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Abstract
Optical coherence tomography angiography (OCTA) offers a noninvasive label-free solution

for imaging retinal vasculatures at the capillary level resolution. In principle, improved res-

olution implies a better chance to reveal subtle microvascular distortions associated with

eye diseases that are asymptomatic in early stages. However, massive screening requires

experienced clinicians to manually examine retinal images, which may result in human error

and hinder objective screening. Recently, quantitative OCTA features have been developed

to standardize and document retinal vascular changes. The feasibility of using quantitative

OCTA features for machine learning classification of different retinopathies has been dem-

onstrated. Deep learning-based applications have also been explored for automatic OCTA image analysis and disease classifi-

cation. In this article, we summarize recent developments of quantitative OCTA features, machine learning image analysis, and

classification.
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Introduction

Research into artificial intelligence (AI) technology has
accumulated increased interest in biomedical research in
recent years.1 One branch of AI known as machine learning
has been at the forefront of research. Deep learning, a
subset of machine learning, has also grown in popularity.
The rise of deep learning is due to two main reasons. First,
the recent advancement in computational hardware, i.e.,
the graphics processing unit (GPU), has enabled for the
use of deep learning algorithms. Second, the overabun-
dance of medical data, termed “big data”, can enable
machine learning algorithms to learn and perform with
high accuracy. There are several advantages of using AI
in the medical field. Namely, the automation of disease
classification or detection of regions of interests, the reduc-
tion in human errors, and the detection of early disease
stages. Over recent years, machine learning applications
have been explored for various diseases in a wide selection
of medical imaging modalities, such as for classification of
brain tumors using magnetic resonance imaging (MRI),2–4

classification of breast cancer in ultrasound,5–7 and detec-
tion of pulmonary diseases in chest X-rays 8–10 and in com-
puted tomography (CT) .11–13

In ophthalmic clinics, massive screening for common
ocular conditions is heavily dependent upon experienced
physicians to examine and evaluate retinal images. Patients
with early onset of retinopathies such as diabetic retinopa-
thy (DR) or age-related macular degeneration (AMD) are
initially asymptomatic yet require monitoring to ensure
prompt medical interventions to prevent vision losses.
However, this process is both time consuming and expen-
sive, therefore it is not feasible to screen 65million people in
the USA over the age of 50 years 1 to identify individuals
with signs of early retinopathy (AMD, DR, or other dis-
ease). An AI-based diagnostic tool for retinal imaging
with the capability for multiple-disease differentiation
would have tremendous potential to advance massive
screening of eye diseases.14 For ophthalmology research,
application of machine learning has led to excellent diag-
nostic accuracy for various eye diseases such as DR,15,16
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AMD,17,18 sickle cell retinopathy (SCR),19,20 and central ret-
inal vein occlusion (CRVO)21 in fundus photography, opti-
cal coherence tomography (OCT), and recently, OCT-
angiography (OCTA).

To date, most of the reported studies of AI diagnostic
systems in literature are based on color fundus photogra-
phy.22–25 Fundus photography is one of the most common
clinical imaging modalities and is established for evaluat-
ing retinal abnormalities. However, fundus images provide
limited spatial resolution to provide detailed retinal vascu-
lar information, especially the microvascular distortions
near the fovea and it does not provide layer information
of the retina (Figure 1(a)). OCTcan provide sectioning capa-
bility to examine abnormalities in different retinal layers.
As a new OCT modality, OCTA can further enhance the
capability to visualize trilaminar vascular network with
capillary level resolution.22 OCTA provides improved
capability for detecting subtle vascular distortions associat-
ed with progression of retinal pathology, such as vessel
dropout, foveal abnormalities, increased vessel tortuosity,
etc. (Figure 1(c) to (e)). By providing unparalleled morpho-
logical detail of retinal vasculatures, OCTA has been rap-
idly adopted for clinical management of DR, AMD,
glaucoma, etc. Quantitative OCTA analysis has been
explored to standardize objective interpretation of clinical
outcomes. Multiple OCTA features have been developed
for quantitative analysis of retinal vascular distortions
due to eye conditions. Machine learning approaches can
utilize OCTA for the classification and staging of retinal
diseases.

