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Abstract
Gastric cancer (GC) remains one of the most prevalent types of malignancies worldwide,

and also one of the most reported lethal tumor-related diseases. Circular RNAs (circRNAs)

have been certified to be trapped in multiple aspects of GC pathogenesis. Yet, the mech-

anism of this regulation is mostly undefined. This research is designed to discover the vital

circRNA-microRNA (miRNA)-messenger RNA (mRNA) regulatory network in GC. Expression

profiles with diverse levels including circRNAs, miRNAs, and mRNAs were all determined

using microarray public datasets from Gene Expression Ominous (GEO). The differential

circRNAs expressions were recognized against the published robust rank aggregation algo-

rithm. Besides, a circRNA-based competitive endogenous RNA (ceRNA)

interaction network was visualized via Cytoscape software (version 3.8.0). Functional and

pathway enrichment analysis associated with differentially expressed targeted mRNAs

were conducted using Cytoscape and an online bioinformatics database. Furthermore,

an interconnected protein–protein interaction association network which consisted of 51

mRNAswas predicted, and hub genes were screened using STRING and CytoHubba. Then,

several hub genes were chosen to explore their expression associated with survival rate and

clinical stage in GEPIA and Kaplan-Meier Plotter databases. Finally, a carefully designed

circRNA-related ceRNA regulatory subnetwork including four circRNAs, six miRNAs, and eight key hub genes was structured

using the online bioinformatics tool.
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Introduction

Gastric cancer (GC) remains one of the most prevalent
types of malignancies worldwide and the third reported
primary factor to account for tumor-related deaths in
2018.1 Although substantial progress has been made in
personalizing treatment for GC, clinical outcomes of GC
are still not desirable, with a five-year overall survival
(OS) <30%.2 The low OS is due primarily to an

unsatisfactory early diagnostic rate, and nearly one-
third of sufferers with GC come through fatally regional
and distant recurrence or metastasis after experiencing
traditional surgical or non-surgical intervention.3 It is
therefore pressing to develop reliable biologically targets
for early screening, identification, and therapy of GC to
improve clinical outcomes.
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International Human Genome Sequencing Consortium
has proclaimed that less than 2% of the overall human
genome encodes for protein-coding genes, yet the enor-
mous parts of recorded transcripts cover non-
protein-coding RNAs such as microRNA (miRNA), long
noncoding RNA (lncRNA), or circular RNA (circRNA).4

CircRNA, a newly noticed non-coding RNA that typified
a continuous closed circular loop fabric, represents plenti-
ful striking features and functions compared to linear
RNAs. Due to the circle shorts of the 3’-poly A tail and
the 5’-cap, circRNAs are more structurally stable in specific
tissues and organs than their certain counterparts as well as
strongly resistant to the degradation by exonuclease RNase
R.5,6 Above all, numerous studies have declared that
circRNAs play momentous roles in tumorigenesis and
advanced carcinoma ascribed to their generous biological
purpose on tumor cells migration, proliferation, invasion,
and metastasis.7–9 CircRNAs have been piecemeal
researched nearly 50 years from initial discovery in 197110;
however, they have been widely thought to occur as the
unexpected outcome of spicing errors, and their biological
mechanisms leading to GC remain chiefly uncharted.
Thanks to the speedy forwards in high-throughput RNA
sequencing (RNA-Seq) combined with bioinformatics tech-
nology in recent years, circRNAs, for the most part, have
been explored and a handful of rudimentary functions of
circRNAs also uncovered, for instance, serving as protein
scaffolds in the congregated of multi-subunit protein com-
plexes,11 confiscating certain proteins from their intrinsic
sub-cellular localization,12 forming RNA-protein com-
plexes by incorporating with RNA-related proteins to
manage transcriptional gene regulation,13 and modulating
the relative expression of their parental genes.14 Moreover,
it is worth mentioning that some of them can even be trans-
lated into proteins.15 At present, absorbing miRNAs as
miRNA response element (MRE) is one of the best-
representative characteristics among circRNAs, also
known as the ceRNAmechanism.16–18 For instance, circular
RNA circCCDC9 checked the growth of gastric carcinoma
via binding miR-6792-3p.19 Another research found that
augmented expression of circNRIP1 obviously promoted
the progression of GC by handling the miR-149-5p/
AKT1/mTOR axis.20 Further experiments showed that
circLMTK2 promoted GC-related proliferation and metas-
tasis by sponging miR-150-5p; meanwhile, a high
circLMTK2 expression level corresponded to a high risk
of lymph node metastasis, the advanced TNM clinical
stage, and an unsatisfactory prognostic outcome in GC
patients.21

