
Original Research Highlight article

Proteinase 3 contributes to endothelial dysfunction in an

experimental model of sepsis

Eric K Patterson1 , Carolina Gillio-Meina2, Claudio M Martin1,3, Douglas D Fraser1,2,4,
Logan R Van Nynatten5, Marat Slessarev1,5 and Gediminas Cepinskas1,6

1Centre for Critical Illness Research, Lawson Health Research Institute, Lawson Health Research Institute, London, N6A 5W9, Canada;
2Children’s Health Research Institute and Translational Research Centre, Lawson Health Research Institute, London, N6A 5W9, Canada;
3Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1,

Canada; 4Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada;
5Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, N6A 5C1, Canada; 6Department of

Medical Biophysics, Western University, London, N6A 5C1, Canada

Corresponding author: Gediminas Cepinskas. Email: gcepinsk@uwo.ca

Abstract
In sepsis-induced inflammation, polymorphonuclear neutrophils (PMNs) contribute to vas-

cular dysfunction. The serine proteases proteinase 3 (PR3) and human leukocyte elastase

(HLE) are abundant in PMNs and are released upon degranulation. While HLE’s role in

inflammation-induced endothelial dysfunction is well studied, PR3’s role is largely uninves-

tigated. We hypothesized that PR3, similarly to HLE, contributes to vascular barrier dys-

function in sepsis. Plasma PR3 and HLE concentrations and their leukocyte mRNA levels

were measured by ELISA and qPCR, respectively, in sepsis patients and controls.

Exogenous PR3 or HLE was applied to human umbilical vein endothelial cells (HUVECs)

and HUVEC dysfunction was assessed by FITC-dextran permeability and electrical resis-

tance. Both PR3 and HLE protein and mRNA levels were significantly increased in sepsis

patients (P< 0.0001 and P< 0.05, respectively). Additionally, each enzyme independently

increased HUVEC monolayer FITC-dextran permeability (P< 0.01), and decreased electri-

cal resistance in a time- and dose-dependent manner (P<0.001), an effect that could be ameliorated by novel treatment with

carbon monoxide-releasing molecule 3 (CORM-3). The serine protease PR3, in addition to HLE, lead to vascular dysfunction and

increased endothelial permeability, a hallmark pathological consequence of sepsis-induced inflammation. CORMs may offer a

new strategy to reduce serine protease-induced vascular dysfunction.
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Introduction

Sepsis, a syndrome of physiologic, pathologic, and bio-
chemical abnormalities induced by infection is a major
public health concern worldwide.1 Despite modern practi-
ces in critical care medicine, sepsis remains a leading cause
of morbidity andmortality in hospital settings.2 In 2017, the
World Health Assembly declared sepsis a global
emergency.3

The pathophysiology of sepsis is complex and not well
defined. One of the key features of sepsis is increased
microvascular permeability, contributing to the formation
of interstitial edema and organ dysfunction.4 During sepsis,
systemic inflammation subjects the vascular endothelium
to circulating pro-inflammatory mediators (e.g. lipopoly-
saccharide and cytokines) and to the damaging paracellular
effects of polymorphonuclear neutrophils (PMNs).
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PMNs contain azurophilic granules that encapsulate
large amounts of proteolytic and oxidative enzymes,
including the serine proteases, proteinase 3 (PR3) and
human leukocyte elastase (HLE).5,6 Azurophilic enzymes
are mobilized to the plasma membrane upon neutrophil
stimulation by inflammatory mediators,6,7 while PR3 is
also constitutively present on resting neutrophil plasma
membranes.8 These enzymes contribute to endothelial dys-
function directly or through the formation of neutrophil
extracellular traps.9–12 PR3 also can activate pro-IL-1b,13

while both HLE and PR3 enhance neutrophil extravasa-
tion.14–16 Our previous work demonstrated that PR3 can
degrade some junctional proteins (e.g. VE-cadherin and
occludin) in brain microvascular endothelial cells.10 As
junctional proteins are an integral part of creating the
microvascular endothelial barrier, these enzymes may
play a role in the progression to endothelial barrier dys-
function. Further, these enzymes degrade extracellular
matrix,13 thus accelerating PMN recruitment and exacer-
bating end-organ damage. Plasma from patients with
septic shock shows increased proteolysis products, includ-
ing those from elastase-like enzymes.17

As such, strategies to limit proteolytic injury to the vas-
cular endothelium and/or inflamed tissue may offer ther-
apeutic benefits.

