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Abstract
Although several altered metabolic genes have been identified to be involved in the tumor-

igenesis and advance of pancreatic cancer (PC), their prognostic values remained unclear.

The purpose of this study was to explore new targets and establish a metabolic signature to

predict prognosis and chemotherapy response for optimal individualized treatment. The

expression data of PC patients from two independent cohorts and metabolism-related

genes from KEGG were utilized and analyzed for the establishment of the signature via

lasso regression. Then, the differentially expressed candidate genes were further confirmed

via online data mining platform and qRT-PCR of clinical specimens. Then, the analyses of

gene set enrichment, mutation, and chemotherapeutic response were performed via R

package. As results showed, 109 differentially expressed metabolic genes were screened

out in PC. Then ametabolism-related five-gene signature comprising B3GNT3, BCAT1, KYNU, LDHA, and TYMSwas constructed

and showed excellent ability for predicting survival. A novel nomogram coordinating the metabolic signature and other indepen-

dent prognostic parameters was developed and showed better predictive power in predicting survival. In addition, this metabolic

signature was significantly involved in the activation of multiple oncological pathways and regulation of the tumor immune

microenvironment. The patients with high risk scores had higher tumor mutation burdens and were prone to be more sensitive

to chemotherapy. In summary, our work identified a new metabolic signature and established a superior prognostic nomogram

which may supply more indications to explore novel strategies for diagnosis and treatment.

Keywords: Pancreatic cancer, metabolic signature, prediction, prognosis, chemotherapeutic response

Experimental Biology and Medicine 2022; 247: 120–130. DOI: 10.1177/15353702211049220

Introduction

Pancreatic cancer (PC) is a deadly malignancy with a five-
year overall survival (OS) rate of approximately 10%.1 In
the past decades, the advances in multiple therapeutic
strategies, such as targeted therapies2 and immunothera-
py,3,4 have made relevant but limited progress in outcomes
partly due to PC’s complexity and heterogeneity. It is quite
necessary to put personalized systemic therapy into prac-
tice. Thus, an accurate predictive model for PC to assess the
treatment efficacy and survival outcomes will be valuable.

With the advances of transcriptome sequencing, traditional
parameters incorporated with prognosis-related gene sig-
natures have shown more robust power in survival predic-
tion for PC patients.

Metabolic reprogramming has regained widespread
attention over the past decade.5 Recently, increasing studies
have indicated that the alterations of specific metabolic
pathways in PC could contribute to tumor growth, thera-
peutic resistance, and immune escape.6,7 For example,
CD73, a cell surface protein overexpressed in PC, could
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reduce the infiltrating CD8þ T cells in tumor to promote
immune escape.8 Intriguingly, some oncogenes and antion-
cogenes like KRAS and TP53 have also been proved to sup-
port tumor growth by rewiring metabolism.9 Moreover,
alterations in glutamine metabolism have been found to
participate in PC progression in human cell lines and
animal models.10 Thus, some promising therapeutic targets
may emerge under aberrant metabolism in PC. However,
the role of these metabolic genes in PC remained unclear.
Therefore, it is necessary to explore a metabolism-related
gene signature to realize individualized predictions for out-
come and treatment response.

In this study, we integrated TCGA and GEO databases to
discover differentially expressed metabolic genes
(DEMGs). Prognostic DEMGs were identified by univariate
and Lasso-Cox regression analyses. Next, a metabolism-
related signature was proposed and validated in two inde-
pendent datasets respectively. Additionally, the potential
molecular mechanism, immune cell infiltrating pattern,
tumor mutation burden (TMB), and chemotherapy
response related to the formulated signature were also
investigated.