Despite many exciting features and functions in
circRNA biology have been clarified, how regulatory net-
works control circRNAmolecular mechanism is still mostly
ill-defined. In this research, we downloaded and analyzed
the expression profiles with diverse levels including
circRNAs, miRNAs, and messenger RNA (mRNAs) in
GC-based tissues along with abutting healthy gastric
mucosa, and plasma specimens of GC patients and healthy
controls via manifold training sets of the GEO public data-
base. Afterward, we fabricated a regulatory network con-
sisting of 5 circRNAs, 36 miRNAs, 125 mRNAs by spotting

the circRNA-sponged miRNAs together with possible tar-
geted mRNAs, and then we investigated the relevant
miRNAs and mRNAs in this regulatory network by utiliz-
ing several online prediction websites, various packages in
R, the Gene Ontology (GO) annotation, and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis. Moreover, a protein–protein interaction (PPI)
interaction network was structured and hub genes were
sought from this interconnection modules, and subsequent-
ly, the association between hub genes and the clinical prog-
nosis was further assessed. A regulatory module of
circRNAs-miRNAs-hub genes subnetwork was finally
structured to systematically comprehend the potential
functional circRNAs-based mechanism in the pathogenesis
and advance of GC.

Materials and methods

Data collection

The public microarray datasets applied in our research
were acquired from the GEO databank (https://www.
ncbi.nlm.nih.gov/gds/). Five expression profiles of
circRNAs were attained among GSE78092 (containing
three couples of GC tissue and adjacent healthy mucosa
tissue), GSE83521 (containing six couples of GC tissue
and adjacent normal mucosa tissue), GSE89143 (containing
three couples of GC tissue and matched precancerous
tissue), and GSE93541 (containing three couples of GC
plasma samples and healthy controls). Expression profiles
of miRNAs were retrieved from GSE23739 (containing 40
couples of GC tissue and adjacent healthy mucosa tissue),
GSE54397 (containing 16 couples of GC tissue and adjacent
healthy mucosa tissue regardless of the Helicobacter pylori
infection), GSE78091 (containing three couples of GC tissue
and adjacent healthy mucosa tissue), and GSE93415 (con-
taining 20 couples of GC tissue and adjacent healthy
mucosa tissue). In addition, expression profiles of
mRNAs were extracted from GSE54129 (containing 111
cancerous mucosae and 21 healthy noncancerous mucosae
of GC tissues). No informed consent nor ethical committee
approval was demanded in the current research owning to
the public-free accessibility of datasets from the GEO
domain training sets.

Recognition of differentially expressed RNAs

The downloaded microarray datasets including series of
matrix files and platform documents were both performed
resorting to the latest R language software and correlative
annotation packages. Then circRNA ID terms were trans-
formed into internationally recognized normal denomina-
tions (circRNA symbols). The identification of differentially
expressed circRNAs (DEcircRNAs) was carried out by
means of the Bioconductor Limma R package in each data-
set. We further merged and then ranked DEcircRNAs refer
to the robust rank aggregation algorithm.22 Besides, differ-
entially expressed miRNAs (DEmiRNAs) were discovered
via GEO2R in datasets GSE23729, GSE54397, GSE78091,
and GSE93415, as the absolute value of log2 Fold Change
(Log2FC) is smaller than 1 in the midst of most miRNAs;
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therefore, the inclusion criterion that False Discovery Rate
(FDR) values<0.05 and |log2FC|>0.05 was rationally sup-
posed to be statistically significant. In addition, differential-
ly expressed mRNAs (DEmRNAs) were also sorted within
the threshold that FDR values <0.05 and |log2FC|>1 by
using GEO2R in dataset GSE54129.