Carbon monoxide releasing molecules (CORMs) are an
emerging class of powerful anti-inflammatory drugs which
have shown benefit in providing protective effects in sev-
eral in vivo animal models of severe inflammation18–21

including sepsis.22 While CORMs protective mechanisms
are not fully understood, we demonstrated previously
that CORM-3 inhibits the damaging oxidant enzyme, mye-
loperoxidase.9 In the current study we measured PR3 and
HLE concentrations in plasma samples from patients with
sepsis and investigated PR3 and HLE’s proteolytic actions
on endothelial barrier integrity in the presence or absence
of CORM-3 treatment.

Materials and methods

Study subjects

The institutional review board of Western University
(London, ON, Canada) approved this study. Consent was
obtained from patients or a substitute decision-maker.
Sepsis subjects were characterized as having a confirmed
or suspected sepsis diagnosis using the Sepsis 3.0 criteria,1

plasma was obtained within 24 h of admission to the inten-
sive care unit. Healthy, medication-free volunteers without
inflammatory conditions were also recruited and con-
sented. Venous or arterial blood was drawn via indwelling
catheters (sepsis patients) or venipuncture (controls) into
tubes with 0.109mol/L trisodium citrate. Whole blood
was immediately centrifuged at 1500g, 15min, 4�C.
Plasma and buffy coat were separated and immediately
stored at �80�C. Patient’s characteristics were recorded
and blood was drawn within 24 h of sepsis diagnosis.
Sequential organ failure assessment (SOFA) score,23 multi-
ple organ dysfunction score (MODS),24 and acute physiol-
ogy and chronic health evaluation II (APACHE II)25 were

calculated from data collectedwithin the first 24 h of admis-
sion to the intensive care unit.

PR3 and HLE blood plasma concentrations

Plasma concentrations were determined by ELISA.
Samples were thawed on ice, then diluted to 1:50–1:200
for PR3 (Elabscience, E-EL-H1970) or 1:100 for HLE
(Abcam, ab119553) in the respective kit’s provided
sample diluent and assayed according to the manufac-
turer’s protocol.

RNA extraction and qPCR

RNAwas extracted from buffy coat and qPCR preformed as
described previously.26 RNA integrity numbers (RINs)
were determined for each sample to ensure sufficient qual-
ity for qPCR. Due to the archival nature of the samples,
some subject’s samples returned RIN< 6.3 and were
excluded for qPCR and additional subject’s samples
obtained for qPCR only. Primer and probe sets were from
Thermo Fisher; HLE (Hs00236952_m1) and PR3
(Hs01597751_g1) gene expression was normalized to
GUSB (glucuronidase beta) (Hs00939627_m1) and UBC
(ubiquitin C) (Hs00824723_m1) and scaled to the healthy
controls.

Human umbilical vein endothelial cells (HUVECs)

HUVECs were isolated from normal deliveries as previous-
ly described.27 Passages 1–5 were grown on fibronectin-
coated vessels in M199 (Sigma, M5017) supplemented
with 10% fetal bovine serum (Gibco, 12483-020), 50 mg/
mL mitogen (Biomedical Technologies, BT-203), 10U/mL
heparin (Pharmaceutical Partners of Canada, C504801),
100 IU/mL penicillin, and 100mg/mL streptomycin
(Wisent Inc, 450-201-EL).

