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Abstract
Age-related macular degeneration (AMD) is a leading cause of severe vision loss. With our

aging population, it may affect 288 million people globally by the year 2040. AMD pro-

gresses from an early and intermediate dry form to an advanced one, which manifests as

choroidal neovascularization and geographic atrophy. Conversion to AMD-related exuda-

tion is known as progression to neovascular AMD, and presence of geographic atrophy is

known as progression to advanced dry AMD. AMD progression predictions could enable

timely monitoring, earlier detection and treatment, improving vision outcomes. Machine

learning approaches, a subset of artificial intelligence applications, applied on imaging

data are showing promising results in predicting progression. Extracted biomarkers, spe-

cifically from optical coherence tomography scans, are informative in predicting progres-

sion events. The purpose of this mini review is to provide an overview about current machine

learning applications in artificial intelligence for predicting AMD progression, and describe

the various methods, data-input types, and imaging modalities used to identify high-risk patients. With advances in computational

capabilities, artificial intelligence applications are likely to transform patient care and management in AMD. External validation

studies that improve generalizability to populations and devices, as well as evaluating systems in real-world clinical settings are

needed to improve the clinical translations of artificial intelligence AMD applications.
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Introduction

Age-related macular degeneration (AMD) is a chronic
degenerative disease of the macula, resulting in progressive
vision loss. It is the leading cause of blindness among the
geriatric population worldwide, with 11 million individuals
affected with AMD in the United States alone, and a global
prevalence of 170 million.1,2 These estimates are expected to
increase to 22 million in the US by the year 2050, and the
global prevalence to 288 million by the year 2040.1,2

The pathogenesis of AMD is not clearly understood.
AMD is categorized into early, intermediate, or advanced
stages based on structural and functional clinical signs and
symptoms. One in five patients with AMDmay progress to
an advanced stage within five years, manifesting as choroi-
dal neovascularization (CNV) and/or geographic atrophy
(GA).3 CNV occurs from the ingrowth of new choriocapil-
laris vessels through Bruch’s membrane into the sub-
pigment epithelial space, which may result in subretinal
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fluid, intraretinal fluid, hemorrhaging within the retina,
sub-retina or sub-RPE layers and RPE detachment and
tear. Conversion to AMD-related exudation is known as
progression to “neovascular AMD”. Several classes of
CNV have been described, based on the site of infiltration
of new vessels.4 End stage of the disease produces a fibro-
vascular or atrophic macular scar (disciform scar), and
results in permanent central vision loss to the patient.
Current treatments include intravitreal injections of anti-
vascular endothelial growth factor (VEGF) drugs. The
inhibition of VEGF, an angiogenic protein which promotes
neovascularization, has been shown to maintain or
improve visual impairment, with early treatment after a
progression event (after exudation) corresponding to
better outcomes.5 GA, on the other hand, presents as
well-demarcated lesions representing thinning and loss of
outer retina layers. Presence of GA is known as progression
to “advanced dry” AMD. The pathogenesis and develop-
ment of GA from the earlier dry AMD stage remain unclear;
however, investigations of the molecular pathways leading
to GA have suggested that retinal pigment epithelium
death leads to photoreceptor loss and degeneration of cho-
roidal capillaries.6–8 Lesions may occur in single or multiple
locations and have been reported to grow at an average rate
of 2 mm2/year, although this rate varies considerably from
case to case.9 Lesion size does not correlate with severity of
vision loss, as atrophy may or may not involve the fovea.10

GA is an irreversible disease which leads to progressive
loss of vision with no currently available treatment; how-
ever, phase II and III clinical trials are ongoing.11 Most treat-
ments currently under investigation aim to slow
progression, rather than inhibit GA development from
early-stage AMD, making early diagnosis critical to the
future success of the proposed therapies.

Predicting which early and intermediate AMD patients
are at progression risk to an advanced form, distinguishing
between neovascular and GA forms of the disease, could
improve patient screening and enable earlier detection,
improving vision outcomes. Traditional, epidemiologic,
regression-type modeling in AMD has included bio-
markers and risk factors to predict progression.12–17 As
more data became available, machine-learning methods
became prominent for predictions and in identifying relat-
ed biomarkers and features. More recently, with advances
in computational technology, the use of deep learning-
based algorithms has increased significantly for classifica-
tion and prediction of AMD disease progression, leading to
the development of several artificial intelligence (AI) sys-
tems. Several studies have used AI systems to predict AMD
progression, which have shown promising performance
results. These studies have identified imaging biomarkers
based on drusen features in color fundus photos and opti-
cal coherence tomography (OCT), as well as the identifica-
tion of genetic and sociodemographic factors for AMD
progression.

In this mini review, we provide an overview of AI appli-
cations, encompassing machine and deep learning models,
for AMD progression to neovascular and/or advanced dry
AMD. We will describe the various methods, data-input

types, and imaging modalities used to identify high-risk
patients.