Prediction of miRNA-sponged locus

According to the consequence of the robust rank aggrega-
tion algorithm, we chose the top five of DEcircRNAs
called IDEcircRNAs. MiRNA binding sites (MREs) of
IDEcircRNAs were forecasted via The Cancer-Specific
CircRNA Disease (CSCD) (http://gb.whu.edu.cn/CSCD/
) and The Circular RNA Interactome (CircInteractome)
(https://circinteractome.nia.nih.gov/) (we denominated
them as CPmiRNAs), and after that, we computed the
shared junction of CPmiRNAs and DEmiRNAs, associated
with the inclusion criteria were the convergence between
CSCD (and/or CircInteractome) and more than two GSE
datasets, which we named ICPDEmiRNAs.

Prediction of mRNA target genes

Perl script was applied to predict respectively
ICPDEmiRNAs targeted genes based on the three target
gene prediction online systems, comprising miRDB
(http://www.mirdb.org/), miRTarBase (http://mirtar
base.mbc.nctu.edu.tw/), and TargetScan (http://www.tar
getscan.org/).23–25 Not all outcomes were included, mutu-
ally owned target genes predicted within three databases
were recognized as mRNAs candidates, and we called
TmRNAs. Similarly, we took the shared sections of them
together with the above-mentioned DEmRNAs, and then
we obtained some of the final potentially functional
mRNAs, also called FmRNAs.

Visualization of the ceRNA regulatory mechanism

Following the prediction of all targeted RNAs, a circRNA-
based ceRNA network was built utilizing the amalgam-
ation of circRNA-miRNA couples plus miRNA-mRNA
couples in compliance with the noble ceRNA components
interaction mechanism and the dynamic swings of the
triples. Finally, the hypothesis network was beautifully por-
trayed by Cytoscape software.

Functional GO and KEGG analysis

In order to explore the primary potentially functional
enrichment traits in GC, FmRNAs in the midst of ceRNA
triples were appraised via the GO terms and the KEGG
pathways analysis through http://www.bioinformatics.
com.cn, an online platform for data analysis and visualiza-
tion, along with the P values <0.05 as the inclusion meas-
ures. DAVID (http://david.abcc.ncifcrf.gov/) was also
implemented to compute the statistical enrichment of
target genes in the KEGG pathways. What’s more, the net-
work of the KEGG signaling pathways together with
pathway-relevant mRNAs was structured by means of
Cytoscape and its plugin GlueGO26 as well as
Cluepedia27 app.

Construction of PPI network

The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING, http://string-db.org) analysis tool was
put into use for building a particular PPI group based on
the FmRNAs identified. Visualization was rendered using
Cytoscape, and the top 10 nodes (hub genes) ranked by
Degree algorithm was chosen in plugin CytoHubba. Also,
their expression and correlation with survival rate and
clinical stage were summarized in Kaplan-Meier
Plotter (https://kmplot.com/analysis/) as well as GEPIA
(http://gepia.cancer-pku.cn/).