Endothelial barrier integrity

Transendothelial movement of Texas Red-dextran (molec-
ular weight 3000; Molecular Probes, D3329) was used to
functionally assess HUVEC monolayer permeability. This
was performed as described previously,9 except HUVECs
were treated with 200mL of either 5mg/mL PR3 (Athens
Research & Technology, 16-14-161820) or 2mg/mL HLE
(Athens Research & Technology, 16-14-051200) in Hank’s
balanced salt solution (HBSS) for 60min at 37�C. Texas
Red-dextran was applied to the apical chamber for 4min,
and then the basal chamber was assayed for fluorescence.
HBSS alone was used as a control.

In parallel experiments, monolayer integrity was
assessed by monitoring real-time HUVEC monolayer elec-
trical resistance. To this end, HUVECs were seeded at
1.5� 105 cells per well in eight-well arrays (Applied
Biophysics, 8W10Eþ PET) in EBM-2 medium with EGM-
2MV factors (Lonza, CC-3202) and grown for 2–3 days until
confluent.Wells werewashed three times with 400mLHBSS
and the cells allowed to acclimate in the incubator for 45–
60min before beginning enzyme treatments. Two hundred
microliters were then replaced with PR3 or HLE to a final
concentration of 1–5 mg/mL in duplicate wells while
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resistance was continuously monitored at 4000Hz for at
least 90min with an electric cell-substrate impedance sens-
ing (ECIS) instrument (Model Zh; Applied Biophysics). For
experiments involving CORM-3 (Sigma, SML0496) the
drug was mixed with the enzyme just before the solution
was added to the cells. HBSS alone was added to control
wells. Resistance was normalized to the average of the five
readings just before adding the treatment to account for
well-to-well variation.

Statistical analyses

Analyses were carried out with GraphPad Prism v 4.03 or
9.1. Differences in plasma enzyme concentrations or gene
expression were analyzed with the Mann-Whitney U test.
HUVEC permeability to dextran was analyzed by one-
sample Wilcox (samples normalized to 1 to correct for
day-to-day variation), and Bonferroni’s correction, alpha
adjusted to 0.025 for multiple comparisons. HUVEC resis-
tance was analyzed with two-way ANOVA.

Results

The demographic and illness characteristics of sepsis
patients and healthy controls are shown in Table 1.
A total of 35 patients were recruited for each of the sepsis
and control cohorts, the two cohorts were similar with
regards to age and sex. For sepsis patients, the most
common primary infection site was the lung, with gram
positive bacteria as the most common pathogen. All but
one sepsis patient received vasopressors for shock, and
66% of patients received intravenous corticosteroid

treatment. The SOFA score within the first 24 h was 9.5�
3.2 (mean � SD), indicating the patients had a high degree
of organ dysfunction and a greater than 30% mortality risk.
In keeping with the SOFA scores, our patient cohort had
37% mortality (Table 1).

Shown in Figure 1 are the measured concentrations of
PR3 (Figure 1(a)) and HLE (Figure 1(b)) in plasma. There
was a significantly greater PR3 concentration in sepsis
patient plasma of 1163� 1502 ng/mL compared with
91.56� 53.94 ng/mL in healthy volunteers (mean� SD,
P< 0.0001 Mann-Whitney U test, n¼ 33 both groups).
Similarly, there was a significantly greater HLE concentra-
tion in plasma of sepsis patients of 161.40� 164.70 ng/mL
compared with approximately 17.53� 6.03 ng/mL in
healthy volunteers (mean� SD, P< 0.0001 Mann-Whitney
U test, n¼ 33 both groups). There were no statistically sig-
nificant differences between plasma PR3 and HLE in sur-
vivors versus non-survivors (P �0.4–0.5) nor strong
correlations between plasma enzyme concentrations and
clinical scores (Spearman r was< 0.3).