In this article, we provide a brief review of machine
learning in OCTA for classification of retinal diseases. The
following section describes the basic principles of machine
learning, where we discuss the pipeline of machine learn-
ing implementation and differences between traditional
machine learning approaches and deep learning. A further
section summarizes the quantitative OCTA features that
have been developed and their technical rationale. The sub-
sequent section provides recent development in traditional
machine learning for retinopathy classification and deep
learning for different tasks, such as automated classifica-
tion and segmentation of the retinal vasculature. The pen-
ultimate section discusses the current limitations and
prospective developments for machine learning in OCTA.

Basic principle of machine learning

The field of AI encompasses a broad range of applications.
The machine learning is one of the branches of AI. The basic
principle of machine learning is to develop and implement
algorithms that can learn from the data without being
explicitly programed.26 For machine learning practices,
generally the data would be divided into two main data-
sets, the training set and the testing set. The training set is
used to optimize the algorithm, also referred to as model,
and the testing set is used to evaluate the performance of
the model. There are different tasks or applications in
which the model can perform, such as classification, the
goal of categorizing the data, and regression, the goal of
predicting continuous values.

To optimize the model, there are two main approaches,
supervised and unsupervised learning. Using the example
of a classification model, in supervised learning, each of the
samples in the dataset has a corresponding label or ground
truth, whereas in the unsupervised learning approach, the
data does not have any associated labels. The type of learn-
ing depends on the dataset, if the dataset has labels then the
user can implement either type. And if there are no labels,
then only unsupervised learning can be implemented.
Since unsupervised learning does not involve any manual
labor to generate the labels, it may be useful if the user has a
substantially large dataset. However, the caveat is since
there are no labels, the performance may be unreliable for
the desired application.

There are different machine learning algorithms that
have been developed over the years. Common algorithms
include, support vector machines (SVMs), k-nearest neigh-
bors (kNN), and linear regression.27,28 For retinal image
classification, to apply these algorithms, there are generally
two segments. Digital image processing and machine
learning. A pipeline of machine learning is illustrated in
Figure 2. In the digital image processing segment, the
user must first perform digital image processing and
extract features or measurements from the image. Once
the features have been extracted and compiled, it can
then be used in the second segment to train the machine
learning model. Once the model has been trained, its per-
formance must be evaluated.

To evaluate machine learning models, common metrics
such as accuracy, sensitivity, and specificity are used.
Sensitivity evaluates the model’s ability to identify cases
with the disease, and specificity evaluates the model’s abil-
ity to identify cases without the disease. To evaluate the
model’s overall performance, accuracy would be deter-
mined. The following equations are used to calculate sen-
sitivity, specificity, and accuracy

Sensitivity ¼ TP

TPþ FN

Specificity ¼ TN

TN þ FP

Accuracy ¼ TPþ TN

TPþ FN þ TN þ FP

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

Recently, deep learning has sparked tremendous interest
in all research fields. Deep learning is a subset of machine
learning, and generally refers to the use of a specific algo-
rithm, convolutional neural networks (CNNs), which are
inspired by the human visual pathway. The CNN gets its
name from the use of the convolutional layers, which con-
sist of sets of trainable filters that are adept to process spa-
tial patterns.29 In contrast to traditional machine learning
algorithms, the input into the CNN is the image itself. The
CNN is trained on the image dataset and learns how to
perform both the feature extraction and classification.
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Therefore, the user does not have to perform manual fea-
ture development and extraction. Deep learning has risen
in popularity due it is ability to learn directly from image
data, thereby reducing the burden of manual feature devel-
opment and complexity for clinical use. However, one dis-
advantage is its “black box” nature. Since the CNN
performs the feature extraction automatically, the user
does not know what types of features are being used for
the classification. In contrast, for traditional machine learn-
ing approaches, the input into the algorithm are the quan-
titative features, thus enables high interpretability.

Quantitative feature in OCTA

Different retinal disease affects the blood flow inside the
vessels resulting in structural changes in the vasculature.
OCTA is uniquely suited to capture these vascular changes.
Utilizing digital image processing, different types of vascu-
lar maps can be derived and employed in the development
of quantitative features (Figure 3). In this section, we briefly
describe the technical rationale of quantitative OCTA fea-
tures that have been developed in recent years. Commonly
used quantitative OCTA features include, blood vessel den-
sity (BVD), blood vessel caliber (BVC), blood vessel tortu-
osity (BVT), vessel perimeter index (VPI), vessel complexity
index (VCI), foveal avascular zone (FAZ) area (FAZA), and
FAZ contour irregularity (FAZCI).