Artificial intelligence—Statistical and
machine learning-based algorithms

AI refers to any hardware or software exhibiting intelligent
behavior.18 For our purposes, AI systems involve learning
algorithms for defined medical tasks. With advancements
in computational technology, AI methods are facilitating
the analysis of medical data and the development of auto-
mated algorithms for disease classification and prediction
to develop clinical decision support systems. Machine
learning (ML) and statistical learning methodologies are a
subset of AI methods that have the ability to provide infer-
ence for current data and predictions for future data based
on learned automated pattern detections from a training
dataset.19 Traditional statistical models such as logistic
regression, Poisson regression, and Cox proportional haz-
ards models use statistical learning methods, such as leave
one out cross validation and k-fold cross validation to aid in
predictive modeling. Cross-validation techniques are used
to estimate the performance of the statistical model in a
population with the same characteristics as the designated
training data. Additionally, when the number of available
feature predictors is large, shrinkage methods such as L1,
L2, or combination L1, L2 regularization are used to per-
form variable selection. L1 regularization, also known as
Lasso regression, applies a penalty term to regression coef-
ficients. The variable selection process is embedded in that
when coefficients get shrunk to zero, unimportant features
are removed from the model. Other popular shrinkage
methods include Ridge regression,20 which is also a shrink-
age method which applies a penalty term to the regression
coefficient, though never shrinking the coefficients exactly
to zero, and elastic net, which includes both a ridge and a
lasso regression penalty term. Lasso regression and elastic
net methods allow researchers to determine which predic-
tors are better suited for the AI task to solve. The inclusion
of biomarkers and features is usually task dependent. If the
goal is to study the reproducibility of previously identified
biomarkers, then one targets those specific features to
determine generalizability to populations and devices. If
the goal is to identify or uncover new biomarkers, then
all image features are analyzed to determine the prognostic
relationship between those features and the outcome, fol-
lowed by modeling.

ML methods are generally divided into supervised or
unsupervised learning. In supervised learning, the aim is
to identify a set of predictors related to a specific outcome
of interest. Unsupervised learning is used to discover rela-
tionships between available features, without the use of a
specific outcome variable. Deep learning (DL) is a further
subset of ML, which makes use of deep neural networks to
learn underlying features of data. DL provides data repre-
sentation, rather than function through task-specific algo-
rithms or engineered features, as in traditional ML methods.

AI systems are trained and tested first on internal data-
sets, often from a single patient population, but may be
further tested on an external dataset from a different patient
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population or source. External validation aims to provide
further evidence of an AI algorithm’s accuracy and useful-
ness. A recent 2019 review published by Kim et al.21 ana-
lyzed over 500 studies presenting AI systems for various
disease prediction and classifications, published over a six-
month period. The authors reported that only 6% (31 stud-
ies) externally validated their algorithms.21 A similar lack
of external validation can be seen in studies proposing AI
algorithms for AMD progression predictions. In the
absence of external validation sets, many authors apply
cross-validation techniques to assess the predictive perfor-
mance of their machine learning methods. Demographics
such as race, age, as well as genetic and environmental
factors have been shown to affect AMD incidence and
case progression.17 An algorithm that may show high per-
formance validation within one population may not be
translatable to another population with different demo-
graphic and environmental characteristics. Performance
on external validation datasets is needed to help address
translatability of AI systems to clinical environments serv-
ing demographically and geographically different
populations.

Risk factors for AMD progression have been determined
in previous studies, which have included demographic fac-
tors, such as age, gender and race; environmental factors,
including smoking, sunlight exposure and diet; and genetic
predispositions.17 Analyses of retinal images have also
shown associations of progression with drusen-related fea-
tures.22 While some studies attempt the inclusion of several
feature types in their predictive models, others use imaging
data only, or imaging data in combination with genetic or
demographic or clinical data. Several imaging modalities
are typically used and complement one another in the diag-
nosis and treatment of AMD, like fundus photography,
spectral-domain optical coherence tomography (SD-OCT)
or fundus autofluorescence (FAF), and both classic ML and
deep learning algorithms have exhibited the most promis-
ing results for AMD-related tasks with imaging biomarkers
derived from these imaging techniques (Table 1, Figures 1

and 2). SD-OCT has been specifically useful in providing
detailed, cross-sectional retinal images with the capability
of volumetric evaluation of features for AMD progression
(Figure 1). Studies have shown that automatically extracted
SD-OCT imaging features are informative in predicting
CNV and GA events.23–27

Machine learning and deep learning
algorithms for AMD progression

The inclusion criteria for studies utilizing learning algo-
rithms for AMD progression were as follows: (i) studies
published in the last decade, (ii) use of machine and/or
deep learning methods for predictive modeling, (iii) an
end point of progression to neovascular AMD or advanced
dry AMD, and (iv) the inclusion of imaging data/imaging
biomarkers. Of the 15 studies included, 7 used color fundus
photos,12,15,34,36,37,41,43 7 used SD-OCT scans,23–25,38–40,42

and 1 used both image modalities35 as input to ML and
DL systems for AMD progression prediction (Table 2).
Wu et al.,35 Yim et al.,38 and Burlina et al.41 used imaging
only, while others included features representing demo-
graphic, environmental, genetics, clinical and temporal
characteristics of patients. Many studies reported area
under the operating curves (AUCs) as metrics for model
performance. Four studies included sensitivity (Sn) and
specificity (Sp) metrics in their results23,34,42,43 and five
reported validation on external datasets.15,23,34,37,43 Of
those studies that did report AUC metrics, performance
ranged from 0.68 to 0.97 (Table 2). We highlighted six
studies that looked at progression to neovascular
AMD,15,23–25,38,40 one that looked at progression to GA
only,39 and eight that included both.12,34–37,41–43

Progression predictions at different timepoints were
reported, and were as early as threemonths and up to
12 years (Table 2). For studies that had one- to two-year
follow-up, performance metrics were reported at three-
month intervals,23 six-month intervals,39 or yearly.34 For
studies with more than five-year follow-up, performance

Table 1. Identified biomarkers for AMD progression by imaging modality.