As both PR3 and HLE were elevated in the plasma of
sepsis patients, we used qPCR to determine if their mRNA
expression was also increased in leukocytes. The qPCR
results in Figure 2 show that both PR3 and HLE gene
expressions are significantly up-regulated in the leukocytes
of sepsis patients compared with healthy volunteers in a
subset of patients from which we were able to extract high-
quality RNA (P< 0.05 by Mann-Whitney U test, n¼ 7 and
8 for sepsis and control, respectively). High quality RNA
could not be extracted from all samples and had to be
excluded from analysis. The PR3 and HLE expression of
one sepsis patient was too low to detect. There was a very
strong correlation between neutrophil count (Table 1) and
PR3 expression (Pearson r¼ 0.801, P< 0.05) and HLE
expression (Pearson r¼ 0.878, P< 0.01). PMNs in healthy
individuals express little PR3 or HLE mRNA28 and their
expression is restricted mostly to immature neutro-
phils.29–31 This suggests that many of the sepsis patient’s
circulating neutrophils were very recently matured and/or
with possibly more immature cells compared with healthy
controls. Band cell and metamyelocyte information was
unavailable for most patients. The correlations between
neutrophil counts and the plasma concentrations of PR3
or HLE were very weak (Spearman r< 0.2).

To asses PR3’s effect on endothelial barrier dysfunction
we conducted functional assays on HUVECs grown on a
permeable membrane. As seen in Figure 3, when HUVECs
were treated with either PR3 (5 mg/mL) or HLE (2 mg/mL)
for 45min, the amount of Texas Red-dextran flow-through
was significantly increased compared with HBSS alone
suggesting the enzymes decreased endothelial barrier func-
tion (P< 0.01 by one-sampleWilcox test, a adjusted to 0.025,
PR3 n¼ 12, HLE n¼ 10).

To further clarify time and/or dose-dependence, in par-
allel experiments we monitored real-time PR3- and
HLE-induced damage to endothelial cells. As shown in
Figure 4(a), PR3 caused both a dose- and time-dependent
decrease in endothelial resistance over the course of 90min.
The decreased resistance reached significance earlier for
increasing concentrations of PR3; with a significant

Table 1. Patient demographics.

Characteristic

Sepsis

patients

Healthy

volunteers

Number of patients 35 35

Age (mean�SD) 57� 13 55� 12

Male/total (%) 17/35 (49%) 16/35 (46%)

SOFA Score (mean�SD) 9.5� 3.2 N/A

APACHE II (mean�SD) 32.7� 6 N/A

MODS day 1 (mean�SD) 8.5� 3.2 N/A

WBC count �109/L, �SD (n) 19� 10.9 (35) N/A

PMN count �109/L, �SD (n) 14.1� 9.1 (33)a N/A

Primary infection site, nb (%)

Lung 19 (54%)

Wound 14 (40%)

Skin 1 (2.9%) N/A

Urinary tract 14 (40%)

Blood 13 (37%)

Pathogen, nb (%)

Gram �ve bacteria 15 (43%) N/A

Gram þve bacteria 16 (46%) N/A

Fungal 2 (6%) N/A

Culture negative 4 (11%) N/A

Administered steroids, n (%) 23 (66%) N/A

Administered vasopressors, n (%) 34 (97%) N/A

Mortality, n (%) 13 (37%) N/A

APACHE II: acute physiology and chronic health evaluation II; MODS: multiple

organ dysfunction score; PMN: polymorphonuclear neutrophil; SOFA: sequen-

tial organ failure assessment score.
aData not available for all patients; 27/33 were neutrophilic, 5 neutropenic.
bSome patients had multiple sites and/or pathogens, therefore the total is >35.
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difference fromHBSS only, seen after 23, 11, and 4min for 1,
2 and 5 mg/mL PR3, respectively. A similar pattern
emerged with HLE, shown in Figure 4(b), where the
decreased resistance reached significance after 42, 15, and

4min for 1, 2, and 5 mg/mL HLE, respectively, compared
with HBSS only. It appears that at lower concentrations
(<2 mg/mL), PR3 causes more severe damage to HUVEC
than HLE; for instance, 1 mg/mL PR3-treated HUVEC
monolayers resistance decreased to approximately 45% of
untreated control after 90min compared with approximate-
ly 65% for HLE.