Results

Identification of DEcircRNAs, DEmiRNAs, and
DEmRNAs

Differentially expressed circRNAs profiles in GC tissue
along with plasma and negative controls were assessed
among the four GEO series containing GSE78092,
GSE83521, GSE89143, and GSE93541, and their the funda-
mental components are demonstrated in Table 1. Totally,
112 DEcircRNAs (23 up-regulated and 89 down-
regulated) were screened in the dataset GSE78092; 73
DEcircRNAs (43 up-regulated and 30 down-regulated)
were screened in the dataset GSE83521; 53 DEcircRNAs
(8 up-regulated and 45 down-regulated) were screened in
the dataset GSE89143; 306 DEcircRNAs (146 up-regulated
and 160 down-regulated) were screened in the dataset
GSE93541. We further integrated and then ranked the
DEcircRNAs from the four different datasets, and totally,
five circRNAs, one up-regulated and four down-
regulated, were demonstrated in the top rank using
heatmap (P< 0.05) (Figure 1), which were known as
hsa_ circ_0067934, hsa_circ_0007763, hsa_circ_0007991,
hsa_circ_0048607, and hsa_circ_0064557, and the elemen-
tary characteristics of the five DEcircRNAs from CSCD
are given in Table 2. Besides, their constructional features
were explored, which was exhibited in Figure 2. What’s
more, the differential expression profiles of miRNAs in
GC tissue along with adjacent control counterpart was
assessed in four microarrays datasets (GSE23739,
GSE54397, GSE78091 and GSE93415), and their funda-
mental details were displayed in Table 3. The whole of
52 DEmiRNAs, 49 up-regulated and 3 down-regulated,
were screened in the dataset GSE23739. The whole of
368 DEmiRNAs, 153 up-regulated and 215 down-
regulated, were screened in the dataset GSE54387. The
whole of 795 DEmiRNAs, 643 up-regulated and 152

Table 1. Basic information of the 4 circRNA microarray datasets from

GEO.

Dataset Platform

Sample

volume (T/N) Country Author Year

GSE78092 GPL21485 3/3 China Huang 2016

GSE83521 GPL19978 6/6 China Zhang 2017

GSE89143 GPL19978 3/3 China Guo 2017

GSE93541 GPL19978 3/3 China Guo 2017
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down-regulated, were screened in the dataset GSE78091.
The whole of 629 DEmiRNAs, 264 up-regulated and 365
down-regulated, were screened in the dataset GSE23739.
Similarly, the same analysis was performed on GSE54129,
and entirely, 4345 differentially expressed mRNAs were
sorted, with 482 up-regulated and 3863 down-regulated
mRNAs.

Looking for the interaction among circRNA, miRNA,
and mRNA

According to our inclusion principle, totally, 36
ICPDEmiRNAs were obtained from the varied intersection
of CPmiRNAs and DEmiRNAs and then visualized using
the TBtools software (Figure 3).28 In the case of target gene
prediction, 640 TmRNAs of 36 ICPDEmiRNAs were fore-
casted after removing the repeated items. At last, 125 finally
mRNAs (FmRNAs) were screened via examination of the
overleaped intersection from TmRNAs and previously
acquired 4345 DEmRNAs.

Visualization of the ceRNA regulatory mechanism

ceRNA network of the molecular level in GC was
established for a deeper understanding of the mutual
relationship among circRNAs, miRNAs, and mRNAs.

In light of previous data results, 5 IDEcircRNAs
including 1 up-regulated and 4 down-regulated objects,
36 ICPDEmiRNAs including 22 up-regulated and 14
down-regulated objects, 125 FmRNAs including 18 up-
regulated and 129 down-regulated objects and their rela-
tionships were described in the ceRNA network and their
relative size was computed using the Enrichment Degree in
Cytoscape (Figure 4).

GO and KEGG analysis of FmRNAs

Next, 125 FmRNAs sifted were applied to further investi-
gate the potentially functional circRNAs, containing GO
annotation and KEGG pathways. All the GO annotation
outcomes within BP, CC, and MF were ranked respectively
according to the enrichment scores (-log(P-value)) and top
10 of those represented in Figure 5. In the analysis of bio-
logical process (BP), intestinal epithelial cell development,
intestinal epithelial cell differentiation, and vesicle target-
ing, rough ER to cis-Golgi were the top three most signifi-
cantly enriched categories. In the analysis of cellular
component (CC), complex of collagen trimers, extracellular
matrix component, and cyclin-dependent protein kinase
holoenzyme complex were the top three most significantly
enriched categories. In the analysis of molecular function
(MF), mRNA 3’-UTR AU-rich region binding, AU-rich

Figure 1. Heatmap of the five differentially co-expressed circRNAs among the four GEO datasets. (A color version of this figure is available in the online journal.)

