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Abstract
The calcium-sensing receptor (CaSR) plays a critical role in sensing extracellular calcium

(Ca2þ) and signaling to maintain Ca2þ homeostasis. In the parathyroid, the CaSR regulates

secretion of parathyroid hormone, which functions to increase extracellular Ca2þ levels. The

CaSR is also located in other organs imperative to Ca2þ homeostasis including the kidney

and intestine, where it modulates Ca2þ reabsorption and absorption, respectively. In this

review, we describe CaSR expression and its function in transepithelial Ca2þ transport in the

kidney and intestine. Activation of the CaSR leads to G protein dependent and independent

signaling cascades. The known CaSR signal transduction pathways involved in modulating paracellular and transcellular epithelial

Ca2þ transport are discussed. Mutations in the CaSR cause a range of diseases that manifest in altered serum Ca2þ levels. Gain-

of-function mutations in the CaSR result in autosomal dominant hypocalcemia type 1, while loss-of-function mutations cause

familial hypocalciuric hypercalcemia. Additionally, the putative serine protease, FAM111A, is discussed as a potential regulator of

the CaSR because mutations in FAM111A cause Kenny Caffey syndrome type 2, gracile bone dysplasia, and osteocranioste-

nosis, diseases that are characterized by hypocalcemia, hypoparathyroidism, and bony abnormalities, i.e. share phenotypic

features of autosomal dominant hypocalcemia. Recent work has helped to elucidate the effect of CaSR signaling cascades on

downstream proteins involved in Ca2þ transport across renal and intestinal epithelia; however, much remains to be discovered.

Keywords: Calcium-sensing receptor, calcium homeostasis, calcium transport, kidney, intestine, calciotropic hormones,

signaling cascades, FAM111A

Experimental Biology and Medicine 2021; 246: 2407–2419. DOI: 10.1177/15353702211010415

Introduction

The calcium-sensing receptor (CaSR) is a G-protein coupled
receptor (GPCR) central to the maintenance of calcium
(Ca2þ) homeostasis in vertebrates.1,2 As the name implies,
it senses the extracellular Ca2þ concentration and signals to
maintain it within a narrow physiological range (Figure 1).3

Central to this role, CaSR signaling occurs in the parathy-
roid glands,4 kidneys,5 intestine, 6 and bone.7,8 The CaSR is
highly expressed in the parathyroid glands,9 where it reg-
ulates the synthesis and secretion of parathyroid hormone
(PTH).10 In response to low serum Ca2þ levels, PTH is

secreted and acts to restore levels by (i) mobilizing Ca2þ

from bones via stimulation of osteoclastic bone resorp-
tion,11 (ii) promoting renal Ca2þ reabsorption,12 and (iii)
stimulating the synthesis of active vitamin D (1, 25-dihy-
droxyvitamin D), which in turn increases intestinal Ca2þ

absorption.13,14 Ca2þ-induced activation of CaSR signaling
in the parathyroid gland acts to reduce circulating PTH
levels by decreasing PTH gene expression,15 PTH secre-
tion,16 and parathyroid cell proliferation.17

However, CaSR signaling in Ca2þ transporting epithelia
directly regulates transport independently of PTH.
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Studies on PTH null mice and thyroparathyroidectomized
rats have revealed PTH-independent effects of CaSR
activation on the extracellular Ca2þ concentration.5,18

Activation of the renal CaSR increases urinary Ca2þ excre-
tion by regulating the paracellular permeability to Ca2þ via
modulation of claudin expression. Claudins are four-pass
transmembrane proteins localized to the tight junction that
regulate paracellular ion permeability.19 In fact CaSR acti-
vation in the kidney increases claudin-14 (CLDN14) expres-
sion, which reduces the paracellular permeability of the
epithelium to divalent cations (i.e. Ca2þ and Mg2þ) in the
thick ascending limb (TAL).20 In this segment, CLDN14
physically acts as a paracellular barrier to block the move-
ment of divalent cations through the cation selective pore
formed by claudin-16 (CLDN16) and claudin-19
(CLDN19).20–22 Whether transcellular transport is affected
by CaSR activation in the kidney is still disputable as there
is debate on the localization of the CaSR in the nephron,
outside the TAL. Activation of the intestinal CaSR reduces
transcellular Ca2þ absorption,6 while it remains to be deter-
mined whether paracellular Ca2þ absorption is directly
affected by intestinal CaSR signaling.