(a) (b)

Figure 1. PR3 and HLE plasma concentrations. Plasma samples were stored at�80�C until use, then thawed on ice. (a) The PR3 concentration was determined using

an Elabscience anti-human PR3 ELISA kit (E-EL-H1970) after plasma was diluted 1:50–1:200, n¼ 33 for both groups. (b) HLE plasma concentration was determined

using an Abcam anti-human HLE ELISA kit (cat # ab119553) after plasma was diluted 1:100, n¼ 33. *P< 0.0001 vs. healthy volunteers using the Mann-Whitney U test.

Data represent the mean�SEM.

Figure 2. Leukocyte PR3 and HLE gene expression. Buffy coats were frozen at

�80�C immediately after separation and RNA was extracted later using the Trizol

method. Samples with a RIN � 6.3 were used for qPCR; due to the archival

nature of the samples, sufficient quality RNA could not be obtained from all

subjects. PR3 (assay ID: Hs01597751_g1) or HLE (assay ID: Hs00236952_m1)

gene expression was normalized to GUSB (assay id: Hs00939627_m1) and UBC

(assay ID: Hs00824723_m1). *P< 0.05 vs. healthy controls, n¼ 7 and 8 for sepsis

patients and controls, respectively. For graphing, expression was scaled to the

corresponding healthy volunteer group�SEM.

Figure 3. HUVEC permeability after PR3 or HLE treatment. HUVECs were grown

in 24-well cell culture inserts (3.0 mm pore size). Confluent HUVEC monolayers

were washed with HBSS and the apical chamber was treated with 200 mL of 5 mg/
mL PR3 or 2 mg/mL HLE in HBSS for 60 min at 37�C, with 700 mL of HBSS in the

basal chamber. Two hundred microliters of 50 mg/mL Texas Red-dextran

(3000MW) were applied to the apical chamber for 4 min before the insert was

removed and the liquid collected from the basal chamber was assayed for Texas

Red fluorescence. HUVECs were treated with HBSS alone as a control. Values

are normalized to flow-through of HBSS alone¼ 1 (dashed line), data represent

the mean�SEM. *P< 0.01 vs. HBSS alone by one-sample Wilcox test, a
adjusted to 0.025, PR3 n¼ 12, HLE n¼ 10.
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Next, we used CORM-3 in conjunction with the pro-
teases to determine if it could mitigate some of the barrier
damage caused by the proteases. As seen in Figure 5(a),
100 mmol/L CORM-3 prevented the PR3-induced reduction
in HUVEC monolayer resistance, maintaining the endothe-
lial barrier function at levels similar to control (HBSS
alone), the effect was significant after approximately
11min (P< 0.001 by 2-way ANOVA). Similarly, Figure 5
(b) shows that CORM-3 prevented HLE-mediated endothe-
lial barrier dysfunction with the effect becoming significant
after approximately 4min (P< 0.0001 by 2-way ANOVA).

Discussion

We have herein shown that PR3 and HLE concentrations
are greater in the plasma of sepsis patients compared with
healthy controls and that these enzymes are each able to
compromise endothelial barrier function. Furthermore, this
effect can be attenuated by the addition of CORM-3, one of
an emerging class of anti-inflammatory compounds. While
HLE’s role in inflammation-induced endothelial dysfunc-
tion has received more attention, the role of PR3 is largely
uninvestigated. This work shows PR3’s important role in
contributing to one of the hallmark pathological conse-
quences of sepsis, endothelial barrier dysfunction.
Furthermore, that this decrease in endothelial barrier func-
tion is attenuated by CORM-3 provides insight into the
protective mechanisms of CORMs in severe inflammatory
conditions.

Certain clinical manifestations of sepsis and septic
shock, such as edema, hypovolemia, and hypotension
result from inflammation-induced endothelial dysfunc-
tion.32 The loss of endothelial barrier function allows
fluids, proteins, and solutes to leak between endothelial
cells into the intracellular space of organs, and vascular
tone dysregulation contributes to hypotension.12,32,33

Microvascular thrombi and neutrophil extracellular traps
cause tissue hypoperfusion, resulting in localized hypoxia

and tissue damage, contributing to organ damage. Together
these failures of the endothelium contribute to organ dys-
function in sepsis.

