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With delicate anterior and posterior structures, the eye
works as a robust optical imager to capture visual informa-
tion, which is essential for sensing the beauty of the world
and effective communication. The anterior segment of the
eye, particularly the cornea and the crystalline lens, func-
tions as an optical lens to project the target image into the
fundus.1 Located at the posterior of the eye, the retina is a
complex neural network responsible for capturing light
photons, converting light energy to bioelectronic activities,
and initiating the visual information processing.2 Because
different diseases can target different parts of the eye, clin-
ical examination of both anterior and posterior segments is
important for eye disease detection and treatment assess-
ment. As one part of the central nerve system (CNS), retinal
neurovascular system is also frequently affected by neuro-
degenerative diseases such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD).3 In order to provide intuitive
information for identifying ocular pathologies or neurode-
generations through the eye, different imaging approaches
have been established for ophthalmic examination.
Developments of quantitative imaging are also important
for advancing the study of the nature of visual system.

Optical imaging methods, such as slit lamp biomicro-
scopy4–6 and fundus photography,7,8 have played an indis-
pensable role for the eye examination. In traditional fundus
cameras, a white light source is typically used for color
fundus imaging. It is known that the short wavelength,
such as blue or green, light is predominantly sensitive to
the retinal morphology, while long wavelength, such as red
and near infrared (NIR), light provides enhanced penetra-
tion through the retina to reveal choroidal structure.
Therefore, multiple-spectral imaging can be used to selec-
tively evaluate the retinal and choroidal layers.9–12 With the
confocal configuration to reject out-of-focus light, scanning
laser ophthalmoscopy (SLO) provides a feasible strategy to
enhance the resolution and contrast of chorioretinal

imaging.13,14 Adaptive optics (AO) can be incorporated to
compensate for optical aberrations of the eye to further
enhance the fundus image resolution and contrast.15–17

Super-resolution ophthalmoscopy has been recently
explored through virtually structured detection18,19 and
optically reassigned SLO.20 By coherent gating of the light
from different depths, optical coherence tomography
(OCT) enables three-dimensional (3D) imaging of ocular
structures at micrometer level resolution.21,22 While most
of the ophthalmic imaging modalities are based on the
recording of backward scattered light from the ocular tis-
sues, photoacoustic imaging has been demonstrated to map
absorption properties of the anterior23 and posterior24,25

segments of animal eyes. Moreover, ultrasound biomicro-
scopy have been also developed for evaluating the anteri-
or26,27 and posterior28–30 segments.

In addition to morphological imaging assessment, there
are active efforts to expand the imaging capabilities for
functional assessment of physiological condition of the
eye. For example, as a special OCT modality, OCT angiog-
raphy (OCTA) can provide high-contrast imaging of the
vasculatures with active blood flow at capillary-level reso-
lution.31,32 In coordination with visible stimulation, func-
tional OCT has been demonstrated for objective
optoretinography of stimulus evoked intrinsic optical
signal changes in animal33,34 and human35–37 retinas.
Functional OCT has been also validated for depth-
resolved rhodopsin molecular contrast imaging in retinal
photoreceptors.38 OCT39,40 and ultrasound41,42 elastogra-
phy have been explored for imaging biomechanical prop-
erty of ocular tissues.

Moreover, quantitative feature analysis and disease clas-
sification are being explored on fundus photos, OCT, and
OCTA using computer-aidedmethods.43–46 Recently, exten-
sive efforts have been made on implementing artificial
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intelligence (AI) tools to improve analytical reliabilities,
with machine learning and deep learning algorithms.47–50

Four mini-reviews in this thematic issue focus on newly
emerging developments of imaging technology and data
analysis in experimental vision sciences and ophthalmolo-
gy. Yao et al. summarize the interpretations of anatomic
correlates of outer retinal bands in OCT and discusses
potential differences of clinical OCT and AO-OCT.51

Berkowitz et al. spotlight one OCT biomarker, i.e. subretinal
space change due to light–dark transition imaging, for
monitoring mitochondrial respiration of rod photorecep-
tors.52 Hollak et al. emphasize the AI-aided OCT bio-
markers in monitoring the progression of age-related
macular degeneration.53 Le et al. summarize the latest pro-
gresses in quantitative OCT angiography assisted by
machine learning methods.54

Eight original research articles in this thematic issue
cover ultrasound-related and optical imaging-based exper-
imental study and/or data analysis. Liu et al. report an
ultrasound elastography study of corneal stromal deforma-
tion.55 Gaffney et al. demonstrate AO–SLO to investigate
cone photoreceptor reflectance variation in the northern
tree shrew and 13-lined ground squirrel.56 Ansari et al.
illustrate polarized infrared retinal imaging of pathogno-
monic macular ripples in patients with foveal hypoplasia.57

Jiao et al. highlight a comparative study of OCT angiogra-
phy algorithms for rodent retinal imaging.58 Tan et al.
describe the potential effectiveness of using OCT for eye
disease screening compared to clinical examination.59

Zhou et al. validated 3D OCT segmentation and visualiza-
tion of choroidal anatomy including topographical features
of individual vessels.60 Liu et al. performed normative per-
fusion measurements in the temporal retina using wide-
field OCT angiography.61 Wang et al. developed a multiple
subdivision-based algorithm for quantitative assessment of
retinal vascular tortuosity in fundus photography.62

In summary, this thematic issue provides a small snap-
shot of the various emerging imaging modalities in exper-
imental vision and eye research as well as to encourage
future submissions to Experimental Biology and Medicine
that incorporate ophthalmic imaging approaches and
experimental results into their articles.
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