The CaSR is also expressed in osteoclast and osteoblast
cells of bone and participates in extracellular Ca2þ sensing
within the bone microenvironment to modulate bone
remodeling and extracellular Ca2þ levels.7,8 High extracel-
lular Ca2þ and CaSR agonists activate the CaSR in these
bone cells, stimulating the proliferation and chemotaxis of
bone-forming osteoblasts7 while decreasing bone resorp-
tion by inducing apoptosis of osteoclasts.8

Interestingly, osteoblasts have an additional G protein-
coupled calcium sensor, GPCR6a, which also contributes
to stimulating osteoblast-mediated bone formation.23

Given the central role of the CaSR in regulating blood
Ca2þ levels, it is therefore not surprising that mutations in
the CASR cause diseases that manifest as an inability to
maintain Ca2þ homeostasis. Heterozygous inactivating
mutations result in familial hypocalciuric hypercalcemia
(FHH), a disease characterized by high serum Ca2þ and
low urine Ca2þ levels with inappropriately normal or
mildly elevated serum PTH.24 Conversely, heterozygous
activating mutations in the CASR cause autosomal domi-
nant hypocalcemia (ADH) type 1, a disease characterized
by low serum Ca2þ, high urinary Ca2þ, and inappropriately
low serum PTH.25 Herein we review the role of CaSR sig-
naling, where it is known, in regulating transepithelial Ca2þ

transport in the kidney and intestine. The localization of the
CaSR in these organs and the effect of CASR mutations on
Ca2þ homeostasis are also discussed. Additionally, we
describe the potential role of FAM111A, a predicted serine
protease, in CaSR modulation.

Localization of the CaSR in the kidney

Initial CaSR localization studies conducted on rat kidney
found CaSR messenger RNA (mRNA) expression in most
nephron segments including the glomerulus, proximal
tubule (PT; convoluted and straight), TAL (cortical and
medullary), distal convoluted tubule (DCT), and collecting
ducts (CD; cortical and medullary).26 Subsequently, CaSR
protein expression was identified in rat kidney via

Figure 1. Schematic diagram of calcium (Ca2þ) homeostasis. Increased plasma Ca2þ activates the calcium-sensing receptor (CaSR; protein structure represented in

diagram in purple as a homodimer) in the parathyroid decreasing parathyroid hormone (PTH) release. Decreased PTH release, in addition to CaSR activation in the

bone and kidney, results in decreased Ca2þ release from the bone and increased Ca2þ excretion in the urine. Decreased PTH indirectly causes decreased Ca2þ

absorption from the small intestine by reducing the kidney production of 1,25-dihydroxyvitamin D (1,25(OH)2VitD). CaSR activation in the small intestine also directly

decreases Ca2þ absorption. Overall, increased plasma Ca2þ activates the CaSR in multiple organs decreasing PTH, as well as directly affecting Ca2þ transport in the

kidney, bone, and intestine to lower plasma Ca2þ to a normal physiological range (1.1–1.25mmol/L). (A color version of this figure is available in the online journal.)
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immunofluorescence microscopy, within the PT (convolut-
ed and straight), TAL (cortical and medullary), DCT, and
cortical CD.27 For many years, however, it has been debated
whether the CaSR was expressed in tubule segments other
than the TAL.

Among the CaSR localization studies performed to date
on rodent and human kidneys, there is consensus that CaSR
transcript and protein is predominately expressed in the
TAL with protein localization to the basolateral membrane.
A study using human, rat, and mouse kidney only found
CaSR transcript and protein in the TAL of the nephron.5