Materials and methods

Data collection

The normalized gene expression data, somatic mutation
data, and relevant clinicopathologic information were
obtained from the UCSC Xena and GEO. The TCGA
cohort includes 178 PC samples and only 4 normal pancre-
atic tissue samples, so 167 normal pancreatic tissue samples
from the Genotype-Tissue Expression (GTEx) were devel-
oped as the supplement of the TCGA dataset. The gene
expression microarray dataset GSE62452 included 61
normal pancreatic tissue samples and 69 PC samples.
However, 10 cases were excluded because of a follow-up
period <30 days or insufficient TNM stage in the TCGA
cohort. Among the 69 PC patients in GEO cohort, 4 cases
were excluded as the survival time was unknown. Finally,
168 cases with complete clinical information in TCGA
cohort, including gender, age, race, grade, AJCC_M,
AJCC_N, AJCC_T, stage, family history, chronic pancreati-
tis, diabetes history, chemotherapy, neoadjuvant treatment,
radiation therapy, alcohol history and tumor site, and 65
samples from the GEO dataset were enrolled.

Recognition of DEMGs

The Limma package in R was applied to recognize the dif-
ferentially expressed genes between tumors and normal
samples in TCGA plus GTEx dataset and GEO dataset.
The cutoff value of log2FC was 0.5, and the P value was
0.05. Metabolic genes that participated in metabolic path-
ways according to KEGG pathway gene sets from MSigDB
database were extracted from the previous research.11 The
overlap of genes among the above three gene lists was
retained as DEMGs.

Bioinformatic DEMGs analysis

The potential biological functions of DEMGs were investi-
gated via GO and KEGG analyses. The protein–protein
interaction (PPI) network of DEMGs was built by
STRING.12 Then, the interacting data derived from
STRING was input to Cytoscape3.7.2. The cytoHubba, a
Cytoscape plugin, was utilized to explore hub nodes via
maximal clique centrality (MCC) method.

Development and validation of the metabolic signature

Univariate Cox regression was used to assess the prognos-
tic role of DEMGs, and the P value <0.01 was set as statis-
tical significance. Next, the Lasso-Cox regression via
survival and glmnet package was applied to delete highly
related genes and avoid over-fitting. Then, the rest genes of
DMEGs were further evaluated by stepwise multivariate
Cox regression analysis. Finally, the metabolic signature
was established. Then, the patients were divided into two
groups according to the optimal cut-off value. Further,
receiver operating characteristic (ROC) curve analysis and
Kaplan-Meier analysis were performed to compare the sur-
vival outcome and predictive power.

Collection of clinical samples

Twenty-five pairs of PC and paracancer samples were got
from patients with histologically diagnosed pancreatic
ductal adenocarcinoma after R0 radical surgery from
January to May 2019 in Zhongshan Hospital, Fudan
University. All patients with distal metastasis, history of
malignant cancer, or hematological system diseases were
excluded from our cohort. All samples were stored at
–80�C as soon as possible. The informed consent was
signed by all patients and the protocol was permitted by
the ethical committee of Zhongshan Hospital, Fudan
University.

External validation of the mRNA and protein levels of
the five metabolic genes

Oncomine was applied to validate the mRNA level of the
candidate genes in the gene signature.13 The total RNAs of
25 pairs of t tissues were obtained by TRIzol Reagent. Then,
reverse transcription and qRT-PCR were performed as our
previous report.14 The qPCR data were normalized to
ACTB using the �DDCt method. The primer sequences
are summarized in Table S1. Finally, the differential protein
levels of these candidate genes were further validated in
the Human Protein Atlas database (HPA).15

Construction of a predictive nomogram

The independent prognostic factors were recognized via
univariate and multivariate Cox regression analyses and
then based on which a novel prognostic nomogram was
formulated by rms package. The classification efficiency
of the prognostic model was further estimated via
Kaplan-Meier analysis, ROC analysis, and calibration
plot. Finally, the clinical value of this nomogram was
assessed via decision curve analysis (DCA).
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Gene set enrichment analyses

Gene set enrichment analysis (GSEA)16 was performed to
explore differential gene sets enriched in high- and low-risk
groups. The selected gene sets were c2.cp.kegg, c5.go.bp,
cc, mf, and h.all.v.7.0.symbols. The gene set was significant-
ly enriched, with a false discovery rate <0.05.