The BVC index was developed to estimate the mean
vessel width and can therefore be used as a biomarker for
vessel dilation or shrinkage, whereas the VPI encapsulates
changes to overall vessel area and length. Thus, VPI may
reflect vessel dropout or early ischemia.30 Eye diseases can
also occlude blood vessels, such as in DR or SCR, resulting
in more tortuous blood vessels compared to the vasculature

of healthy subjects. This observation can be measured by
the BVT index. In addition to features that measures
changes in the vasculature, the fovea is an important area
of investigation as well.31 The FAZ is the region devoid of
retinal capillaries that surround the fovea. Quantitative
parameters of the FAZ include FAZA and FAZCI.
Alterations of the FAZ have been demonstrated to be
good indicators of retinal pathology such as in DR and ret-
inal vascular occlusion.32,33

For different retinal complications, the changes may not
be uniform. Therefore, complexity indices may be robust
for detecting local vessel dropout (low complexity) or areas
of neovascularization (high complexity). The VCI is
derived from the digital image processing research,34 and
can be used to capture localized changes.15 Another com-
monly used measurement is fractal dimension (FD), which
measures the texture complexity of non-Euclidean struc-
tures that show similarity at different scales.35 FD can be
used to derive highly detailed vessel maps, and therefore is
commonly used to determine BVD. Recent studies have
also measured BVD for different retinal regions (Figure 3
(e)), i.e. superior, inferior, temporal, and nasal quadrants,
and eccentricities (Figure 3(f)), i.e. central fovea, parafovea,
and perifoveal retina.

Machine learning in OCTA

Quantitative OCTA features can reduce human error in
subjective screening of retinal images. Furthermore, certain
features may be sensitive to reveal subtle microvascular
changes associated with early eye diseases. Machine learn-
ing algorithms can utilize these features to enable robust
early disease detection. In this section, we review

Figure 1. Representative retinal images in ophthalmology. (a) Fundus photograph, (b) corresponding enface OCT, and (c1, c2) OCTA of the same eye, control eye. (d1,

d2) OCTA images of mild non proliferative diabetic retinopathy (NPDR) and (e1, e2) moderate NPDR eyes. (c1, d1 and e1) Enface OCTA of the superficial vascular

plexus. (c2, d2 and e2) Enface OCTA of the deep vascular plexus. The scale bar in yellow corresponds to 1mm and applies to all images. Images are from Xincheng

Yao’s lab image gallery. (A color version of this figure is available in the online journal.)
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traditional machine learning approaches for classification
and deep learning applications in OCTA.

Traditional machine learning for
classification of retinopathy

Traditional machine learning methods involves the use of
manual feature extraction, e.g. quantitative OCTA features.
Several different studies have explored the use of machine
learning using quantitative OCTA features for computer-
aided disease detection and AI classification of different
retinopathies. One study employed six OCTA features,
i.e. BVD, BVC, BVT, VPI, FAZA, and FAZCI to train differ-
ent machine learning classifiers, i.e. SVM, kNN, and dis-
criminant analysis, for the staging of SCR patients.19 The
study reports that the trained SVM classifier was able to
identify control versus SCR eyes and mild versus severe
SCR with 100% and 97% accuracy, respectively. A similar
approach was also demonstrated for nonproliferative dia-
betic retinopathy (NPDR) classification, employing the
same six quantitative features.15 The study evaluated
the individual performance of each quantitative feature.
The best performance was achieved on the SVM classifier
trained on the combined feature set, with a reported 94.41%
accuracy for control versus NPDR eyes, and 92.96% for
control versus mild NPDR eyes. The individual features
that had the highest sensitivity were BVD, FAZA, and
FAZCI. The performance of the individual features can be
explained by observations of the quantitative OCTA maps
(Figure 4). For example, BVD had the best performance out
of all the other features due to large areas of vessel dropout
observed in severe NPDR eyes (Figure 4(d1) to (d4)).
Likewise, the FAZ parameters also had excellent perfor-
mance to differentiate control from NPDR eyes. This can
be attributed to the observation that the FAZ in control
subjects are much smaller and have high circularity, in con-
trast NPDR cohorts (mild to severe) have much larger FAZ
and high acircularity (Figure 4(a2) to (d2)).