Table 2. Basic characteristics of the five DEcircRNAs.

circRNA symbol Position Strand Genomic length Best transcript Gene symbol Regulation

hsa_circ_0007763 chr16:3526221-3529600 þ 3379 NM_001083601 NAA60 up

hsa_circ_0007991 chr1:21329205-21415706 – 86501 NM_001198801 EIF4G3 down

hsa_circ_0048607 chr19:4408899-4409756 þ 857 NM_005483 CHAF1A down

hsa_circ_0064557 chr3:18456602-18462483 – 5881 NM_001195470 SATB1 down

hsa_circ_0067934 chr3:170013698-170015181 þ 1483 NM_002740 PRKCI down
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element binding, and transcription coactivator binding
were the top three most significantly enriched categories.
Besides, to better understand the mutual relationships of
the three main categories of GO terms and the co-expressed
genes, GO Chord with enrichment scores >15 in three
terms was plotted (Figure 6). Then the KEGG pathways
were further ranked using the enrichment scores algorithm
and the top 10 most KEGG-enriched pathways for this net-
work module were revealed in Figure 7, in which the p53
signaling pathway was significantly enriched with the
smallest P value. In addition, the network consisted of the
most significantly enriched modules, together with their
correlative target mRNAs indicated that CCND1, CASP3,
COL4A1, COL1A2, and SMAD4 were all cross-talk genes
that involved no less than four crucial signaling pathways
(Figure 8).

Identification of hub genes

The STRING tool and Cytoscape were put into use so as
to additionally investigate the hub genes among 125
FmRNAs, the result showed that 51 genes were co-
related, and then the highly interconnected genes were
clustered into three modules (Figure 9). The top 10
nodes ordered by Degree algorithm were used in Plugin
CytoHubba to represent the most momentous gene mod-
ules (Hub genes), and then the network diagram of top 10
hub genes was exhibited in Figure 10, and the 8 of 10 hub
genes were highly inter-correlated we called key hub
genes. Also, we found that COL1A2 (Figure 11),
COL4A1 (Figure 12), COL5A2 (Figure 13), and FBN1
(Figure 14) were both highly differentially expressed not
only in GEPIA but in our present PPI network results.
Besides, we discovered that over-expressed COL4A1
and COL5A2 had a reduced OS rate both in GEPIA
as well as Kaplan-Meier Plotter website (P< 0.05)
(Figures 15 to 18). Moreover, the up-regulated expression
of COL1A2 (Figure 19), COL5A2 (Figure 20), and FBN1
(Figure 21) was associated with an increased clinical stage
in GEPIA (P< 0.05). Ultimately, a circRNA-based ceRNA
interaction sub-module was structured using an alluvial
plot based on the consequence of sifted hub genes, as
shown in Figure 22, four circRNAs, six miRNAs, and
eight key hub genes were included as the final ceRNA
network.

Figure 2. The circular genome structure of five circRNAs. (a) hsa_circ_0067934. (b) hsa_circ_0007763. (c) hsa_circ_0007991. (d) hsa_circ_0048607. (e) hsa_

circ_0064557. (A color version of this figure is available in the online journal.)

Table 3. Basic information of the 4 miRNA microarray datasets from

GEO.

Dataset Platform

Sample

Volume

(T/N) Country Author Year

GSE23739 GPL7731 40/40 Switzerland Oh H 2011

GSE54397 GPL15159 16/16 South Korea Chang H 2014

GSE78091 GPL21439 3/3 China Huang 2016

GSE93415 GPL19071 20/20 Poland Sierzega M 2017
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Discussion

Despite of many signs of treatment progress, GC remains
one of the deadliest solid tumors with a complicated molec-
ular mechanism that is still not well understood. In the last

few years, intensive attempts have been made to elucidate
the underlying molecular mechanisms in gastric cancer, but
mainly focusing on long non-coding RNA or
microRNAs.29,30 CircRNAs, as a sort of novel non-protein

Figure 3. The various intersection of CPmiRNAs and DEmiRNAs. (A color version of this figure is available in the online journal.)