Our findings of greater plasma concentrations of both
PR3 and HLE in sepsis are consistent with previous stud-
ies.34,35 In healthy individuals, PR3 and HLE are confined
to leukocytes (primarily neutrophils),13,36 with little to none
of these enzymes in circulation, suggesting the greater con-
centrations in sepsis patient plasma come primarily from
degranulated neutrophils and/or sloughing from neutro-
phil extracellular traps.37 Indeed, the increased leukocytic
expression of these two transcripts in sepsis patients con-
firms that neutrophils were released immediately upon or
slightly before maturity in order to replace the large quan-
tity of neutrophils degranulating.

The present data indicate that PR3 and HLE have similar
effects on endothelial barrier integrity, possibly because
both enzymes originated from the same ancestral gene30

and have similar, though not identical, specificity.13,38

However, important differences are evident as, particularly
at lower concentrations, PR3 decreased endothelial resis-
tance to a greater extent than HLE. These effects may be
exacerbated in vivo because a1 antitrypsin (A1AT), which is
a native inhibitor of PR3 and HLE, preferentially inhibits
HLE over PR339 and PR3 activates the pro-inflammatory
cytokine IL-1b.40 Further, in vivo, A1AT is subject to oxida-
tive inhibition from the neutrophil respiratory burst at the
site of degranulation.41 Moreover, PR3 and HLE bound to
substrate are more resistant to inactivation by native inhib-
itors.39,41,42 Interestingly, CORM-3 effectively ameliorates
this decrease in endothelial barrier function caused by
PR3 and HLE. While the potential mechanisms (e.g.
CORM-3 directly inhibiting proteolytic activity or modulat-
ing endothelial cell responses) of this protective effect
remain to be investigated in future studies, our previous
studies demonstrate that CORM-3 inhibits myeloperoxi-
dase activity.9

(a)

µ
µ
µ µ

µ
µ

(b)

Figure 4. Real-time HUVEC resistance after PR3 or HLE treatment. HUVECs were grown to confluence in eight-well ECIS arrays (8W10Eþ). The indicated enzymes

were added to duplicate wells and resistance was recorded for at least 90 min; HBSS alone was used as a control. Results are expressed as percent of baseline

resistance (average of 5 readings before adding enzyme)�SEM. (a) PR3 effect on HUVEC resistance, n¼ 5 in duplicate. (b) HLE effect on HUVEC resistance, n¼ 7 in

duplicate. *P < 0.001 no enzyme vs. 1 mg/mL, #P < 0.001 no enzyme vs. 2 mg/mL, @P < 0.001 no enzyme vs. 5 mg/mL, **P < 0.05 no enzyme vs. 1 mg/mL by two-way

ANOVA. Data points represent the mean at that time�SEM.
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While enzymatically inhibited PR3 generates endotheli-
al intracellular signals,16 in this study we are modeling
actions of the active enzyme that endothelial cells would
encounter in inflammatory conditions, which may include
both enzymatic and signaling effects. Previous work from
our laboratory showed that the junctional proteins occludin
and VE-cadherin were predominantly cleaved by PR3,
rather than HLE in brain microvascular endothelial
cells,10 suggesting a critical role of PR3-induced proteolysis
in endothelial barrier damage. Here we extend those find-
ings to HUVEC as wells as demonstrating dose- and time-
dependence of the barrier dysfunction. Although PR3 or
HLE are individually sufficient to disrupt the endothelial
barrier, this action is likely exacerbated in vivo by several
other factors, e.g. oxidants and high mobility group box 1
protein.12 These factors, along with neutrophil extravasa-
tion, likely provide PR3 increased access to endothelial
junction proteins,10,43 cellular adhesion molecules,44 and
the subendothelial space,45 thus further impairing vascular
barrier integrity leading to increased vascular permeability
and PMN infiltration.