Localized quantitative OCTA analysis was recently
demonstrated for the staging of controls, NPDR, and pro-
liferative DR patients (PDR) .15 This study performed a
comparative analysis between whole-image and shifting-
window measurements. For this study, eight features,
namely, BVT, and VCI for the superficial vascular plexus
(SVP) only, FD, BVD, and FAZA for both the superficial and
deep capillary plexus (DCP) were utilized. Localized com-
plexity maps were generated and revealed areas of
increased vascular complexity in the PDR eye. In this
study, eight features were employed for whole-image and

shifting-window, for a total of 16 features. The study
employed a multivariate logistic regression model and
implemented a backward elimination to iteratively select
the best features for classification. Out of the 16 features,
this study reports that three shifting-window features, VCI,
FD and BVT performed the best with reported accuracies of
91.26%, 85.10%, and 87.62%, respectively. The combination
of these three features achieved a classification perfor-
mance of 94.75% accuracy.

In addition to morphological changes in OCTA, several
studies have employed intensity features in addition to
OCTA features. A recent study incorporated different fea-
tures such as the FAZ circularity and BVD, and also the
average intensity of capillaries and large vessels for
machine learning-based classification of healthy controls,
diabetic with and without retinopathy.36 This study per-
formed a comparison of different machine learning algo-
rithms, i.e. decision trees, random forest, and logistic
regression, etc. For the binary classification of diabetic
eyes from healthy eyes, the random forest classifier
achieved an area under the curve (AUC) of 0.80, whereas
for the classification of diabetic retinopathy versus non-
diabetic retinopathy eyes, the logistic regression model
achieved an AUC of 0.91. Overall, the study suggests that
machine learning can be used for detection of diabetics and
early staging of NPDR. The observations in this study indi-
cate that vessel density and avascular areas are the most
sensitive parameters in DR classification. However, quan-
tifiable changes in the intensity of the capillary vessels, i.e.,
reduction in blood flow, were also observed. Suggesting
that OCTA intensity-based features may be leveraged in
future studies for disease detection.

Another study explored the feasibility of a computer
aided diagnostic (CAD) system using a multimodal
approach involving both OCT and OCTA feature for the
classification of NPDR.37 The study extracted three OCT
features, namely, curvature, reflectivity, and thickness,
and four OCTA features, FAZA, BVD, BVC, and bifurcation
points. Additionally, six clinical features were also utilized,
i.e. age, sex, glycated hemoglobin (HbA1c), hypertension,
dyslipidemia prevalence, and edema prevalence. A multi-
step random forest classifier was employed for machine
learning classification (Figure 5). The first random forest
performs binary classification of DR eyes and healthy con-
trol eyes. If the eye is classified as DR, a second random
forest further differentiates the eye as either mild or mod-
erate DR. The study reports a 94.7% accuracy using OCTA
features only, and when supplemented with additional

Figure 2. Overview of general machine learning steps. First, digital image processing and feature extraction are performed. Second, the machine learning model is

trained with the dataset to perform the classification task for either different diseases or staging. (A color version of this figure is available in the online journal.)
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information such as OCTand the clinical data, the classifier
achieves a 98.7% accuracy.

Multi-classification of retinopathies was also demon-
strated in a recent study. The study employed six quantita-
tive OCTA features, i.e. BVT, BVC, VPI, BVD, FAZA, and
FAZCI for the classification and individual staging retinop-
athy in a cohort of healthy subjects, NPDR and SCR
patients.20 All features were extracted from both the SVP
and DCP. Measurements of BVD were further differentiat-
ed for retinal quadrants (superior, inferior, temporal, and
nasal) and different eccentricities (central fovea, parafovea,
and perifovea). Therefore, the study implemented back-
ward elimination to select the best optical feature sets for
the multi-task classification. This study reports that four
sensitive features, namely, BVT, FAZA (S), FAZCI (D),
and BVD (S-6mm) for the differentiation of healthy,
NPDR, and SCR (Figure 6). The analysis of the scatter
plot reveals that the three cohorts, healthy controls, DR,
and SCR subjects have excellent separability. Quantitative
OCTA of SCR revealed that the FAZ parameters, i.e., area
and contour irregularity, are most sensitive for SCR classi-
fication.39 In addition to FAZ changes, previous observa-
tions have indicated that the BVD is the most sensitive
feature for DR classification.30 Therefore, quantitative
OCTA features can enable multiclass classification because
of how different retinopathies affect the retinal vasculature