Imaging modality Biomarkers for progression to neovascular AMD Biomarkers for progression to advanced dry AMD/GA

Fundus (color fundus and

fundus autofluorescence)

Color fundus photography: Large drusen size,

increase in total drusen area, non-GA-hyperpig-

mentation, depigmantation28, soft and hard drusen

number, reticular pseudodrusen, pigment clump-

ing, atrophy, hemorrhage, and fibrosis.

Fundus autofluorescence: Reticular pseudodrusen pres-

ence, hyper- and hypoautofluorescence29

Spectral domain optical

coherence tomography

(SD-OCT)

Total and mean drusen volume, total and mean

drusen area, drusen density, max drusen height,

average (avg) drusen slope, avg. and std. drusen

reflectivity, area and volume occupied by druse

regions within 3mm and 5mm of the fovea center24

Hyperreflective foci, retinal pigment epithelium (RPE)

layer atrophy/absence, choroid thickness in those with

no subretinal drusenoid deposits, photoreceptor outer

segment loss, RPE drusen volume, RPE drusen thin-

ning volume30

OCT-angiographya CNV flow area, lesion edge complexity, flow index (FI),

adjusted flow index, flow void (FV), vascular con-

nectivity,7 and total retinal blood flow (TRBF), CNV

location, CNV maturity, the presence of core ves-

sels, and the presence of margin loops.31,32

GA area, edge complexity, Choriocapillaris flow change,

vessel density around GA, regional distribution of flow

void in the choriocapillaris.33

OCTA: biomarkers identified to quantify changes in AMD for neovascular and advanced dry AMD.
aThe identification of biomarkers for progression are underway.
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was reported at every year37 or every five years.25 Short-
term predictions (such as threemonths) are particularly
important for early identification of high-risk patients.23

Machine learning models

Eight of the included studies employed supervised models
to predict progression to neovascular AMD and/or
advanced dry AMD and one used machine learning as a
part of mixed methods to select features for explanatory
statistical modeling.24 Hallak et al., investigated the pro-
gression to neovascular AMD during a two-year period,
LASSO regression for SD-OCT imaging feature selection
and bivariate analysis of genetic variants were performed
to determine which variables to include alongside demo-
graphic data in a survival Cox proportional hazards

regression model.24 After controlling for demographic
and treatment effects, drusen area within 3mm of the
fovea (HR, 1.45; 95% CI, 1.24–1.69; HR for 1-SD increase,
1.36 [95% CI, 1.20–1.54]) and mean drusen reflectivity (HR,
3.97; 95% CI, 1.11–14.18; HR for 1-SD increase, 1.32 [95% CI,
1.02–1.71]) were significantly associated with future pro-
gression with an exudation event within two years. In addi-
tion, one genetic variant (rs61941274) was found to be
potentially associated with future exudations during a
two-year follow-up24 (Table 2).

Some ML techniques were preceded by DL data process-
ing and classification of images, as was the case with
Buhiyan et al.’s34 study, which used a logistic model tree
technique on pre-classified fundus photo data, along with
sociodemographic and clinical data to predict progression to
neovascular and/or advanced dry AMD (GA).34 In all
reported metrics, including accuracy via AUC, Sn, and Sp,
their model performed better predicting any advanced
AMD, versus only neovascular or advanced dry AMD in
both one- and two-year predictions. For example, while
AUC reached 0.8619 and 0.8636 for one- and two-year pre-
dictions of all advanced AMD development, advanced dry
AMDonly predictions achieved 0.6679 and 0.6688 accuracies
for one- and two-year predictions and neovascular AMD
only predictions achieved 0.6815 and 0.6715 accuracies for
one- and two-year predictions, respectively. Similar discrep-
ancies were found among Sn and Sp metrics34 (Table 2).

Wu et al. in two studies in 2020 applied leave one out
cross validation (LOOCV) on Cox proportional hazards
models on the sham study arm of the LEAD dataset,
which included intermediate AMD eyes to study interven-
tions aimed at slowing disease progression, to predict pro-
gression to neovascular and/or advanced dry AMD (GA)

Figure 1. Spectral domain optical coherence tomography (SD-OCT) drusen segmentation example in different views. 3D surface view with the estimation of Bruch’s

membrane surface indicated in green and the detected drusen regions identified in magenta (volumetric properties). Topographic view of a drusen elevation map with

individual drusen indicated in magenta (area, extent, and density properties). The dotted green and yellow lines indicate B-scan locations. B-scan view, with generated

druse outlines shown in magenta. The blue square identifies a region shown in detail, where indications of drusen height, slope and reflectivity are shown. Adapted

from: Hallak JA, de Sisternes L, Osborne A, Yaspan B, Rubin DL, Leng T. Imaging, genetic, and demographic factors associated with conversion to neovascular age-

related macular degeneration: secondary analysis of a randomized clinical trial. JAMA Ophthalmol 2019;137:738–44. (A color version of this figure is available in the

online journal.)

