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Abstract
Current understanding of the underlying molecular network and mechanism for attention-

deficit hyperactivity disorder (ADHD) is lacking and incomplete. Previous studies suggest

that genomic structural variations play an important role in the pathogenesis of ADHD. For

effective modeling, deep learning approaches have become a method of choice, with ability

to predict the impact of genetic variations involving complicated mechanisms. In this study,

we examined copy number variation in whole genome sequencing from 116 African

Americans ADHD children and 408 African American controls. We divided the human

genome into 150 regions, and the variation intensity in each region was applied as feature

vectors for deep learning modeling to classify ADHD patients. The accuracy of deep learn-

ing for predicting ADHD diagnosis is consistently around 78% in a two-fold shuffle test,

compared with �50% by traditional k-mean clustering methods. Additional whole genome

sequencing data from 351 European Americans children, including 89 ADHD cases and 262

controls, were applied as independent validation using feature vectors obtained from the

African American ethnicity analysis. The accuracy of ADHD labeling was lower in this setting

(�70–75%) but still above the results from traditional methods. The regions with highest

weight overlapped with the previously reported ADHD-associated copy number variation

regions, including genes such as GRM1 and GRM8, key drivers of metabotropic glutamate

receptor signaling. A notable discovery is that structural variations in non-coding genomic

(intronic/intergenic) regions show prediction weights that can be as high as prediction weight from variations in coding regions,

results that were unexpected.
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Introduction

Attention-deficit hyperactivity disorder (ADHD) is a
common psychiatric disorder with prevalence of 6–8% in
children, with symptoms persisting into adulthood in over
two-thirds of cases, causing significant life-long

impairments.1–3 While enrichment of certain copy
number variations (CNVs) have shown associations with
genetic susceptibility of ADHD,4 the genetic underpinnings
of ADHD remain largely unknown in part due to the high
degree of ADHD heterogeneity, suggesting that the
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molecular mechanisms underlying ADHD are complex,
and are likely to constitute multiple gene networks not
readily addressed with current genotyping and sequencing
platforms.5 In addition, minority ethnicities such as African
Americans (AA) have been less well studied compared to
European Americans (EA), and the impact of non-coding
genomic structural variations, e.g. CNVs, inversions, and
translocations, has been understudied in human psychiat-
ric disorders, including ADHD, hampering the advance-
ment of the field.6,7

Machine learning methods, especially the multiple layer
deep learning algorithm, have been applied on complex
biological data to explore the underlying molecular fac-
tors.8,9 To capture the genetic susceptibility and molecular
underpinnings of ADHD,5,10 deep learning model has mul-
tiple advances that are particularly useful when analyzing
complex data. In this study, we performed whole genome
sequencing (WGS) with high read depth (>30� coverage)
for 524 AA children, including 116 ADHD patients and 408
controls, and we established a multi-layer perceptron
(MLP) neuronal network using CNVs and other structural
variation intensities from different genomic regions as fea-
ture vectors in order to separate the ADHD cases from
controls. The accuracy of the prediction was evaluated
using two-fold random shuffle tests, as well as an indepen-
dent WGS dataset that contain 351 EA children (89 ADHD
vs. 262 controls). Compared to traditional clustering meth-
ods, our results support a superior and powerful labeling
ability of the deep learning algorithm compared to conven-
tional methods, with non-coding structural variations
including CNVs demonstrating particular robustness to
the classification, beyond expectations.

Materials and methods

ADHD individuals’ selection and WGS processing

The patients were recruited as the Philadelphia
Neurodevelopmental Cohort (PNC), archived in the bio-
bank of the Center for Applied Genomics (CAG) at the
Children’s Hospital of Philadelphia (CHOP); more details
could be found in the eMerge project stage III.7,11,12

Additional information for the 205 ADHD patients, includ-
ing 116 AA and 89 EA, and 670 controls, such as gender and
age could be found in Table 1. All methods were carried out
in accordance with relevant guidelines and regulations,
and all experimental protocols were approved by the
Institutional Review Board (IRB) of Children’s Hospital of

Philadelphia (CHOP). Informed consent was obtained from
all subjects or, if subjects are under 18, from a parent and/or
legal guardian with assent from the child if seven years or
older.