Some, but not all investigations have also identified CaSR
expression in the apical and basolateral membranes of the
DCT and CD.28–30 Others have failed to find expression in
the glomerulus30 and PT.29,30 A recent study by Graca
et al.31 sought to determine the intrarenal distribution of
the CaSR in mouse, rat, and human nephron segments
using recent technological advances. They used a combina-
tion of methods including in situ hybridization, immuno-
histochemistry with eight different CaSR antibodies, and
proximity ligation assay. mRNA was found in the TAL,
DCT, and CD with the highest expression in the TAL.
Protein was found all along the nephron including the glo-
meruli, PT (apical and cytoplasm; expression decreases
from S1 to S3), TAL (basolateral and cytoplasm), connecting
tubule, DCT (apical, basolateral, cytoplasm), and CD
(apical, basolateral, cytoplasm).27,31 The expression pattern
was similar between mouse, rat, and humans, consistent
with a high degree of conservation. The lowest CaSR
expression was found in the glomeruli, then the PT, with
the highest in the TAL. Due to discrepancies in studies over
gene and protein expression of the CaSR along the nephron,
other than the TAL, we have therefore focused on signaling
in this segment. The predominant expression of the CaSR in
the TAL suggests it plays an important functional role in
this segment. Indeed, a function for the CaSR in the cortical
TAL has been confirmed via ex vivo microperfusion studies
employing peritubular addition of CaSR agonists, which
elicited a Ca2þ signaling response resulting in increased
cytosolic free Ca2þ.5,32 Localization combined with func-
tional studies is required to determine the presence and
role of the CaSR in each nephron segment.

Localization of the CaSR in the intestine

There are fewer studies examining the localization of the
CaSR in the intestine than in the kidney. The intestine, nev-
ertheless, plays an important role in Ca2þ homeostasis as
the site of Ca2þ absorption from the diet. Using reverse
transcription-polymerase chain reaction (RT-PCR) and
complementary northern blotting, CaSR transcripts have
been identified in whole and mucosal samples of rat intes-
tinal segments including the duodenum, jejunum, ileum,
cecum, and colon.33,34 Additionally, in situ hybridization
on the duodenum found CaSR mRNA present in both
crypt and villus cells, as well as the submucosa.34

Immunohistochemistry of rat small intestinal segments
identified CaSR protein localized predominately in the
basolateral region of villi and crypt epithelial cells, with
modest apical expression in villi.34 Interestingly, CaSR

mRNA and protein were also observed in the enteric ner-
vous system of the small and large intestine.34,35 Protein
was found in the submucosa and serosa along the intes-
tine.34 In the rat colon, surface and crypt cells showed
apical and basolateral expression of CaSR transcript and
protein.34,36 Additionally, the immunostaining pattern of
the CaSR in colonic crypts was similar between human
and rat.36 CaSR transcript and protein has also been
observed in several human colonic cell lines (Caco-2, HT-
29 and T84).33

CaSR activation and signaling

CaSR ligands and activation: The CaSR is a class C GPCR
composed of a large extracellular domain (ECD), seven
transmembrane spanning domains, and an intracellular
domain.1,37–39 Homodimerization occurs by connection of
the ECDs via a covalent disulfide linkage between cysteine
residues in addition to non-covalent intermolecular inter-
actions.11,40,41 Crystal structures of the ECD of the CaSR
show that it contains a large Venus flytrap module
(VFTM) with two lobes (LB1 and LB2) that create a cleft
for ligand binding.37,42 The cysteine rich domain, which is
present in most class C GPCRs, links the VFTM to the
transmembrane spanning region.37,43 Agonist-induced
VFTM closure along with the presence of a cysteine-rich
domain is required for CaSR activation.37,43

Extracellular Ca2þ is the primary endogenous agonist of
the CaSR.44 It binds within the VFTM.44 Other agonists that
bind the orthosteric site with varying affinity include diva-
lent and trivalent cations, polyamines, and L-amino
acids.37,44,45 In addition to binding within the VFTM, the
L-amino acids L-phenylalanine and L-tryptophan can also
bind to allosteric sites and act as positive modulators by
increasing the receptor’s sensitivity to extracellular
Ca2þ.46,47 Mutations in residues that bind L-amino acids
result in reduced CaSR-mediated response to extracellular
Ca2þ, illustrating the importance of L-amino acid involve-
ment in receptor activation.46 Interestingly, L-amino acids
only contribute to receptor activation and modulation
when extracellular Ca2þ is > 1mmol/L. Thus, there exists
a co-agonist mechanism whereby extracellular Ca2þ and L-
amino acids are required to maximally activate the
CaSR.37,47 The ECD of the CaSR also possesses allosteric
binding sites for anions, including phosphate.37 They neg-
atively modulate the CaSR by facilitating the inactive state,
thereby inhibiting the CaSR and permitting PTH
release.37,48

CaSR G protein signaling cascades: Upon activation, the
CaSR induces signaling cascades (Figure 2) via coupling
to G proteins, specifically G alpha subunits such as Gq/
11, Gi/0, and G12/13.49–51 Double knockout of the alpha
subunits Gq and G11 in mouse parathyroid leads to elevat-
ed levels of both PTH and serum Ca2þ, suggesting that loss
of Gq/11 signaling impairs the CaSR to feedback inhibit
PTH secretion.49 Stimulation of Gq/11 activates phospho-
lipase C (PLC) which generates the second messengers,
inositol 1,4,5, trisphosphate (IP3) and diacylglycerol
(DAG) from phosphatidylinositol 4,5-bisphosphate
(PIP2).