Figure 2. (a) Color fundus photo with 3- and 5-mm circles. (b) Manual drusen

outlines performed by the reading center (drusen area 3.46 mm2 (3mm), 5.65

mm2 (5mm)). Adapted from: Yehoshua Z, Gregori G, Sadda SR, Penha FM,

Goldhardt R, Nittala MG, Konduru RK, Feuer WJ, Gupta P, Li Y, Rosenfeld PJ.

Comparison of drusen area detected by spectral domain optical coherence

tomography and color fundus imaging. Invest Ophthalmol Vis Sci 2013;54:2429–

34.50 (A color version of this figure is available in the online journal.)

2162 Experimental Biology and Medicine Volume 246 October 2021
...............................................................................................................................................................



F
ig
u
re

3
.
(a
)S

im
p
le
m
a
c
h
in
e
le
a
rn
in
g
(M

L
)a

n
d
d
e
e
p
le
a
rn
in
g
(D
L
)p

ip
e
lin
e
ill
u
s
tr
a
ti
o
n
;
(b
)P

re
d
ic
ti
o
n
p
ip
e
lin
e
fo
r
m
o
d
e
ls
w
it
h
s
e
q
u
e
n
ti
a
lm

u
lt
i-
m
o
d
a
ld

a
ta
.A

n
a
rr
a
y
o
f
p
a
ti
e
n
t
m
e
ta
d
a
ta

a
n
d
im

a
g
in
g
fe
a
tu
re
s
a
re

u
s
e
d
a
s
in
p
u
t

to
a
s
e
q
u
e
n
ti
a
l
m
o
d
e
l
(r
e
c
u
rs
iv
e
n
e
u
ra
l
n
e
tw

o
rk
)
fo
r
p
re
d
ic
ti
o
n
s
a
t
d
if
fe
re
n
t
ti
m
e
fr
a
m
e
s
.
(A

c
o
lo
r
v
e
rs
io
n
o
f
th
is

fi
g
u
re

is
a
v
a
ila
b
le

in
th
e
o
n
lin
e
jo
u
rn
a
l.)

Romond et al. Imaging and AI for AMD progression 2163
...............................................................................................................................................................



Table 2. Learning algorithms for age-related macular degeneration progression.

Study Description Dataset Results

Banerjee et al.23 a Hybrid sequential prediction model "Deep Sequence"

integrating OCT imaging features, demographic

and visual variables with an RNN model to predict

risk of exudation (progression to neovascular AMD)

within 3 to 21months

HARBOR: 671 fellow eyes AUC:

0.96� 0.02 (3months)

0.97� 0.02 (21months)

Bhuiyan et al. 34 a Color fundus photos and 12-step severity scale class

used with demographic data in logistic tree model

to predict progression to advanced dry, neovas-

cular, or all late AMD in 1 or 2 years (yrs).

AREDS >4600 color fundus

images

ALL advanced AMD

Se: 0.91 (1 yr), 0.92 (2 yr)

Sp: 0.85 (1 yr), 0.84 (2 yr)

ACC: 0.86 (1 yr), 0.86 (2 yr)

Wu et al.35 Cox proportional hazards models with LOOCV to

compare fundus versus OCT versus both inputs for

neovascular and advanced dry AMD progression in

36months

LEAD: 280 eyes from 140

participants. OCT B-

scans, fundus photos.

AUC: 0.85

Wu et al.36 Cox proportional hazards model with LOOCV to

examine added predictive value of PSD and LLD to

fundus data for progression to GA, nascent GA and

neovascular AMD within 36months

LEAD: 280 eyes from 140

participants. fundus

photos.

AUC: 0.80

Yan et al.37 a Genotypes and color fundus images used to predict

progression to advanced dry or neovascular AMD

within range of 2–7 years with a modified deep

convolutional neural network

AREDS> 31,000 fundus

images from 1351

subjects

AUC: 0.85–0.86

Yim et al.38 DL model based on three-dimensional SD-OCT

images and automatic tissue maps combined for

neovascular AMD prediction within 6months

Internal retrospective cohort

2795 patients. OCT

AUC: 0.745 (conversion scan

ground truth), 0.886 (first

injection ground truth)

Hallak et al.24 Mixed methods to determine associations between

variables and progression to neovascular AMD.

Bivariate analysis for genetic variants and LASSO

regression for OCT imaging features decided the

variables included alongside demographic data in

survival analysis and Cox proportional hazards

regression.

HARBOR: 686 fellow eyes

with non neovascular

AMD at baseline

Female sex (HR, 1.57; 95% CI,

1.11–2.20)

Drusen area within 3mm of the

fovea (HR, 1.45; 95% CI,

1.24–1.69)

Mean drusen reflectivity (HR,

3.97; 95% CI, 1.11–14.18

Rivail et al.39 Deep Siamese network capturing time-specific fea-

tures on longitudinal data to predict advanced dry

AMD in 6, 12, and 18months.

Internal: 3308 OCT B-scans

from 221 patients (420

eyes)

AUC:

6months: 0.753

12months: 0.784

18months: 0.773

Russakoff et al.40 Comparison of two deep convolutional neural net-

works for neovascular AMD risk prediction over

2 years (17–27-months follow-up).

Internal: 71 eyes, 71 sub-

jects (progressors ¼31).

9088 OCT B-scans from

two devices.