differently. The overall performance reported in the study
was 95.01% sensitivity for DR versus SCR, 92.18% sensitiv-
ity for NPDR staging, and 93.19% sensitivity for SCR
staging.

Deep learning for classification of retinopathy

Deep learning-based technologies have captivated atten-
tion from ophthalmology due to the multitude of applica-
tions in OCTA, including OCTA reconstruction,38,40,41

OCTA denoising,42–44 and segmentation of different
regions of interest, e.g. vessels, FAZ, etc. .45–48 Recent devel-
opment and the implementation of quantitative OCTA fea-
tures for machine learning classification indicate that
OCTA images contain the necessary information to identify
different retinopathies and perform disease staging. In
principle, the CNN can automatically perform the feature
extraction and classification, thereby reducing the burden
for manual feature engineering. Additionally, there may be
features that have yet to be examined, by using the image as
a direct input into the CNN, the CNNmay be able to utilize
all types of features for early disease detection. To train a
CNN for a specific classification task would require mil-
lions of images to optimize the millions of network param-
eters. This poses a challenge for exploration of deep

Figure 3. Representative OCTA image processing, (a) enface OCTA image, (b) vessel map, (c) vessel perimeter map, (d) skeleton map with the FAZ area segmentation

in blue, FAZ contour demarcated by the green boundary, and the yellow line is an example measurement of vessel tortuosity from point X to Y. (e, f) Contour maps

created with normalized values of local fractal dimension in superficial and deep layers, respectively. (e) Retinal quadrants (superior, inferior, temporal, and nasal

regions). (f) Circular zones of diameter, 2, 4, and 5.5mm. The scale bar in yellow corresponds to 1mm and applies to all images. Images are from Xincheng Yao’s lab

image gallery. (A color version of this figure is available in the online journal.)
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learning for OCTA classification, as OCTA is a relatively
new imaging modality and therefore has limited datasets.

A recent study employed the use of transfer learning to
overcome this limitation. Transfer learning is a training
method that adopts some weights of a pretrained CNN
and appropriately retrains certain layers of the CNN to
optimize the weights for a new dataset. This pre-training
method is feasible due to how CNNs extract features in a
bottom-up hierarchical structure, analogous to the human
visual pathway system.49 In this study, the visual geometric
group (VGG)-16 network 50 was pretrained on the
ImageNet dataset,51 a dataset comprised of millions of
everyday images, e.g., cars, animals, people, etc., and

employed transfer learning to retrain the network for clas-
sification of control, diabetic eyes with no retinopathy and
NPDR eyes and reports an overall accuracy of 87.27%.
A similar study implemented ensemble learning using
CNNs, i.e., VGG16, in addition to transfer learning, for
the task of classification in DR.52 The study trained individ-
ual CNNs using a multi-modal approach using enface
images of the SVP and DCP from both OCT and OCTA.
A majority voting ensemble method combined the classifi-
cation of each individual network for the classification of
eyes as referable and non-referable DR. (Figure 7(a)). The
study also employed the use of gradient-weighted class
activation maps (grad-CAM), an algorithm that generates

Figure 4. Representative OCTA images for illustrating the feature extraction. (a1–a4) Control subject, (b1–b4) Mild NPDR subject, (c1-c4) Moderate NPDR subject,

(d1–d4) Severe NPDR subject. (a1, b1, c1, d1) Segmented blood vessel map including large blood vessels and small capillaries. (a2, b2, c2, d2) Skeletonized blood

vessel map (red) with segmented FAZ (marked blue region) and FAZ contour (green boundary marked around FAZ). (a3, b3, c3, d3) Vessel perimeter map. (a4, b4, c4,

d4) Contour maps created with normalized values of local fractal dimension. Scale bar shown in A1 corresponds to 1mm and applies to all the images. Modified from

Alam et al.30 (A color version of this figure is available in the online journal.)
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a heatmap of areas in the input image that contribute the
most to the final prediction score (Figure 7(b)). The study
reports an overall accuracy of 92% for the ensemble-based
classification method.