52 DAG activates protein kinase C (PKC) which
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initiates mitogen-activated protein kinase (MAPK) signal-
ing cascades.53 Subsequently, MAPKs, including the extra-
cellular signal-regulated kinases ERK1/2 mediates
cytosolic signaling and activation of gene transcription.53,54

The second messenger, IP3, stimulates release of Ca2þ from
the endoplasmic reticulum thereby increasing cytosolic
Ca2þ which activates other pathways.51,55 Additionally, an
in vitro study using HEK-293 cells showed that CaSR sig-
naling through the Gq alpha protein activates the small
GTPase, RhoA, stimulating serum response element-
mediated gene expression.56 Coupling of the CaSR to
G12/13 activates the Rho family of small G proteins and
phospholipase D, resulting in cytoskeletal reorganization.50

CaSR signaling through Gi/0 inhibits adenylate cyclase,
resulting in a decrease in cAMP.51 Furthermore, CaSR acti-
vation can also initiate G-protein independent signaling
through b-arrestin, which stimulates ERK1/2 of the
MAPK pathway.57 Overall, the downstream signaling cas-
cades that arise from G-protein-dependent and -indepen-
dent pathway activation by the CaSR contribute to the
control of Ca2þ homeostasis through increased cytosolic
Ca2þ, MAPK, RhoA signaling, and decreased cAMP.
These cell events lead to changes in gene transcription

and reorganization of the cytoskeleton, although the spe-
cific mechanisms affecting target proteins (i.e. transporters
or tight junction proteins) important in maintaining serum
Ca2þ levels are largely unknown. Furthermore, the down-
stream signaling cascades used by the CaSR may differ
between organs, although this remains to be determined.

CaSR signaling in the kidney

Glomerulus: The glomerulus filters blood to form pro-urine.
CaSR protein in the glomerulus has been found in some
studies, but not others.5,30,31 In studies that identified
CaSR protein in the glomerulus, expression was sparse.31

In cultured human mesangial cells, CaSR stimulation
caused a PLC-mediated increase in intracellular Ca2þ via
influx through canonical transient receptor potential (TRP)
channels TRPC3 and TRPC6.58 This induced cell prolifera-
tion.58 Furthermore, outside the glomerulus, expression
was found in isolated mouse juxtaglomerular cells and cal-
cimimetics decreased cAMP production, which resulted in
decreased renin release.59

Proximal tubule: The PT is responsible for the majority of
water and electrolyte reabsorption, with> 60% of filtered

Figure 2. A schematic representation of calcium-sensing receptor (CaSR) signaling within epithelial cells. The CaSR has an extracellular domain (ECD) containing a

Venus fly trap module (VFTM) and a cysteine rich region. It has seven transmembrane domains (TMD) and an intracellular domain (ICD). The CaSR forms homodimers

by connection of the VFTMs via disulfide bonds. Calcium (Ca2þ) binding within the VFTM activates the CaSR leading to signaling through G alpha (Ga) proteins (Gaq,
Gaq11, Gai, Ga12/13) and beta-arrestin (b-arrestin). Gaq11 stimulates phospholipase C (PLC)-mediated cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) to

diacylglycerol (DAG) and inositol 1,4,5, trisphosphate (IP3). IP3 induces release of Ca2þ from the endoplasmic reticulum (ER), thereby increasing cytosolic Ca2þ

concentration ([Ca2þ]i). DAG activates protein kinase C (PKC) resulting in mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2)

mediated gene transcription in the nucleus, and in the TAL specifically CLDN14. b-arrestin also stimulates MAPK and ERK1/2. Gai inhibits adenylate cyclase (AC) and

decreases cyclic adenosine monophosphate (cAMP). Ga12/13 activates PLD, which affects cytoskeletal reorganization. Gaq activation of Ras homolog family member