Analysis of tumor microenvironment

ESTIMATE,17 a widely used algorithm, was applied to esti-
mate the tumor purity, infiltrating immune, and stroma
cells via analysis of normalized gene expression profiles.
Furthermore, CIBERSORT, an analytic algorithm,18 was
used to evaluate the infiltration of 22 immune cell types.

Tumor mutation analysis

TMB was evaluated by the calculation of tumor-specific
mutation genes. TMB levels were visualized and compared
via “maftools” package in the TCGA cohort. Moreover, the
correlation between risk scores and TMB was further
evaluated.

Evaluation of the responses to chemotherapeutic
agents

The “pRRophetic” package was used to predict the
response of chemotherapeutic agents for PC patients
based on the TCGA gene expression profiles.19

Statistical analysis

R software (version 3.6.3) was applied to conduct all statis-
tical analyses in this study. Unless otherwise stipulated, the
P value <0.05 was considered statistically significant.

Results

Identification of DEMGs

The flow chart outlines how this study was performed
(Figure S1). The DEGs were initially analyzed using the
high-throughput gene expression data of the TCGA plus
GTEx and the GSE62452 cohort; 11452 and 1482 DEGs
were found in the TCGA plus GTEx and the GSE62452.
Then, 1466 metabolism-related genes were obtained as
the previous report.11 Finally, 109 DEMGs were obtained
by the overlap of the above three lists (Figure 1(a)).

PPI network and functional enrichment analysis
of DEMGs

To analyze the gene interactions of DEMGs, a PPI network
that contained 400 interactions and 104 nodes was estab-
lished by STRING. Then, the hub genes that scored in the
top 10 by the MCC method were obtained (Figure 1(b)),
which might be potentially promising targets for PC.

To investigate the biological function of 109 DEMGs in
PC, GO and KEGG analyses were conducted. The DEMGs
mainly participated in the process of organic acid biosyn-
thesis and small molecule catabolism via GO analysis
(Figure 1(c)). KEGG analysis showed that DEMGs were

enriched in pathways associated with glycolysis, carbon
biosynthesis, and metabolism (Figure 1(d)).

Establishment and validation of a metabolic gene
signature for predicting prognosis

First, 13 survival-related DEMGs were identified through
the univariate Cox regression analysis (Figure 2(a)). Then,
Lasso regression was conducted to delete highly related
genes and avoid over-fitting (Figure S2). Next, UDP-
GlcNAc:BetaGal Beta-1,3-N-Acetylglucosaminyltransferase
3 (B3GNT3), branched-chain amino acid transaminase 1
(BCAT1), kynureninase (KYNU), lactate dehydrogenase A
(LDHA), and thymidylate synthetase (TYMS) were stepwise
confirmed as independent prognostic genes through multi-
variate Cox analysis (Figure 2(b)). Then, a 5-gene signature
was established. Risk score¼ 0.2805�Exp B3GNT3þ
0.3705�Exp BCAT1þ 0.4273�Exp KYNUþ 0.3774�Exp
LDHAþ 0.5490�Exp TYMS. Overall information about
these five genes was summarized in Table 1. Patients were
separated into two groups according to the optimal cutoff for
risk score (Figure S3a). The median OS for the patients was
12.0 and 15.8months in high- and low-risk group, respec-
tively, which revealed a marked difference in prognosis
(P< 0.001, Figure 2(c)). The area under the ROC curves
(AUCs) were 0.768, 0.712, and 0.730 for 1-, 2-, and 3-year
OS (Figure 2(e)).

Then, the external dataset GSE62452 was applied to con-
firm the prognostic performance of this signature. The
grouping method was the same as for the TCGA cohort
(Figure S3b). The median OS in high-risk and low-risk
group was 9.6 and 21.2months. Furthermore, the patients
in high-risk group had a worse outcome than those in low-
risk group (P< 0.001, Figure 2(d)). The AUCs were 0.677,
0.731, and 0.795 for 1-, 2-, and 3-year OS (Figure 2(f)).
Collectively, the formulated metabolic signature showed a
superior ability at evaluating OS of PC.