WGS based on the Illumina platform were processed
using the standard pipeline. More specifically, the data
were aligned to the GRCh37 reference using bwa v0.7.1013

and BEDTools 2.17.0.14 Aligned SAM files were processed
with Samtools v0.1.19.15 More details were described in our
previous publications.7,12 The CNVs were detected by
MANTA,16 and the CNVs that passed the default threshold
were categorized into different classes based on genomic
annotations, including “exonic,” “intronic,” and
“intergenic.”11

Genomics feature vector selections for deep

learning models

The human genome region was divided into 150 pieces
(20M bp/piece) based on genomic coordinates. The occur-
rence counts of nine different types of variations, including
deletions, duplications, and other types of variations in
exonic, intronic, and intergenic regions (Table 2), were cal-
culated, respectively, for each piece, which was applied as a
feature vector in the deep learning model. The processes
were repeated for all individuals in the study. A random
forest algorithm was introduced to reduce the feature vec-
tors by computing relative importance or contribution of
each genomic piece. Feature vectors that have weight
with zero importance were removed for different types of
variations. The programming codes are in Python language
built on the Scikit-learn package (version 0.21.3).17

Table 1. General information of the research subjects.

Age Gender

Ethnicity Phenotype Number Mean�STD Median Female Male

AA Cases 116 22.2� 3.3 22.0 42 (36.2%) 74 (63.8%)

Controls 408 23.7� 3.5 24.0 232 (56.9%) 176 (43.1%)

EA Cases 89 22.5� 3.7 21.6 29 (32.6%) 60 (67.4%)

Controls 262 24.2� 3.7 24.3 129 (49.2%) 133 (50.8%)

AA: African Americans; EA: European Americans.

Table 2. Predictive accuracy for 351 EA individuals based on 574 AA for

different types of CNVs.

CNV types Accuracy in 351 EA

Exonic deletion 71.3%

Exonic duplication 75.4%

Other SVs in exonic 75.4%

Intergenic deletion 75.4%

Intergenic duplication 75.4%

Other SVs in intergenic 75.4%

Intronic deletion 75.4%

Intronic duplication 75.4%

Other SVs in Intronic 75.4%

CNV: copy number variation; EA: European Americans.
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Deep learning parameters, random shuffled two-fold
tests, and traditional clustering methods

MLP from the Scikit-learn package (version 0.21.3)17 was
applied as the deep learning model based on 15 different
types of mutations. Parameters for deep learning model,
including maximum iterations, alpha value in L2 regulari-
zation, activation functions, solvers, learning rate, number
of layers, and numbers of neurons per layer, were opti-
mized using “gp_minimize” function from the scikit-
optimise 0.7.2 python library. Most activation functions
for CNVs of MLP are “relu” except intronic deletion
CNVs, which is “logistic”; the solver include “sgd” and
“lbfgs,” while neurolayers ranged from seven to nine.

A two-fold random shuffle test was applied to test the
predictive abilities. Five hundred and twenty-four AA
patients, including 116 ADHD patients were split into
equal ratio randomly. One dataset was applied as the train-
ing set and the other one used as the testing set. The pro-
cedures were repeated for 50 times independently. Feature
vectors in genome were selected as described in the previ-
ous paragraph in order to build the deep learning model,
and then individuals in the testing set were labeled as
ADHD or controls. To compare with traditional clustering
methods, we used k-means algorithm since it has stable
and excellent performance if the number of clusters is
known, which is 2 in our case.

Results

Phenotype prediction accuracy in 574 AA children

A two-fold random shuffle test was applied to assess the
ADHD labeling prediction for 50 rounds. Reduced feature
vectors, which are based on the random forest algorithm,
show a reproducible prediction accuracy (average accuracy
78%, with �3% standard deviations) in classifying ADHD
individuals versus controls using the deep learning model
(Figure 1), using optimized parameters as described in the
method section. In contrast, the accuracy of the traditional
k-means clustering based on the same set of feature vectors
was only �50%, or equal to random analysis. Interestingly,
and a notable observation is that structural variations in
non-coding genomes include intronic and intergenic
regions and showed similar level of predictive accuracy
compared to structural variations in coding regions.

Phenotype prediction accuracy in an independent
dataset of 351 EA children

To verify the accuracy of the deep learning model, WGS
data from 351 EA individuals, including 89 ADHD chil-
dren, were investigated as an independent testing set.
The feature vectors were selected based on the data from
the 524 AA subjects.While the accuracy of labeling is slight-
ly reduced, it is still above 70% (Table 1). Of note, the size of
the training set is larger than the testing set (524 vs. 351),
which implies that prediction using feature vectors is more
robust compared to the two-fold tests. However, the accu-
racy level was decreased, which suggests that there are
genomic level differences between the two ethnicities for

ADHD patients, as well as a potential for population-
specific performance of the deep learning model.