AUC:

VGG16: 0.87

AMDnet: 0.91

Burlina et al.41 3 DCNN models developed to estimate 5-year risk of

progression to neovascular and GA based on 9-

step AREDS severity scale

AREDS< 6000 fundus

images across 9

classifications

PE:

Soft model: 0.038

Hard model: 0.035

Regressed: 0.053

Schmidt-Erfurth

et al.42
Demographic, genetic, and image features input to

Cox proportional hazards models with 10-fold

cross validation to predict neovascular AMD or GA

in 2 years

HARBOR: 495 eyes (pro-

gressors¼ 159 eyes) SD-

OCT

Se: 0.8 (CNV), 0.8 (GA)

Sp: 0.46 (CNV), 0.69 (GA)

AUC: 0.68 (CNV), 0.8 (GA)

Seddon et al.12 Genetic, demographic, environmental, and image

features input to Cox proportional hazards models

to predict neovascular AMD and/or GA at any

follow-up visit within 12 years

AREDS: fundus images,

2951 subjects (834

progressors)

AUC:

0.911 (All AMD), 0.923 (GA),

0.896 (neovascular AMD)

Chiu et al.43 a Demographic and environmental features included in

logistic model producing a risk scoring system for

neovascularization or central GA by end of study

timeframe (12 years)

AREDS: fundus images from

4507 participants (1185

progressors)

Se: 0.876

Sp: 0.736

de Sisternes et al.25 Automated pipeline for segmentation and extraction

of longitudinal image features used in L1-penalized

Poisson model predicting neovascular AMD pro-

gression within 5 years

Private: 2146 SD-OCT scans

of 330 eyes of 244

patients (36 eyes

progressed)

AUC: 5 yr: 0.74

11months:0.92

16months:0.86

18months:0.7

48months:0.79

Seddon et al.15 a Output from Cox proportional hazards regression,

including demographic, environmental and genetic

features, used for predictive algorithm of neovas-

cular AMD and GA within 5 or 10 years

AREDS: fundus photos from

2937 individuals (819

progressors)

AUC:

5 yr: 0.885

10 yr: 0.915

Se: sensitivity; Sp: specificity; Acc: accuracy; AUC: area under the receiver operating curve; PE: prediction error.
aValidation performed on external dataset.
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in a 36-month time period.35,36 In one study, Wu et al.35

compared inputs of fundus photography, versus OCT
scans versus both imaging modalities to investigate the
optimum input for their system, finding the best results
with the combination of both modalities (Table 2). In the
second study, Wu et al.36 examined the added predictive
value of microperimetric sensitivity (PSD) and low lumi-
nance deficit (LLD) to fundus photography data, finding no
improvement in predictive performance with the added
data types (Table 2). Schmidt-Erfurth et al.42 used a similar
modeling strategy to predict progression to CNV or GA in
two years. They developed two Cox proportional hazards
models with 10-fold cross validation to predict either CNV
or GA with SD-OCT, genetic, and demographic data, find-
ing better results for GA prediction (GA: AUC 0.8, CNV:
AUC 0.68). Their model learned from a four-month obser-
vational period to predict conversion during the two years
of a clinical trial study.42 Using Cox proportional hazards
regression, Seddon et al.15 used demographic, environmen-
tal, genetic, and fundus images from the AREDS dataset to
produce a risk score for conversion to neovascular or dry
advanced AMDwithin 5 or 10 years. The ultimate goal was
to develop an online clinical decision-making tool and to
determine the association between genetic variants and
conversion with results for combined neovascular and
advanced dry AMD prediction (AUC: 0.911). They also
used the same modeling method to predict conversion by
the end of the study timeframe at 12 years.12

Other studies employing ML methods include Chiu
et al.’s43 use of demographic, environmental, and imaging
features to create a risk scoring system with Bayes’ theorem
in a logistic model for progression to neovascularization or
central GA by the end of a 12-year clinical trial study
(AREDS). Their reported metrics included Sn and Sp only
and achieved similar results in their internal validation (Sn:
0.876, Sp: 0.736) compared to validation of a 10-year pre-
diction on an external validation dataset (BMES) (Sn:0.899,
Sp: 0.729).43 de Sisternes et al.25 used a fully automated

pipeline to segment and extract image features of drusen
and longitudinal evolution in drusen characteristics from
SD-OCT scans. Their ML prediction model used these fea-
tures in an L1-penalized Poisson predictive model to pre-
dict exudation events at arbitrary future time intervals,
where time to prediction is a variable in the model.
This work was able to produce reliable predictions in the
short term (within threemonths) and in longer time
intervals, up to five years. Their results showed very good
predictions in the short term (0.92 AUC predictions
within 11months) but a decrease in AUC in the longer
time frames (Table 2).25

Deep learning models

As mentioned above, deep learning is a subset of machine
learning that uses multiple layers of algorithms, each pro-
viding different interpretations of the data presented to it.
DLmodels have been primarily used in the past decade, and
studies including thesemethods are increasing in number.15

This mini review includes six studies using DL to predict
AMD progression. Banerjee et al.23 proposed a hybrid
sequential prediction model (termed “Deep Sequence”)
that utilized multi-modal features (imaging, patient meta-
data, and visual factors) in a recursive neural network
(RNN) to predict risk of exudation in AMD patients within
a short (3months) and long-term (21months) timeframe. A
representative pipeline for deep-sequence-like sequential
models is shown in Figure 3. This study was conducted on
the fellow eyes of the HARBOR clinical trial data (671 AMD
eyes with 13,954 observations), and the deep sequence
model achieved a cross validation AUC of 0.96 and 0.97
for the prediction of exudation within 3months and
21months, respectively. This model was further validated
on an external real-world dataset from the Bascom Palmer
Eye Institute (BPEI). The prediction performance decreased
on the validation data as expected due to variability and
unstructured characteristics of real-world data with three-
month predictions on internal and external data achieving

Table 3. Studies with AMD progression model validation using external datasets.