Evaluation of independent prognostic factors

To investigate independent prognostic factors, 168 patients
with comprehensive clinicopathologic information in
TCGA cohort were included. Univariate and multivariate
analyses were conducted to assess the relationships
between these indicators and survival. We found that age,
grade, AJCC_N, AJCC_T, chemotherapy, and risk score
were related to OS in the univariate analysis (Figure 3(a)).
Furthermore, age, chemotherapy, and risk score were fur-
ther perceived as remarkable independent prognostic indi-
cators by multivariate analysis (Figure 3(b)).

Building a novel predictive nomogram with the
TCGA-PAAD cohort

The patients with comprehensive clinicopathologic data in
the TCGA cohort were enrolled to establish the nomogram
predicting 1-, 2-, and 3-year OS via stepwise Cox regres-
sion. The age, AJCC_N, chemotherapy, and risk score were
incorporated into the nomogram (Figure 4(a)). The AUCs
were 0.764, 0.843, and 0.863 for 1-, 2-, and 3-year OS
(Figure 4(b)). Meanwhile, patients were separated into
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two groups based on the optimal cutoffs of this nomogram.
Those patients with higher risk had markedly worse OS
(P< 0.001, Figure 4(c)). Moreover, the calibration plots dis-
played good agreement with the actual observed values
and the established nomogram could bring more net ben-
efit for predicting survival than single factor via the DCA
curves (Figure S4a-b), which further confirmed the predic-
tive ability of our nomogram and might support more clin-
ical management.

External validation of differential expression of
target genes

Differential expression levels of the targeted genes were
validated via Oncomine. B3GNT3, KYNU, LDHA, and
TYMS were found to be significantly increased, while
BCAT1 was markedly decreased in PC (Figure S5), which
was consistent with the qRT-PCR results of tissues from
our center (Figure 5(a)). Table S2 outlines the

clinicopathological features of the patients. Meanwhile,
their protein levels were explored by HPA. Typical
images of immunohistochemistry of five genes in cancer
and paracancer tissues are displayed in Figure 5(b).
Taking together, these results further confirmed the associ-
ations between these five genes and PC occurrence to some
extent.

Gene signature related pathway analysis

To explore the biological features of this metabolic signa-
ture, GSEA was performed. Pathways included glycolysis,
G2M checkpoint, mTORC1 signaling, hypoxia, cell cycle,
pyrimidine metabolism, nucleotide excision repair, and
DNA replication were enriched in high-risk group via
Hallmark and KEGG analysis (Figure S6a). Meanwhile,
GO analysis also displayed that molecular alterations in
the high-risk group might contribute to the malignant
behaviors of PC, particularly proliferation (Figure S6b).

Figure 1. Identification and functional enrichment analysis of the DEMGs. (a) Venn diagram of the DEMGs intersected in TCGA, GEO, and KEGGmetabolism pathway

datasets. (b) Visualization of top 10 hub genes identified by Cytoscape. (c) Top 10 enriched biological processes of the DEMGs (d) Top 10 enriched KEGG pathway of

the DEMGs. DEMGs, differentially expressed metabolic genes. (A color version of this figure is available in the online journal.)
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Associations between the infiltrating immune cells and
risk score