Classification is one of the many tasks that can be per-
formed using deep learning algorithms, CNNs can also be
applied for segmentation tasks, also referred to as pixel-
wise classification, in OCTA. Recently, deep learning has
been explored in OCTA for artery-vein (AV) classification.
Clinical observations have established that different dis-
eases can affect the arteries and veins differently, i.e. arterial
narrowing54,55 and venous beading.53,56 Therefore, AVanal-
ysis can provide valuable information for disease detection
and classification. Several studies have proposed methods
for differential AV classification in OCTA.57–59 However,
these studies involve multiple different algorithms which
may be too complex for clinical deployment.

One recent study proposed “AV-Net” a fully CNN for
the automated AV classification (Figure 8(a)).61 This study
employs a multi-modal training process that involves both
OCT and OCTA. The study suggests that the enface OCT
can provide the necessary intensity information for AV
classification, and the enface OCTA contains the blood
flow information. AV-Net is comprised of two parts, an

encoder and a decoder. The encoder is equivalent to the
classification CNNs, such as VGG16, in that it takes in an
image input and performs feature extraction. The decoder
identifies and maps the image features to produce an
output image.

Since OCTA data are limited, this study leveraged reg-
ularization techniques, such as data augmentation, i.e.,
random flips, rotation, and zoom, to increase the dataset
size. Furthermore, transfer learning was implemented. The
performance of AV-Net achieves an overall accuracy of
86.75%, with 86.71% and 86.80% for artery and veins,
respectively. Qualitative performance of AV-Net is illustrat-
ed in Figure 8(b). Overall, AV-Net performs well and
achieves robust vessel segmentation. However, since AV-
Net performs pixel-wise classification, there are pixels that
are misclassified in the vessels (Figure 8(b4)). Furthermore,
the vessels do appear dilated in the predicted AV-maps.

Different eye disease, such as DR, may involve ischemia
and drop out zones in the retinal and choroidal vascula-
ture.62 Therefore, quantification of avascular area may
potentially be a useful biomarker for disease detection
and staging. A recent study developed a CNN architecture
titled “MEDnet” for the detection of non-perfusion areas in
the SVP.63 The MEDnet architecture follows a similar

Figure 6. Correlation analysis of the four most sensitive features for the classification of healthy controls, NPDR, and SCR eyes. The scatter plot illustrates the

distribution of control, NPDR, and SCR OCTA features for different feature combinations. Reprinted from Alam et al.20(A color version of this figure is available in the

online journal.)
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encoder-decoder network and employs a multimodal
input. The input is comprised of an enface angiogram
that provides the flow information, and the corresponding
reflectance image to compensate for the loss of flow signal
due to occlusion of the back-scattered signal (Figure 9(a)).
The encoder network was modified to utilize atrous (dilat-
ed) convolution operations to extract features at different
scales (Figure 9(b)). The study trained and evaluated
MEDnet using a dataset comprised of healthy controls,
patients without and with NPDR (mild, moderate, and
severe), with varying image qualities, i.e. different signal
strength index (SSI) values. The study reports an overall F1-
score of 80%, indicating that MEDnet has overall good

performance. Some sources of misclassification may be
attributed to the loss of OCTA signal due to vignetting
and vitreous floaters, and lower quality scans will have
an increased prevalence for artifacts, such as motion
artifacts.

Discussion

OCTA provides a label-free solution for high resolution
examination of ocular vasculatures, and thus has been
quickly adopted for clinical management of eye diseases.
Quantitative OCTA features have been developed for the
standardization of objective interpretation of OCTA.

Figure 7. (a) Example of the majority voting ensemble method for combining classification results from multiple component networks. The component networks were

previously trained on superficial and deep plexus enface images of OCT and OCTA volumes separately. (b) Grad-CAMs for the (1) superficial and (2) deep enface OCT

image and (3) superficial and (4) deep enface OCTA image of a severe DR patient. Hard exudates and regions of fluid are highlighted in the OCT image.