Study

Training and internal vali-

dation dataset Internal results External testing dataset External validation results

Banerjee et al.23 HARBOR: 671 fellow eyes

SD-OCT

AUC for neovascular AMD:

0.96� 0.02 (3mo)

0.97� 0.02 (21mo)

Validation on real-world

dataset: 719 eyes from

507 patients, 12,288 OCT

volumes

AUC:

0.82 (3mo)

0.68 (21mo)

Bhuiyan et al. 34 AREDS >4600 color fundus

images

ALL advanced AMD (neo-

vascular or advanced dry)

Se: 1 yr (0.91) 2 yr (0.92)

Sp: 1 yr (0.85) 2 yr (0.84)

Acc: 1 yr (0.86) 2 yr (0.86)

NAT-2 dataset (88 eyes)

prediction to 3-year

conversion

ALL advanced AMD (neo-

vascular or advanced dry)

Se: 0.84

Sp: 0.9

Acc: 0.81

Yan et al.37 AREDS> 31,000 fundus

images from 1351

subjects

AUC for late AMD (neovas-

cular or advanced dry

AMD: 0.85–0.86 (2,3,4,5,6

and 7-year predictions)

UK Biobank (200 partici-

pants) prediction to 3-

year conversion

AUC: 0.9

Chiu et al. 43 AREDS: fundus photos from

4507 participants (1185

progressors)

Predictions for neovascula-

rization or central GA

Se: 0.876

Sp: 0.736

Blue Mountains Eye Study

(BMES) followed for

10 years 2169 partici-

pants (69 progressors)

Se: 0.899

Sp: 0.729

Se: sensitivity; Sp: specificity; Acc: accuracy; AUC: area under the receiver operating curve.
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AUCs of 0.96 and 0.82, and 21-month predictions achieving
AUCs of 0.97 and 0.68, respectively (Table 3).23 In another
study,Yan et al.37 predictedprogression to advanceddry and
late stage neovascular AMD over two, three, four, five, six,
and seven years using AREDS data with genotypes and
fundus image data as input to their multi-layer convolu-
tional neural network (CNN) and achieved similar perfor-
mance metrics across years (AUC: 0.85–0.86). Their external
validation, predicting three-year conversion using data
from a UK biobank (200 participants) produced an even
higher AUC of 0.9.37 Burlina et al.41 also used AREDS data,
first employing aCNN to classify images based on a 4 and 9-
step severity scale, and then estimate five-year risk of pro-
gression through creating threedifferent deep convolutional
neural to produce the following three predictions (DCNN):
(i) a soft predictionwhich defined risk as the expected value
of class risk, (ii) a hard prediction where risk was defined as
the maximum value of class risk, and (iii) a regressed pre-
diction which skipped classification and used the DCNN
directly to map image input to risk prediction.
Comparisons of prediction error showed the hard predic-
tion as providing the most accurate results41 (Table 2).

In the remaining three studies, internal institutional data
were collected to train and test DL systems. Yim et al.38

tested their network’s ability to predict six-month progres-
sion to CNV using SD-OCT images and automatic tissue
maps. A two-stage segmentation and prediction network
was combined with a model trained on raw OCT images
and reported AUCs were provided for both conversion
scan and first injection ground truths (Table 2). While first
injection ground truth showed better results (AUC: 0.886),
the researchers chose conversion scan ground truth as the
basis for their analysis, which included choosing liberal
(higher Sn of 0.8) and conservative (higher Sp of 0.9)
cutoff points. While the liberal selection of higher Sn pro-
vided a Sp of 0.55, the conservative selection of higher Sp
provided a poor Sn of 0.34.38 Rivail et al.39 predicted GA
conversion in 6, 12, and 18months with their deep Siamese
network, a self-supervised learning system of spatiotempo-
ral representations with 6-fold cross validation. AUC and
precision were reported with the former remaining consis-
tent across time and the latter increasing across time
points39 (Table 2). Russakoff et al.40 compared the ability
of two different CNNs to predict two-year (17–27month)
conversion to wet AMD. VGG16, a popular CNN for image
recognition was tested against AMDnet, a novel, simplified
CNN architecture trained from scratch on a privately
acquired set of OCT B-scans using two different OCT devi-
ces. AMDnet outperformed VGG16 with an AUC of 0.91 vs.
0.87 respectively.40

Model validation

Of the 15 selected studies, only four reported validation on
separate datasets (Table 3). The ability of any AI system to
function well on one trained dataset (internal dataset) does
not necessarily foreshadow the successful application of
that system to external datasets and real-world clinical
data. Attempting and reporting on external validation, spe-
cifically on real-world clinical data, will contribute to the

knowledge base of the research community attempting
these types of predictions for future developments with
the overall aim of real-world clinical application.