Genomics regions with high weights based on the deep
learning model

The weight or the contribution for each genomic region
(feature vector) is based on 524 AA individuals and calcu-
lated using the Random Forest algorithm, as described in
the method section. The genomics regions (as feature vec-
tors) containing CNVs show different weights in the pre-
diction model (Figure 2(a)). Some regions containing
coding CNVs have significantly higher weight and overlap
with the previously reported ADHD-associated CNVs
(Table 3). Among these regions, the feature vectors at
chr7:1–20000000 and chr6:140000001–160000000, which
ranked as the 5th and 17th highest weight (2.1%, 1.8%) in
coding region CNV deletions, overlap with the GRM8 and
GRM1 gene regions as reported previously (deletion at
chr7: 126,525,124–126,536,202 and duplication at chr6:
146,657,076–146,694,047).4 GRM8 and GRM1 are key driv-
ers of metabotropic glutamate receptor (mGluR) neuro-
transmitter signaling, a pathway shown in a previous
study to harbor CNVs that are enriched in both ADHD
and autism cases4 who responded in a significant way
(CGI-I and Vanderbilt rating scale assessment, p< 0.001)
to an mGluR activator drug in a clinical trial setting for
ADHD, with seven of the children in the trial having
autism as comorbid symptom.11 Genomic regions with
non-coding CNVs (intronic/intergenic) showed more uni-
formed weight distribution compared to coding region
CNVs (Figure 2(b) and (c)), which could be explained by
non-coding region CNVs mainly serving as a biomarker of
ADHD genetic susceptibility conferred by functional genet-
ic variations in each region.

Discussion

Growing evidence indicate that genomic structural varia-
tions, most notably CNVs, are likely to associate with and
influence the development of psychiatric disorders, includ-
ing ADHD.18,19 However, to date, CNVs have not yet to be
applied as predictive feature vectors in labeling phenotypic
status of the patients. One of the major obstacles is the
structural variations especially in large non-coding regions.
While most CNVs in the human genome are benign, the
functional studies for CNVs are challenging and expensive.
The current solution has been to search for over-
represented CNVs that are enriched in ADHD patients
compared to controls. One of the main deficiencies of this
approach is that structural variations that contribute to the
essential underlying network which has less significant
p value may be missed, especially if residing in non-
coding regions.

Deep learning algorithms and models have been proven
to be effective when applied on complex biological data,
including WGS,9 and have been successfully applied in
multiple studies, such as prediction of the drug resistance
and classifications of primary/metastatic cancers.20,21 In
this study, we recruited 524 individuals from the minority
group of AA, including 116 ADHD patients and 408
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healthy controls, and generated >30� coverage WGS data.
Instead of focusing on an overall enrichment analysis for
structural variations, we divided the entire human genome
into 150 regions and calculated the structural variations’
intensity in each genomic region, then a MLP neuronal net-
works, with an advantage of solving extremely complex
problem,17 were applied using CNV intensity in each
region as a feature vector. The model’s accuracy was first
evaluated through a two-fold random shuffle testing and
repeated 50 times. The results (Figure 1) showed that the
accuracy is reproducible and stable around 78%, which is a
significant improvement compared to traditional clustering
method, such as k-mean, which in this dataset performed at
random (50%). To test the model for more general applica-
tions and to explore the potential differences between AA
and EA, additional WGS data from 351 EA children,

including 89 ADHD and 262 controls, were generated
using exactly the same protocols and pipelines. The 524
AA samples were applied as the training data, while 351
EA samples were used as the testing data. The accuracy
was reduced but still above 70% (Table 1), indicating
there may be potential genomic differences between the
two population ethnicities since more training data
resulted in a less accuracy level compared to the AA
random shuffle tests. A population-specific performance
difference of the deep learning model for disease prediction
cannot be ruled out either.

