram and observed OS of one year, three years, and five years. (c) DCA plot of

nomogram (red), T stage (green), and risk score (blue). (A color version of this figure is available in the online journal.)

OS: overall survival.

Figure 11. Comparison of immune score between low-risk group (red) and high-risk group (blue) in the TCGA dataset. Student’s t test was employed to investigate the

difference between two groups. ***p< 0.001. (A color version of this figure is available in the online journal.)
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Of these six prognostic genes, FOXP3, GSN, and PGAM5,
were closely involved in the relation between immune score
and risk score. As a transcriptional regulator, FOXP3 func-
tions essentially in activating or suppressing the function of
regulatory T-cells through interacting with cytokines and
other some transcription factors, NF-kappaB and nuclear
factor of activated T cells (NFAT), for instance.38 It has been
reported that FOXP3 is strongly related to many cancers,
including colorectal cancer, non-small lung cancer, papillary

and follicular thyroid cancers, breast cancer, prostate cancer,
melanoma, gastric cancer, pancreatic cancer, and cervical
cancer.39,40 In this study, consistent with previous researches,
higher expression of FOXP3 has been detected in tumor sam-
ples in comparison with normal ones.41,42

Gelsolin (GSN), which participates in immune response,
is also involved in macrophage recruitment, phagocytosis,
and could exogenously enhance the function of T-lympho-
cytes.43,44 Lower expression of GSN in tumor samples was

Figure 12. Analyzing the immune score of different immune-related cells by MCP-counter in CD8þ T cells, cytotoxic lymphocytes, CD3þ T cells (T cells), NK cells,

myeloid dentritic cells, monocytic lineage, B lymphocytes (B lineage), endothelial cells, fibroblasts, and neutrophils. The difference between two groups was examined

by Student’s t test. –p> 0.05, *p<0.05, **p<0.01, ***p< 0.001. (A color version of this figure is available in the online journal.)

Figure 13. Correlation between risk score and KEGG pathways evaluated by ssGSEA. (a) Sixteen functional pathways negatively related to risk score. (b) Comparison

of high- and low-risk groups in four immune-related pathways (natural killer cell-mediated pathway, chemokine signaling pathway, and B cell receptor signaling

pathway, and T cell receptor signaling pathway). Wilcoxon test was performed. (A color version of this figure is available in the online journal.)
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detected; interestingly, GSN also had lower expression in
high-risk group, indicating a lower immune response in
high-risk group and higher tendency of developing tumor
progression. Furthermore, it was also found that GSN has
tumor-suppressive effect on bladder cancer and breast
cancer.45,46 Consistently, Abedini et al. discovered that over-
expressed GSN was significantly related to aggressive
gynecological cancers.47 It has been demonstrated that
NKT cell activation was mediated by the mitochondrial
phosphatase phosphoglycerate mutase 5 (PGAM5), and
RIPK3-PGAM5-DRP1 signaling axis could mediate the
crosslink between host immunity and mitochondrial func-
tion in inflammatory diseases.48

Interestingly, RIBC2 has been previously determined as
a prognostic gene of cervical cancer through bioinformatics

analysis.49,50 Higher expressed RIBC2 were found to
be positively correlated with a more favorable overall
survival, which was consistent with our results
(Supplementary Figure S3, Figures 8 and 9). However, its
function and biological process in tumorigenesis was still
unclear. It was indicated that RIBC2 interacts with YBX1,
which is associated with cancer proliferation in numerous
tissues51 and also with TREX1, aberrant mutations of which
are involved in immune-related diseases.52 The involve-
ment of C11orf80 and HCCS in cervical cancer or in other
cancers has not been reported; thus, their mechanism and
function in oncogenesis should be further investigated.

Compared with other prognostic signatures, our six-
gene signature based on CNV and mRNA data showed
higher AUC and C-index, indicating that it was more

Figure 14. The performance of other prognostic signatures of cervical cancer from literature. (a–b) ROC and Kaplan-Meier survival curve of five-gene signature from

Ju et al. HR¼1.76, 95%CI¼ 1.37–2.24, p¼ 0.022. (c–d) ROC and Kaplan-Meier survival curve of six-gene signature from Cai et al. HR¼ 2.15, 95%CI¼ 1.62–2.85,

p< 0.0001. (e–f) ROC and Kaplan-Meier survival curve of five-gene signature from Liu et al. HR¼ 2.06, 95%CI¼ 1.61–2.64, p¼ 0.00037. (g–h) ROC and Kaplan-Meier

survival curve of eight-gene signature from Xie et al. HR¼ 1.96, 95%CI¼1.57–2.46, p< 0.0001. (A color version of this figure is available in the online journal.)

HR: hazard ratio; CI: confidence interval.
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effective in predicting overall survival. Although the meth-
odology used in the present study seemed to be similar to
Ju et al., we focused more on CNVs, while Ju et al.’s study
was based on post-translational modifications (PTMs).
CNVs can affect gene expression. In clinical practice,
CNVs are more stable and easy to be detected than the
variation of gene expression. Detecting the expression of
differential genes formed a part of our analysis, but it
should be clear that the six-gene signature in our study
(C11orf80, FOXP3, GSN, HCCS, PGAM5, and RIBC2) was
not overlapped with the five-gene signature developed by
Ju et al. (GALNTL6, ARSE, DPAGT1, GANAB, and FURIN),
as two studies used different strategies when identifying
prognostic genes. In addition, our study used three datasets
(training dataset, test dataset, and validation dataset) to
construct and validate the prognostic model, showing a
higher reliability than Ju et al.’s study in which only train-
ing dataset and test dataset were used. Although screening
DEGs from both CNVs and mRNA data can eliminate the
effect of false DEGs, using this methodology may omit
some certain DEGs at the same time. In addition, as our
results were obtained only based on bioinformatics analy-
sis, future validation with more experimental data and clin-
ical patients is also required.

In conclusion, the study developed a novel prognostic
signature with six genes according to CNV data andmRNA
data. The robustness of the six-gene signature to stratify
patients into high- and low-risk groups was confirmed.
Moreover, the current findings revealed a close correlation
between risk score and immune score, providing new
insights into development of new drug targets for treating
cervical cancer. In clinical practice, these six genes could be
a novel prognostic signature to predict prognosis of cervical
cancer patients.
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