Microaneurysms and regions of capillary dropout are highlighted in the OCTA. Modified from Fonseca and Dantas.53 (A color version of this figure is available in the

online journal.)
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Figure 8. Network architecture for AV-Net, (a) overview of the blocks in AV-Net architecture. AV-Net takes in an input of size 320� 320 with two channels,

corresponding to OCTA and OCT and outputs an RGB map of the same size. Representative data used for training and example prediction. (b1) Input enface OCTA

and (b2) OCT images, (b3) the ground truth, and (b4) the AV-Net predicted AV-maps. The scale bar in yellow corresponds to 1mm and applies to all images. Modified

from Le et al.60 (A color version of this figure is available in the online journal.)

Figure 9. (a) Network architecture of multi-scaled encoder-decoder neural network (MEDnet). (b) Kernel sizes of atrous convolution blocks with different dilation rates.

Representative data used for training. (c) The en face angiogram of the superficial vascular complex from a patient with diabetic retinopathy. (d) The reflectance image

acquired by projecting the reflectance OCT data within the same slab used in (c). (e) The ground truth map of the avascular area. (f) Manually segmented avascular

area, overlaid on the superficial vascular complex angiogram. Modified from Nagasato et al.64 (A color version of this figure is available in the online journal.)
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Different OCTA parameters that have been developed and
their technical rationale are summarized in Table 1.
Different pathological mechanisms may induce OCTA dis-
tortions in different ways. For example, DR patients have
been commonly observed to have arterial narrowing 54 and
capillary level ischemia.30 However, in the current clinical
setting, mass screening programs for common ocular con-
ditions such as DR or SCR require experienced physicians

to examine and evaluate retinal images. This process is both
time consuming and expensive, making it difficult to scale
up to incorporate the millions of individuals who harbor
systematic diseases which are prone to affect the retina.
Patients with early onset of retinopathies such as DR or
SCR are initially asymptomatic yet require monitoring to
ensure prompt medical interventions to prevent vision
losses. AI-based CAD system may enable reliable

Table 1. Summary of quantitative OCTA features.

Features Equations

BVC The ratio of the vascular area (Figure 3(b)) and the vascular length (Figure 3(d)) was defined as the average

diameter of the vessels36

BVC ¼
Pn

i¼1;j¼1 B i; jð ÞPn
i¼1;j¼1 S i; jð Þ

where Bði; jÞ* represents the pixels in the vessel map, and Sði; jÞ represents the pixels in the skeleton map.

VPI Ratio of the vessel perimeter area (Figure 3(c)) to the total image area36

VPI ¼
Pn

i¼1;j¼1 P i; jð ÞPn
i¼1;j¼1 I i; jð Þ

where Pði; jÞ represents the pixels occupied by the perimeter map and Iði; jÞ represents all the pixels in the

perimeter map.

BVT Each branch and corresponding endpoints are identified in the vessel skeleton map (Figure 3(d)). The metric

to measure tortuosity was defined as the ratio between the Euclidean distance (ED) and the Geodesic

distance (GD)37

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2 þ y1 � y2ð Þ2

q

GD ¼ R t1
t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx tð Þ
dt

� �2

þ dy tð Þ
dt

� �2
r

dt

BVT ¼ 1

n

Xn

i¼1

GD of vessel branch i

ED of vessel branch i

� �

where i is the ith branch and n is the number of vessel branches.

FAZA Area of the demarcated FAZ region (Figure 3(d)) is determined as follows.

FAZA ¼ Area�Pn
i¼1;j¼1 A i; jð Þ

where Area is the digital pixel resolution and A(i,j) represent the pixels occupied by the segmented

avascular region.

FAZCI The irregularity of the FAZ is determined using the FAZ contour map (Figure 3(d)) using the following

equation36.

FAZCI ¼
Pn

i¼1;j¼1 O i; jð ÞPn
i¼1;j¼1 R i; jð Þ

Where O(i,j) represents the pixels in the FAZ contour map and R(i,j) represents the perimeter of a reference

circle of the same area.