Figure 4. The circRNA-based ceRNA network. Squares refer to circRNAs, in which the nodes spotlighted in red and green respectively indicate up-regulated and

down-regulated expression. Rotundities refer to miRNAs. Diamonds refer to mRNAs. The relative size of them was computed using the Enrichment Degree in

Cytoscape. (A color version of this figure is available in the online journal.)
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coding RNAs, have become one of the hottest topics in bio-
medicine and medicine owing to their highly developmen-
tal specificity and stability, and plentiful papers have also
uncovered that circRNAs have great implications for
diverse human diseases, including malignant
tumors.5,31,32 Several studies have found how circRNAs
involve in multiple biological processes, which are

considered to participate in tumorigenesis and tumor pro-
gression.8,33 Other evidence has also proved that circRNAs
can be served as the miRNA-sponged locus by competitive
binding to miRNAs and consequently regulate their respec-
tive targeted mRNAs, hence influencing the complex bio-
logical and molecular behaviors of carcinomas.
Nevertheless, the precise role of circRNAs in GC is still

Figure 5. The Top 10 of enrichment scores in GO annotation. (A color version of this figure is available in the online journal.)

Figure 6. GO Chord with enrichment scores in three terms >15. The genes are associated with their target terms through colored ribbons. Genes are ranked in

accordance with the log Fold Change (logFC), red and blue refer to the up- and down-regulated genes respectively. (A color version of this figure is available in the

online journal.)
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obscure. In this current study, a handful of fresh circRNAs
were discovered which regulated the downstream of target
mRNAs employing sponge-absorbed miRNAs. We further
developed the functional annotations within these genes so
as to promote a greater depth of understanding of
circRNAs.

In our study, after multiple intersections of differentially
expressive circRNAs, miRNAs, and mRNA, a circRNA-
based ceRNA interaction network was explored by means
of bioinformatics and extended a PPI regulatory module
including 51 interconnected mRNAs. Moreover, the top
10 hub genes we exhibited within the PPI modules

indicated that eight key hub genes were highly interrelated,
including CCND1, COL1A2, SMAD4, CASP3, HIST2H2BE,
COL4A1, COL5A2, and FBN1. Finally, a ceRNA regulatory
alluvial plot was constructed according to the eight key hub
genes.

Additionally, functional profiling analysis, containing
GO annotations and KEGG pathways, was carried out
based upon the selective miRNAs and the targeted
FmRNAs. Then GO Chord with enrichment scores >15 in
three respective terms was built for representing the con-
nections between the existing GO terms and crucial genes.
The result of cancer-related KEGG signaling pathway

Figure 7. The Top 10 most KEGG-enriched pathway for the ceRNA network module. (A color version of this figure is available in the online journal.)

Figure 8. The network consisted of the most significantly KEGG-enriched pathways and their correlative target mRNAs. (A color version of this figure is available in the

online journal.)
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analysis suggested that the p53 signaling pathway
(CCND1/CASP3/CCNG1/STEAP3/MMAB) was signifi-
cantly enriched with the smallest P value. P53 protein, con-
sidered as a historically well-known cancer suppressor
gene, is the core of the p53 signaling pathway, andmutation
in p53 gene frequently associate with many human types of
tumors, including gastric cancer.34–36 Activation of p53 as a
transcription factor may affect DNA repair, cellular apopto-
sis, cell cycle arrest, and metastasis.37 In gastric cancer, Fu
et al. found that curcumin induced proliferation, autoph-
agy, and apoptosis via mobilizing the p53 signaling path-
way as well as blocking the PI3K pathway.38 Besides, Liu
et al. found that the over-expressed lncRNA GAS5
restrained the invasion and migration of GC cells via
modulating the p53 signaling pathway.39 As displayed in
Figure 8, CCND1, CASP3, COL4A1, COL1A2, and SMAD4
were all momentous cross-talk genes that involved no less
than four crucial signaling pathways, indicating that they
might as bridges linking a number of interactions. In the

meantime, the expression of COL4A1 and COL1A2 in the
KEGG signaling pathway was in accordance with the
GEPIA database outcomes. Their clinical stages and overall
survivals combined with their respective level of expres-
sion were also excavated. We could conclude that high
expression of COL4A1 was linked with a poor prognosis

Figure 9. PPI network of 51 interconnected mRNAs. (A color version of this figure is available in the online journal.)