A (RhoA) also stimulates cytoskeletal reorganization and gene transcription. (A color version of this figure is available in the online journal.)
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Ca2þ being reabsorbed from this segment through a para-
cellular pathway.60 Apical expression of the CaSR has been
detected, although at a low level and not consistently in the
PT,26,27,31 suggesting the CaSR could be involved in sensing
luminal Ca2þ. In a perfusion study of rat PTs, use of the
CaSR selective calcimimetic, R-568 or increasing luminal
Ca2þ concentration, increased fluid reabsorption and
sodium/proton exchanger (NHE3)-mediated proton secre-
tion.61 These effects were not seen in the PT of animals
lacking the CaSR.61 The apically located CaSR mediates
Ca2þ reabsorption indirectly by increasing NHE3 activi-
ty.61,62 The transcellular flux of sodium, along with water
flux, generates the driving force for Ca2þ reabsorption via
the paracellular route.63 The specific signaling cascades
involved in CaSR activation of downstream effectors that
mediate its function in the PT are largely unknown.
However, stimulation of the CaSR in the PT-derived opos-
sum kidney cell line by extracellular Ca2þ or the CaSR ago-
nist, neomycin, resulted in an increase in cytosolic Ca2þ and
ERK1/2 activation via the PIP2–PLC pathway, but not the
PKC pathway.64 Overall, the role of the CaSR in the PT is
controversial, as some have not been able to identify
expression of the CaSR in the PT at all, or at levels unlikely
to be physiologically significant.5,29–31

Thick ascending limb of Henle’s loop: Approximately 25%
of filtered Ca2þ is reabsorbed from the TAL through a para-
cellular pathway. The furosemide sensitive sodium-
potassium-chloride-cotransporter 2 (NKCC2) reabsorbs
sodium, potassium, and chloride into TAL epithelial
cells.65,66 The subsequent asymmetrical flux of potassium
back into the lumen through the renal outer medullary
potassium channel (ROMK) and chloride ions basolaterally
via the voltage-gated chloride channel Kb (CLCNKB) gen-
erates a lumen positive voltage potential critical for driving
Ca2þ paracellularly.66,67 This system is regulated by CaSR
activity. Mice with a kidney specific deletion of the CaSR
have four-fold increased expression of active, phosphory-
lated-NKCC2,68 which would increase Ca2þ reabsorption
through the paracellular pathway. Further the peritubular
addition of NPS2143, a CaSR inhibitor, to isolated perfused
rat TAL increased Ca2þ reabsorption without altering
sodium or chloride-flux, or transepithelial voltage.5 This
suggests that the CaSR directly affects the paracellular per-
meability of the epithelium to Ca2þ. Indeed, CaSR activa-
tion increases the expression of the tight junction protein,
CLDN14, in response to elevated serum Ca2þ levels.20

Cldn14 transcripts are detectable at higher levels in the
TAL compared with other tubular segments22,69 and
increases substantially when animals are fed a high Ca2þ

diet,70 made hypercalcemic or given calcimimetics.20

Expression of the CLDN14 protein is only visible under
hypercalcemic conditions, where it is restricted to the
outer stripe and cortical TAL segments,69 where it functions
to block paracellular Ca2þ reabsorption, resulting in
increased urinary Ca2þ excretion.20 The tight junction pro-
teins, CLDN16 and CLDN19 co-localize in the TAL and
interact to form a cation-selective pore.21 CLDN14 attenu-
ates paracellular cation reabsorption through the CLDN16/
19 tight junction complex by physically interacting with
CLDN16.22 Moreover, mice with kidney specific knockout

of the CaSR had reduced Cldn14 and increased Cldn16
expression, further supporting that CaSR activity regulates
tight junction protein expression to attenuate Ca2þ reab-
sorption from the TAL.68 The microRNAs, miR-9 and
miR-374 have been implicated in repressing CLDN14
gene transcription via binding the 30-UTR of CLDN14
mRNA.22,71 CaSR activation decreases miR-9 and miR-
374.71 Otherwise the CaSR signaling cascades mediating
altered Ca2þ transport in this segment are largely
unknown; however, G-protein mediated signaling through
Gq and/or G11 likely contributes. Furthermore, other
CaSR-dependent signaling pathways than those described
in parathyroid may exist in kidney. Regardless, the CaSR in
the basolateral membrane of the TAL senses serum ionized
Ca2þ and signals to alter urinary Ca2þ excretion in
response.