VCI The relationship between the vessel map (Figure 3(b)) and perimeter map (Figure 3(c)) defines the complexity

index36

VCI ¼
Pn

i¼1;j¼1 P i; jð Þ
� �2

4p
Pn

i¼1;j¼1 B i; jð Þ
where P(i,j) represents the pixels enclosed by the perimeter map and B(i,j) represents the pixels enclosed

by the vessel map.

FD Fractal dimension utilizes moving windows of varying sizes and is formulated as the following39

FD ¼ log Nsð Þ
log sð Þ

where Ns is the number of boxes at magnification s needed to enclose the image. Normalized of localized

FD values close to 1 indicate large vessels and close to 0 indicates avascular regions39

BVD The ratio between the area occupied by the vessel and the total image area.

BVD ¼
Pn

i¼1;j¼1 B i; jð ÞPn
i¼1;j¼1 I i; jð Þ

where Bði; jÞ represents the pixels in the vessel map, and Iði; jÞ represents all the pixels in the vessel map.

*Unless stated otherwise, i, j represents the row and column positions of each pixel in the image, respectively.
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performance by reducing subjective human error in screen-
ing procedures. Additionally, deep learning-based meth-
ods that learn from the images may be able to capture
subtle changes that would be missed by human graders
in the early stages of disease progression.

Quantitative OCTA opens a unique opportunity to
enable computer-aided disease detection and AI classifica-
tion of different eye disease. Machine learning techniques
have been explored for the different applications in OCTA.
One of the main applications of machine learning in OCTA
is for the classification of retinopathies, i.e. DR,15,30,36,52,60

SCR,19,20 and CRVO.64 However, one limitation to these
studies is the small dataset size. As a relatively new imag-
ing modality, there is a limitation in the available datasets
for OCTA. The dataset size is critical in machine learning
applications, due to the problem of overfitting, which is
when the algorithm has memorized the training data.
While this challenge is quite posing for traditional machine
learning approaches, strategies to overcome this limitation
have been explored for deep learning methods. A common-
ly used method to increase the dataset size is the use of data
augmentation, i.e. randomized rotations, vertical/
horizontal flipping. Transfer learning can also be employed
to alleviate the concerns of dataset size. By pretraining
the CNN, the CNN will already be optimized for
feature extraction and thus reducing the requirement for
large data.

For model performance evaluations, cross-validation
methods have been commonly employed. Cross-
validation involves the division of the dataset into several
pairs of training and testing datasets. The performance of
the model on all the testing sets is averaged and reported.
This therefore poses another challenge in machine
learning applications which is the use of external valida-
tion. A recent study employing transfer learning for the
classification of DR reported an overall accuracy of
87.27% on the cross-validation performance; however,
additional external validation results revealed a 70.83%
accuracy. This indicates that there is some overfitting
due to a limited dataset. While the results of machine
learning in OCTA show promising results, it is vital for
future studies to employ external validation to evaluate
the model’s performance on novel data. Additionally,
many of these studies employ dataset from a homogenous
demographic and one device and therefore may contain
biases. To alleviate these issues, a multiple-institution col-
laboration is required.

While deep learning offers benefit to decrease burden in
manual feature development and ease of usability, deep
learning models have low interpretability. Since the
user does not know what types of features are being
learned and used for to make the prediction. Different
methods have been explored to alleviate this “black
box” view of deep learning, such as occlusion maps 65

and grad-cams,52,64 which highlight areas of the input
image contributes most to the prediction. For example, a
CNN may predict an image as referrable DR. Employing
grad-CAM could highlight areas of hard exudates in
the input image that have a strong influence on the
final classification (Figure 7(b)). Therefore, future studies

should incorporate these techniques to increase the physi-
cian’s trust in the network and acceptability of AI for
clinical use.

Conclusion

OCTA provides a noninvasive label-free solution for high
resolution imaging of the retinal vasculature. Quantitative
OCTA features have been developed to standardize vascu-
lar distortions associated with eye conditions. This creates a
unique opportunity to employ AI-technologies in OCTA.
Machine learning algorithms have been employed to utilize
OCTA features for the classification and staging of different
retinopathies. Deep learning has also been demonstrated
as a viable tool for automatic AV-classification, segmenta-
tion of avascular areas and other regions of interests in
OCTA. AI-based technologies can alleviate the burden for
experienced physicians and foster mass screening
programs.
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