Clinical trial datasets were used for initial training and
internal validation in all of the studies that used an external
dataset for testing (Table 3). Banerjee et al.23 and Yan et al.37

used a DL system for their predictions, while Bhuiyan
et al.34 and Chiu et al.43 used ML approaches. Banerjee
et al.23 tested their deep sequence model on a real-world
clinical dataset for the prediction of exudation in AMD at
different time points. The deep sequence model general-
ized well for making the short-term predictions (within
three, six, and ninemonths, with AUCs of 0.82, 0.77, and
0.71, respectively). However, a decrease was observed for
the longer time intervals compared to the performance of
the deep sequence model on the HARBOR clinical trial
data. This difference is mainly due to population character-
istics, the lack of socio-demographic factors in the external
dataset, and the fact that the external dataset was from a
real-world clinical setting.23 Yan et al.37 showed an
improvement in AUC when they tested their model on a
real-world biobank dataset. While AUCs for two, three,
four, five, six, and seven-year predictions to neovascular
or advanced dry AMD ranged between 0.85 and 0.86, a
three-year conversion prediction on the new dataset
achieved an AUC of 0.9.37 Bhuiyan et al.34 predicted
three-year conversion to advanced AMD using the NAT-2
dataset for external testing. They improved specificity in
their external validation results while slightly reducing sen-
sitivity and accuracy.34 Chiu et al.43 validated on the BMES
dataset and on a random derivation of the original dataset,
respectively, and were able to achieve very similar results.

Machine learning versus deep learning methods

As we report different approaches utilizing ML and DL
methods for AMD detection and prediction, it must be
noted that the use of ML or DL approaches is generally
contingent upon the use case and several parameters. The
decision to use these computation tools is dependent on
different scenarios, available data, and access to compute
resources. Traditionally, DL has performed better than ML
when the number of data is comparatively larger with a
good representation of test use cases in the training data.
Traditional ML approaches will work better when the data
are smaller, and engineered features are correlated better
with subtle changes in the diseases. Oftentimes, it takes the
DL model a long time to extract the subtle intuition found
in local features, which might require large computational
resources. Moreover, for both ML and DL models, it can be
challenging to limit overfitting and make the model gener-
alized for widespread deployment. The general trend cur-
rently is moving towards hybrid modeling and using
multi-modality (different imaging modality, text, metadata
etc.) for a more holistic approach for disease detection and
progression prediction.

Conclusions

With advances in computational capabilities, AI applica-
tions, machine learning, and particularly deep learning
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are likely to transform patient care and management in
AMD, through accessibility, accuracy and timeliness of
diagnoses, monitoring, and treatments. This mini review
highlighted current work utilizing machine and deep learn-
ing applications to develop AI systems for AMD progres-
sion predictions. These systems, particularly deep learning
algorithms, with imaging biomarkers are showing promis-
ing results. Notably, there is some variation across systems.
This variation may be due to the type of data inputted,
population characteristics, and the prediction methodology
utilized. Authors of the reviewed studies reported limita-
tions including small sample sizes (or a desire for larger
study populations)23,24,35,40,42 and limited numbers of end-
points reached.35–37 Additional limitations included use of
only one imaging modality for analysis,34,38,40 lack of diver-
sity in the study populations,12,37,38,41 and datasets not rep-
resenting real-world patient data.23,24,34,36,38 As the number
of studies continue to increase, the ability to pool results
and make comparisons regarding these aspects of predic-
tive model creation may be of use to researchers to improve
on their methods. In addition to identifying at-risk patients
for AMD progression as defined by conversion to CNV or
GA development, AI applications can be used to predict the
growth rate and direction of biomarkers, specifically for
GA.44–46

Four of the 15 studies in this review 15,34,37,43 reported
performances on external data. Validating on real-world
clinical data remains limited. For successful clinical trans-
lations and deployment of any AI system, research efforts
towards building the needed infrastructures for developing
databases for AI applications in ophthalmology as well as
the ability to share diverse data across health systems will
improve the validity and generalizability of AI appli-
cations.47 Solutions to data access problems, such as feder-
ated learning, are very valuable in enhancing validation
studies. 48,49 Federated learning allows the training and
testing of algorithms collaboratively without the need to
exchange data.48,49 Machine learning models are developed
locally at institutions and only model characteristics
(parameters and gradients) are shared.48,49 By allowing
multiple institutions to train without the need for data cen-
tralization, federated learning may improve model gener-
alizability and address data sensitivity. In addition to
validation studies, algorithms need to be more interpret-
able and explainable to ensure targeted representation
and to identify potential bias in training data, all while
protecting data safety and privacy.47 Finally, a critical
aspect for successful deployment is evaluating the integra-
tion of AI systems into clinical workflows. Collectively,
building algorithms that are valid, generalizable, interpret-
able, and that integrate well into clinical workflows in real-
world settings will bring us closer to the delivery of per-
sonalized care for improved patient outcomes.

AUTHORS’ CONTRIBUTIONS

All authors participated in the writing and editing of the man-
uscript; KR, MA, SK, and JAH conducted study retrieval,
review, and analyses; KR, MA, and JAH wrote the manuscript,
and LdS, TL, JIL, and DL reviewed and edited the manuscript.

DECLARATION OF CONFLICTING INTERESTS

The author(s) declared the following potential conflicts of
interest with respect to the research, authorship, and/or pub-
lication of this article: Luis de Sisternes: Carl Zeiss Meditec
(Employee).