Since interruption of some metabolic pathways may influ-
ence the chemotaxis and activation of immune cells to mod-
ulate immunity, the association between risk score and the
infiltration of immune/stromal cells and tumor purity was
evaluated. Based on the transcriptomic data from TCGA
cohort, the immune-, stromal-, and estimate scores were
calculated via ESTIMATE algorithm. The immune scores
and estimate scores were lower in high-risk group, suggest-
ing that fewer infiltrating immune cells and higher tumor
purity (P< 0.05, Figure 6(a)). Additionally, the infiltration
levels of the 22 immune cells were further evaluated in
TCGA cohort (Figure S7a). The high-risk group had lower
infiltration levels of naı̈ve B cells, CD8þ T cells, and

monocytes, while the proportions of activated dendritic
cells, M0 macrophages, and activated memory CD4þ T
cells were relatively higher (p< 0.05, Figure 6(b)).
Likewise, the landscape of tumor-infiltrating immune
cells based on the transcriptomic data from the GSE62165
cohort was further estimated to avoid bias from a single
dataset (Figure S7b). The proportions of resting mast
cells, activated NK cells CD8þ T cells, and monocytes
were lower in high-risk group, whereas the infiltrations of
resting dendritic cells, eosinophils, and M0 macrophages
were comparatively higher (P< 0.05, Figure S7c). CD8þ T
cells, monocytes, and M0 macrophages were significantly
altered in both datasets. Then, Figure 6(c) showed that the
expression levels of mostly immunomodulatory molecules
were relatively lower in high-risk group, further

Figure 2. Construction and validation of metabolic signature. (a) Forest plot of the 13 significant MDEGs (P< 0.001) identified by the univariate Cox regression.

(b) Forest plot of the five significant MDEGs recognized by Lasso-cox regression. (c) The Kaplan-Meier plot for OS in TCGA cohort. (d) The Kaplan-Meier plot for OS in

GEO cohort. (e) Time-independent ROC curves of the metabolic signature in TCGA cohort. (f) Time-independent ROC curves of the metabolic signature in GEO cohort.

OS, overall survival. (A color version of this figure is available in the online journal.)

Table 1. Overall information of five genes constructing the prognostic signature.

Gene Gene full name Location Hazard ratio Coefficient

B3GNT3 UDP-GlcNAc:BetaGal Beta-1,3-N-Acetylglucosaminyltransferase 3 chr19:17,794,828-17,813,576 1.324 0.28

BCAT1 Branched Chain Amino Acid Transaminase 1 chr12:24,810,024-24,949,101 1.448 0.371

KYNU Kynureninase chr2:142,877,657-143,055,833 1.533 0.427

LDHA Lactate Dehydrogenase A chr11:18,394,389-18,408,425 1.459 0.377

TYMS Thymidylate Synthetase chr18:657,653-673,578 1.732 0.549
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supporting that the microenvironment in the high-risk
group was prone to be immunologically “cold.”

Analysis of tumor mutation burden

The mutation of relevant oncogenes and tumor suppressor
genes in PC could rewire metabolism to support tumor
growth.9 Thus, the association between this metabolic sig-
nature and TMB was further investigated. The gene-altered
landscapes in PC are displayed in Figure S8a-b. Five genes
were mutated in �10% of patients within low-risk group:
KRAS (64%), TP53 (58%), TTN (20%), SAMD4 (19%), and
CDKN2A (13%). Six genes were mutated in �10% of
patients within the high-risk group: KRAS (93%), TP53
(75%), SMAD4 (28%), CDKN2A (22%), FLG (10%), and
RNF43 (10%). Especially, the rates of KRAS and TP53 muta-
tion were relatively higher, whereas the rate of TTN was
comparatively lower in the high-risk group (P< 0.05).
Meanwhile, higher TMB was found in patients with high-
risk scores (P¼ 0.01, Figure S9a), and its positive correlation
was further confirmed (P< 0.001, Figure S9b). Therefore,
the mutation of the oncogenes and antioncogenes might
promote metabolic reprogramming in PC.