Figure 10. PPI network of top 10 hub genes. (A color version of this figure is

available in the online journal.)

Figure 11. Co-overexpressing COL1A2 both in GEPIA and our PPI network

result. (A color version of this figure is available in the online journal.)
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both in GEPIA together with Kaplan-Meier Plotter online
database, while the expression of COL1A2 was a signifi-
cantly positive correlation with the clinical stage. Above
all, COL4A1 and COL1A2 are a common family of proteins
that strengthen and hold different types of tissues in
humans, containing cartilage, bone, tendon, dermis, and
the white sclera.40 Collagen alpha-1(IV) chain (COL4A1)
encodes a type IV collagen alpha protein, its mutations
have been primarily reported in porencephaly, cerebrovas-
cular and neuromuscular disease, and renal and ocular
defects.41,42 On top of this, the high expression of
COL4A1 promotes proliferation, invasion, and migration
in hepatocellular carcinoma (HCC) via activation of FAK-
Src signaling.43 Collagen alpha-2(I) chain is a protein
encoded by the COL1A2 gene, which is the bulk signifi-
cantly rich form of collagen in humans. At the same time,
numerous studies have revealed that COL1A2 is closely
related to cancers. For instance, COL1A2 belongs to TBX3
target gene that exerts an influence on the migration of
chondrosarcoma and fibrosarcoma cells through the
AKT1/TBX3/COL1A2 axis.44 Apart from this, frequent
7q21-22 genomic region amplification and its intronic
miR-25 is able to suppress a massive number of genes
that are co-expressed with COL1A2, played a vital role in
the angiogenesis and epithelial to mesenchymal transition
(EMT), which are the representative characteristics in dif-
fuse type of gastric carcinoma.45 Additionally, it is found
that COL1A2, COL6A3, and THBS2 were all highly
expressed in stomach cancer, and suppressing COL1A2,

Figure 12. Co-overexpressing COL4A1 both in GEPIA and our PPI network

result. (A color version of this figure is available in the online journal.)

Figure 13. Co-overexpressing COL5A2 both in GEPIA and our PPI network

result. (A color version of this figure is available in the online journal.)

Figure 14. Co-overexpressing FBN1 both in GEPIA and our PPI network result.

(A color version of this figure is available in the online journal.)
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COL6A3, and THBS2 exhibited inhibited proliferation,
invasion, and migration via the PI3K-Akt signaling path-
way.46 Nevertheless, the relationship between circRNA
and COL4A1 as well as COL1A2 still remains unclarified.
By a combination of the most significantly enriched path-
ways in KEGG and the final ceRNA alluvial plot, two
significantly central circRNA-based ceRNA modules
were sifted, inclusive of hsa_circ_0048607/hsa-mir-4747-
5p/COL1A2 and hsa_circ_0007763/hsa-mir-767-5p/
COL4A1. Finally, this research is still at the stage of the
preclinical hypothesis since all data analyzed were gener-
ating based upon the public domain training sets, the
limitations of this study are the same as those that are
intrinsic to the database itself; thus, selection bias, limited
sample size, and mixed quality of chips should all
deserve consideration. Beyond that, the limitations of

Figure 15. Overall survival of COL4A1 in GEPIA. (A color version of this figure is

available in the online journal.)

Figure 16. Overall survival of COL5A2 in GEPIA. (A color version of this figure is

available in the online journal.)

Figure 17. Overall survival of COL4A1 in Kaplan-Meier Plotter. (A color version

of this figure is available in the online journal.)

Figure 18. Overall survival of COL5A2 in Kaplan-Meier Plotter. (A color version

of this figure is available in the online journal.)

Figure 19. Association between COL1A2 expression and clinical stage of GC.
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multiplicity control also give more or less influence to our
predictive model. More importantly, further exploration
including clinical and experimental data as well as pro-
spective evaluation was needed to verify our proposed
GC-associated ceRNA crosstalk mechanism in future
studies.
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