FUNDING

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by a BrightFocus Foundation
grant M2019155 (JAH), an Unrestricted Grant for Research to
Prevent Blindness, Department of Ophthalmology and Visual
Sciences, University of Illinois at Chicago, Chicago, IL (RK,
SK, JIL, JAH), and the Core grant for Vision Research (2P30
EY001792 41), Department of Ophthalmology and Visual
Sciences, University of Illinois at Chicago, Chicago, IL, (RK,
SK, JIL, JAH).

ORCID iD

Joelle A Hallak https://orcid.org/0000-0002-4243-9930

REFERENCES

1. Rein DB, Wittenborn JS, Zhang X, Honeycutt AA, Lesesne SB, Saaddine

J, for the Vision Health Cost-Effectiveness Study Group. Forecasting

age-related macular degeneration through the year 2050 – the potential

impact of new treatments. Arch Ophthalmol 2009;127:533–40
2. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng CY, Wong TY.

Global prevalence of age-related macular degeneration and disease

burden projection for 2020 and 2040: a systematic review and meta-

analysis. Lancet Glob Health 2014;2:e106–e116

3. Gehrs KM, Anderson DH, Johnson LV, Hageman GS. Age-related mac-

ular degeneration–emerging pathogenetic and therapeutic concepts.

Ann Med 2006;38:450–71

4. Gass JDM. Stereoscopic atlas of macular diseases. 4th ed. Maryland

Heights, MO: Mosby, 1998

5. Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degen-

eration. Lancet 2018;392:1147–59
6. Yang Z, Stratton C, Francis PJ, Kleinman ME, Tan PL, Gibbs D, Tong Z,

Chen H, Constantine R, Yang X, Chen Y, Zeng J, Davey L, Ma X, Hau

VS, Wang C, Harmon J, Buehler J, Pearson E, Patel S, Kaminoh Y,

Watkins S, Luo L, Zabriskie NA, Bernstein PS, Cho W, Schwager A,

Hinton DR, Klein ML, Hamon SC, Simmons E, Yu B, Campochiaro B,

Sunness JS, Campochiaro P, Jorde L, Parmigiani G, Zack DJ, Katsanis N,

Ambati J, Zhang K. Toll-like receptor 3 and geographic atrophy in age-

related macular degeneration. N Engl J Med 2008;359:1456–63

7. Shaw PX, Stiles T, Douglas C, Ho D, Fan W, Du H, Xiao X. Oxidative

stress, innate immunity, and age-related macular degeneration. AIMS

Mol Sci 2016;3:196–221
8. McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA.

Relationship between RPE and choriocapillaris in age-related macular

degeneration. Invest Ophthalmol Vis Sci 2009;50:4982–91
9. Joachim N, Mitchell P, Kifley A, Rochtchina E, Hong T, Wang JJ.

Incidence and progression of geographic atrophy: observations from

a population-based cohort. Ophthalmology 2013;120:2042–50

10. Liew G, Joachim N, Mitchell P, Burlutsky G, Wang JJ. Validating the

AREDS simplified severity scale of age-related macular degeneration

with 5- and 10-year incident data in a population-based sample.

Ophthalmology 2016;123:1874–8

11. Sacconi R, Corbelli E, Querques L, Bandello F, Querques G. A review of

current and future management of geographic atrophy.Ophthalmol Ther

2017;6:69–77

Romond et al. Imaging and AI for AMD progression 2167
...............................................................................................................................................................

https://orcid.org/0000-0002-4243-9930
https://orcid.org/0000-0002-4243-9930


12. Seddon J, Silver R, KwongM, Rosner B. Risk prediction for progression

of macular degeneration: 10 common and rare genetic variants, demo-

graphic, environmental, and macular covariates. Invest Ophthalmol Vis
Sci 2015;56:2192–202

13. Sobrin L, Seddon JM. Nature and nurture- genes and environment-

predict onset and progression of macular degeneration. Prog Retin
Eye Res 2014;40:1–15

14. Seddon JM, Reynolds R, Maller J, Fagerness JA, Daly MJ, Rosner B.

Prediction model for prevalence and incidence of advanced age-

related macular degeneration based on genetic, demographic, and

environmental variables. Invest Ophthalmol Vis Sci 2009;50:2044–53
15. Seddon JM, Reynolds R, Yu Y, Daly M, Rosner B. Risk models for pro-

gression to advanced age-related macular degeneration using demo-

graphic, environmental, genetic, and ocular factors. Ophthalmology
2011;118:2203–11

16. Feigl B, Morris CP. The challenge of predicting macular degeneration.

Curr Med Res Opin 2011;27:1745–8

17. Heesterbeek TJ, Lor�es-Motta L, Hoyng CB, Lechanteur YTE, den

Hollander AI. Risk factors for progression of age-related macular

degeneration. Ophthalmic Physiol Opt 2020;40:140–70
18. Graham N. Artificial intelligence. Vol. 1076. Blue Ridge Summit: Tab

Books, 1979

19. Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y. Applications of artificial

intelligence in ophthalmology: general overview. J Ophthalmol
2018;2018:1–15

20. Hoerl AE, Kennard RW. Ridge regression: biased estimation for non-

orthogonal problems. Technometrics 1970;12:55–67
21. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of

studies reporting the performance of artificial intelligence algorithms

for diagnostic analysis of medical images: results from recently pub-

lished papers. Korean J Radiol 2019;20:405–10
22. Kanagasingam Y, Bhuiyan A, Abràmoff MD, Smith RT, Goldschmidt L,
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