Responses to chemotherapy

As adjuvant strategies develop, chemoresistance remains
the major obstacle in PC treatment. Accumulative evidence
indicated that specific metabolic aberrations of PC cells
were associated with chemoresistance.21 Therefore, the

ability of risk score in predicting the chemotherapy
response was further estimated with the pRRophetic algo-
rithm. The IC50 of four common chemotherapeutic agents
used in PC was predicted. Paclitaxel, Cisplatin, and
Erlotinib except for Gemcitabine have lower IC50 in the
high-risk group (P< 0.05), indicating these patients with
higher risk scores were more sensitive to these three
drugs (Figure 7(a)). Then, the ability of the constructed sig-
nature in predicting the prognosis of patients with or with-
out chemotherapy was separately assessed in high-risk
group; the prognosis of patients without chemotherapy
was comparatively poorer than those with chemotherapy
(Figure 7(b)). However, no obvious differences in prognosis
between patients with chemotherapy or not were observed
in low-risk group (Figure 7(c)). Such a metabolic gene sig-
nature remained to be accurate in predicting response to
chemotherapy.

Discussion

PC is a deadly malignant tumor with an extremely poor
prognosis.1 While great achievements about therapeutic
strategies have been made to improve the prognosis, the
effects remain to be limited. The patients who possessed
similar clinicopathological parameters such as TNM stag-
ing could have totally different outcomes. Prediction of
prognosis and identification of tumor heterogeneity are
needed to be more accurate to administrate individual
treatment. The progress of sequencing technology has pro-
moted the establishment of novel predictive tools based on

Figure 3. Cox regression analysis of independent prognostic factors in PC. (a) Forest plot of the prognostic factors identified by univariate Cox regression. (b) Forest

plot of independent factors identified by multivariate Cox regression. PC, pancreatic cancer. (A color version of this figure is available in the online journal.)
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Figure 4. Prognostic nomogram for predicting overall survival of PC patients. (a) A prognostic nomogram was developed by combining clinicopathologic factors with

the gene signature in PC. (b) Time-independent ROC curves of the nomogram. (c) Kaplan-Meier curves of the nomogram. The patients were stratified based on the

median for the nomogram. PC, pancreatic cancer. (A color version of this figure is available in the online journal.)

Figure 5. External validation of the metabolism-related five genes in mRNA and protein levels. (a) The levels of the five genes in 25 paired cancer and paracancer

tissues from Zhongshan Hospital. Paired t-test was performed to compare the expression of the target genes. *P< 0.05, **P< 0.01, ***P< 0.001. (b) The represen-

tative images of five genes in cancer and paracancer tissue. (A color version of this figure is available in the online journal.)
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prognostic genes, which may reflect tumor heterogeneity at
the molecular level. Recently, several prognostic gene sig-
natures were constructed from different perspectives in
PC.20–22 Compared with previous studies, we constructed
the gene signature based on metabolic aberrations of PC,
which may shed valuable insights into diagnostic and ther-
apeutic strategies.

Here, we conducted a bioinformatic analysis to identify
and validate 109 reliable DEMGs of PC inmultiple datasets.
Univariate Cox regression analysis discovered 13 DEMGs
associated with OS. A novel five-gene signature (B3GNT3,
BCAT1, KYNU, LDHA, and TYMS) for prognostic predic-
tion of PC was constructed via Lasso-Cox regression. All
five genes were related to poor prognosis, and this meta-
bolic signature was confirmed as an independent prognos-
tic indicator. The prognostic value of signature constructed
by the above five genes was assessed in TCGA cohort and
further confirmed in GEO cohort.

Then, GSEA revealed that the pathways associated with
proliferation and hypoxia were enriched in high-risk
group, which further supported that PC cells may

reprogram some metabolic pathways to promote survival,
proliferation, and differentiation even in a poor nutrient
and hypoxic microenvironment.23 Moreover, it has
become evident that the alteration of cell metabolism can
regulate the infiltration and function of immune cells.7

Among them, CD8þT cells play extremely important roles
in the anti-tumor response. Patients with higher infiltrating
CD8þTcells in the tumor were prone to have a better prog-
nosis in PC.24 In our study, the infiltrating CD8þ Tcells and
the degree of immune response seemed to be reduced in the
high-risk group. Consistent with our results, two genes
(B3GNT3 and LDHA) in our signature have been reported
to be associated with immunosuppression. As a glycosyl-
transferase, B3GNT3 mediated the glycosylation of PD-L1,
which participated in immunosuppressive activities.
Therefore, B3GNT3 knock-down enhanced the infiltration
of CD8þT cells and their mediated anti-tumor immunity.25