The weight of each genomic region was computed using
the random forest algorithm based on the contributions for
524 AA children, as described in the method section.
Multiple regions with high rank/weight contain coding
region CNVs that are associated with ADHD or have

Figure 1. Prediction accuracy boxplots of deep learning model compared to traditional K-mean clustering in two-fold random shuffle tests for AA. (a) CNVs and other

type of structural variations located in exonic regions; (b) in intronic regions; (c) in intergenic regions.
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functional roles within the ADHD gene networks estab-
lished by previous studies (Table 3). A representative exam-
ple is the high weight regions that contain the GRM1 and
GRM8 CNVs. These two genes belong to the mGluR neu-
rotransmitter signaling network, as highlighted in a recent
clinical trial report, demonstrating that themGluR activator
NFC-1 could improve the ADHD symptoms significantly
in adolescents with CNVs that reside within the glutama-
tergic gene (mGluR) networks and disrupt the mGluR neu-
rotransmitter signaling.22

Two regions (chr12:40000001–60000000 and chr1:
140000001–160000000) showed high weight (15%/9%,

respectively) in terms of intensity of exonic duplications.
None of the regions contains any previously reported
ADHD associated CNVs; however, previous studies sug-
gest tendency of significance in the QTL study of deletions
for the region of chr12:40000001–60000000,23,24 while the
region of chr1: 140000001–160000000 contains duplications
with incomplete penetrant phenotype and psychiatric
problems according to two independent case reports, sug-
gesting a potential functional role in ADHD.25,26

A notable observation regarding the ADHD labeling is
that CNVs and other structural variations in non-coding
genomic regions, such as the intronic and intergenic

Figure 2. High weights/contribution genomic regions selected based on random forest algorithm. (a) CNVs and other type of structural variations located in exonic

regions; (b) in intronic regions; (c) in intergenic regions.
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regions, provide relatively comparable accuracy level to
structural variations in exonic regions (Figure 1). It indi-
cates that CNVs located in non-coding genomic regions
may either be of functional/regulational impact themselves
or may be tagging the genetic susceptibility of ADHD at
nearby regions, including coding regions. Thus, the genetic
association may be from functional impacts of the CNVs, or
from the linkage disequilibrium with functional variations
in other regions. For example, we found chr3:1–20000000
region weighed 1% in prediction (2nd rank) when using
intronic structural variations as feature vectors. The
region contains the CNTN4 gene, which is an essential
interactor gene in the mGluR pathway and mutation posi-
tive patients were found of clinically meaningful and sta-
tistically significant response to the treatments targeting
mGluR signaling.22

The major limitation of this study is the sample size due
to the cost of WGS with deep coverage. To avoid overfitting
problem in the deep learning model, we had to keep the
number of feature vectors around 150, which lead to rela-
tively large genomic regions (�20M bp for each) for the
fixed human genome length (�3 billion bp). In other
words, the resolutions of highly weighted regions are rela-
tively modest. To increase the resolution warrants further
research efforts and methodological development.
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Table 3. High weighted genomics regions that overlapped with the previously reported ADHD-associated CNVs.

Feature vector

CNV type Genomics region

Rank/

weight

Overlapped ADHD-

associated CNVs

Genes in previous

ADHD-associated

studies

chr7:1–20000000 5/2.1% chr7: 126,525,124–

126,536,202 (DEL)

GRM8

chr6:140000001–160000000 17/1.8% chr6: 146,657,076–

146,694,047 (DUP)

GRM1

chr1:60000001–80000000 19/1.7% chr1: 72,317,292–

72,328,395 (DUP)

NEGR1

chr1:40000001–60000000 53/0.8% chr1: 56,053,497–

56,064,495 (DEL)

USP24

Coding region

deletions

chr19:20000001–40000000 3/2.6% chr19: 38,427,720–

38,444,834 (DEL)

SLC7A10

chr19:1–20000000 2/2.7% chr19: 15,992,679–

15,997,923 (Denovo DEL)

LOC126536

chr17:60000001–80000000 4/2.3% chr17: 71,112,486–

71,120,734 (Denovo DEL)

KIAA1783

chr12:40000001–60000000 18/1.7% chr12: 55,902,280–

55,923,860 (Denovo DEL)

NDUFA4L2, NXPH4,

SHMT2, STAC3

chr19:40000001–59128983 1/2.7% chr19: 59,423,491–

59,428,132 (Denovo DUP)

LILRB3, LIR-3

chr16:80000001–90354753 8/2% chr16: 87,694,595–

87,778,383 (Denovo DEL)

AX748415, CDH15,

LOC197322

Coding region

duplications

chr7:140000001–159138663 22/1% chr7: 153,495,598–

153,564,827 (DUP)

DPP6

CNV: copy number variation; ADHD: attention-deficit hyperactivity disorder.
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