Regarding the above, it is important to note that protease
concentrations experienced by endothelial cells at the site of
PMN degranulation or extravasation are higher than what
might be inferred from their plasma concentrations. While
PR3 and HLE’s plasma concentrations are in the ng/mL
range (Figure 1), we should recognize that these enzymes
are at far greater concentrations near the site of neutrophil
degranulation.41,42,46,47 These microenvironments (e.g. sites
of neutrophil adhesion to the vascular endothelium, neu-
trophil migration or neutrophils in subendothelial spaces;
discussed in Owen and Campbell41) exclude most native
protease inhibitors. As such, PMN-derived proteases cause
more pronounced local damage to the vascular endotheli-
um48 than would be inferred by their plasma
concentrations.

Unfortunately, to date there are no definitive values for
neutrophil enzyme concentrations at the endothelial barri-
er, and to our best knowledge, no studies were able to

address this specific question; therefore, we chose a range
of PR3 and HLE concentrations. In addition, it is well rec-
ognized that under acute inflammatory conditions, small
blood vessels attract several PMN per endothelial cell,49

creating a highly localized proteolytic microenvironment.
This comports well with the common in vitro practice of
applying 5:1 to 10:1 PMNs to endothelial cells in order to
model more severe inflammation.14,15,48,50–54 In the current
study, applying the 5:1 or 10:1 ratio of PMN to HUVEC
(Figure 4) would represent approximately 7.5� 105 or
1.5� 106 PMN per well containing approximately
2.4–4.8 mg of PR3 or 1.2–2.4 mg of HLE.6,55 As such, while
the concentrations of PR3 and HLE used in this study sur-
pass the plasma levels of these enzymes, they are reason-
ably close to those we would expect to be experienced by
the vascular endothelium due to degranulated PMNs in
severe inflammatory conditions.

Despite these interesting findings, our study has several
limitations. First, while the timing of blood draws was stan-
dardized across all patients, the timing of sepsis onset
before patients arrived will differ, and we must therefore
expect there to be heterogeneity in the patient samples.
Second, as discussed above, there is no definitive value
for the concentration of neutrophil enzymes at the endothe-
lial barrier, so we have provided a range of concentrations
for in vitro studies. In the current study, we are addressing
only a very acute aspect of protease-mediated endothelial
cell dysfunction, which is a multifactorial phenomenon and
likely has longer-term consequences such as endothelial
cells apoptosis, proliferation, and angiogenesis. Finally,
the in vitro studies do not replicate the time-course of sys-
temic PMN accumulation and enzyme build-up which
occurs with in vivo inflammatory conditions. As a practical
method of modeling this, we chose to add enzymes directly
to the cultures rather than adding activated PMNs and
causing degranulation though adding agents which
could have their own effects on endothelial cells and
would not have allowed us to study the effects of individ-
ual enzymes.
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Figure 5. Real-time CORM-3 effect on PR3 or HLE-mediated HUVEC barrier function. HUVECs were grown to confluence in eight-well ECIS arrays (8W10Eþ).

A concentration of 2 mg/mL of enzyme wasmixed with 100 mmol/L CORM-3 then added to duplicate wells and resistance recorded for at least 90 min; HBSS alone was

used as a control. Results are expressed as percent of baseline resistance (average of 5 readings before adding enzyme/CORM-3)�SEM. (a) CORM-3 effect on PR3-

mediated barrier function, n¼ 5 in duplicate. (b) CORM-3 effect on HLE-mediated damage, n¼ 5 in duplicate. *P < 0.001 vs. 2 mg/mL PR3, **P < 0.0001 vs. 2 mg/mL

HLE by two-way ANOVA. Data points represent the mean�SEM.
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In summary, we demonstrate increased plasma concen-
trations of PR3 and HLE in sepsis patients relative to
healthy controls. We also show that PR3 and HLE individ-
ually impair endothelial barrier function and that this is
effectively prevented by CORM-3. We conclude that the
PR3 released by PMNs, in addition to HLE, contributes to
vascular dysfunction (a multifactorial phenomenon) and
endothelial leak, a hallmark pathological consequence of
sepsis, and that CORMs may offer protection against pro-
teolytic damage to the vascular endothelium.
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