LDHA, encoding lactate dehydrogenase A, catalyzes pyru-
vate to lactate. LDHA overexpression also inhibited the
infiltration of CD8þTcells and their mediated immune kill-
ing.26,27 Additionally, the expression levels of mostly

Figure 6. The association between metabolic signature and tumor microenvironment. (a) The comparison of immune scores, stroma scores and ESTIMATE scores.

(b) Analysis of differential infiltrating immune cells in TCGA cohort. (c) The differential levels of immunomodulatory molecules between different risk groups. *P< 0.05,

**P< 0.01, ***P< 0.001. (A color version of this figure is available in the online journal.)
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immunomodulatory molecules were comparatively lower
in the high-risk group, further supporting the desertifica-
tion of tumor immune microenvironment in patients with
high risk scores. These results suggested that the patients in
the high-risk group might be resistant to the immune
checkpoint blockade. This metabolism-related signature
might display the changes of the microenvironment to
some extent and be valuable to guide proper diagnosis
and individualized management.

In addition, it is well known that the malignant biolog-
ical behavior of PC is accompanied by the acquisition of
activated KRAS mutation and loss of TP53 and
CDKN2A.28 KRAS and TP53 mutations, the main driver
genes of PC, have been shown to modulate cellar metabolic
pathways to maintain pancreatic tumors.9,29 Consistent
with our studies, the rates of KRAS and TP53 mutation
were higher in the high-risk group. However, studies
about TTN mutation in PC metabolism are scarce and fur-
ther investigations are needed. Meanwhile, increasing
evidence suggested that alteredmetabolism of PC cells con-
tributed to the chemoresistance30 and two genes (LDHA
and TYMS) in our signature were related to drug resistance
as previously reported.26,31,32 Consistently, the patients

with higher risk scores might receive more benefits from
chemotherapy.

Taken together, this metabolic signature could assess the
prognosis and response to chemotherapy for PC patients.
This signature was just calculated by the levels of five
selected genes, which was more cost-effective and conve-
nient than whole-genome sequencing. Meanwhile, the
nomogram was easy to use for clinicians to accurately
assess patients’ prognosis. Furthermore, these five genes
might be potential molecular targets t, which could be help-
ful to personalized medicine.

Meanwhile, certain limitations also existed in our work.
First, the compositions of both cohorts we used were
mostly Whites, Africans, or Latinos. Although our valida-
tion cohort was derived from a Chinese population, we
only verified the expression of genes in our signature
because of the insufficient number of patients. Therefore,
extrapolation of our signature to patients from other eth-
nicities needs further validation. Second, it could not reflect
the whole landscape of cancer metabolism merely accord-
ing to the transcriptomics data. Integration of metabolo-
mics and transcriptomics may be better to discover key
metabolic pathways in tumor development and

Figure 7. Responses to Chemotherapy in the high- and low-risk groups with PC. (a) Analysis of four common chemotherapeutic responses. (b) The Kaplan-Meier

curves for OS in high-risk group with and without chemotherapy. (c) The Kaplan-Meier for OS in low-risk group with and without chemotherapy. OS, overall survival. (A

color version of this figure is available in the online journal.)
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progression. Third, the development and assessment of the
nomogram were conducted via a single database as a result
of the inadequate clinicopathological information of other
PC databases. The validity and reliability of the formulated
nomogram should be further confirmed in the future.

In summary, we established a metabolism-related five-
gene signature based on bioinformatics analyses, which
was significantly related to PC’s progression and immune
infiltrations. Additionally, a novel prognostic nomogram
integrating the gene signature, age, AJCC_N, and chemo-
therapy was further established to predict its prognosis,
which exhibited a superior ability in predicting OS and
may facilitate the potential administration of individual
treatment.
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