Distal convoluted and connecting tubule: Reabsorption of
the remaining up to 10% of filtered Ca2þ occurs in the DCT
and CNT via an active transcellular transport mecha-
nism.65,72 Luminal Ca2þ enters the DCT/CNT cell through
the apically expressed TRP vanilloid 5 (TRPV5) channel
and is shuttled to the basolateral membrane by calbindin-
D28K (CALB28K), where efflux occurs via the plasma mem-
brane calcium ATPase (PMCA) and sodium–calcium
exchanger 1.73 Activation of the basolateral CaSR in a
distal tubular cell model (MDCK cells) inhibits transcellular
reabsorption of Ca2þ by decreasing PMCA activity in a
PLC-dependent manner.74 Some reports also suggest that
the CaSR is expressed apically in the DCTand CNTwhere it
colocalizes with TRPV5 at the luminal membrane.75

Activation of the CaSR in HEK293 cells stimulates
TRPV5-mediated Ca2þ influx, via a phorbol-12-myristate-
13-acetate-insensitive PKC isoform pathway.75 Mutation of
PKC phosphorylation sites on TRPV5 abolished channel
activity.75 Therefore, the CaSR signals through different
intracellular pathways depending on cellular localization
in this segment (apical vs. basolateral). Based on these
observations it is suggested that the basolateral CaSR
senses serum Ca2þ levels and functions to decrease renal
Ca2þ reabsorption, whereas apical CaSR senses lumen Ca2þ

levels and functions to increase reabsorption.
Collecting duct: There is little Ca2þ reabsorption from the

CD; however, some have reported expression of the CaSR
in this segment. An increase in luminal Ca2þ decreases
tubule permeability to water and increases proton secretion
by downregulating aquaporin 2 (AQP2) and increasing Hþ-
ATPase activity respectively.76 Luminal Ca2þ-mediated
polyuria and urinary acidification may protect from renal
stone formation. The apically located CaSR in the CD
senses the luminal Ca2þ concentration, as activation of the
CaSR by luminal addition of CaSR agonists decreased
AQP2 expression and water permeability, and increased
Hþ-ATPase activity.28,76,77 The effects of CaSR activation
on AQP2 expression were found to be independent of
PKC and ERK, but relies on increased cytosolic Ca2þ, cal-
modulin, and protein kinase A.77 CaSR protein was also
found within purified AQP2 endosomes along with Gq/
11, Gi, and two PKC isoforms76 implicating the CaSR in
trafficking of AQP2 to the membrane. Again there is
debate as to whether there is CaSR in this segment.
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Loupy et al.5 suggest Ca2þ sensing in the CD occurs through
a different mechanism (i.e. via Gprc6a), as CaSR agonists
did not elicit a Ca2þ response in microperfused CDs when
applied either luminal or basolateral and they could not
observe CaSR expression in the CD. However, others
have found that 5mmol/L extracellular Ca2þ was not
able to elicit an intracellular Ca2þ response in HEK-293
cells transfected with Gprc6a.78 Additionally, maximal acti-
vation of Gprc6a, as determined by phosphorylated-ERK
levels, required 40mmol/L extracellular Ca2þ compared
with 5mmol/L required to maximally activate the CaSR.
Gprc6a seems to have lower affinity for Ca2þ compared
with the CaSR, and thus the CaSR is likely the main Ca2þ

sensor in this segment.

Intestinal CaSR signaling

Intestinal Ca2þ absorption can occur by both paracellular
and transcellular routes, and is strongly regulated by 1, 25-
dihydroxyvitamin D. Activation of the apical intestinal
CaSR purportedly reduces Ca2þ absorption.79 This is sup-
ported by the apical addition of the CaSR agonists cinacal-
cet and AC-265347 to monolayers of human intestinal
(Caco-2) cells, which decreased 1,25-dihydroxyvitamin D-
induced Ca2þ flux.79 The specific mechanisms of how CaSR
activation affects the 1, 25-dihydroxyvitamin D-dependent
intestinal Ca2þ absorption are largely unknown. Whether
and how intestinal CaSR activation modulates paracellular
Ca2þ absorption is not clear, although the CaSR has been
found to be important in maintenance of the intestinal epi-
thelial barrier integrity.80 For example, CaSR null mice have
reduced colonic transepithelial resistance, greater transepi-
thelial conductance and higher passive transport as mea-
sured by the flux of FITC-conjugated dextran.80 Through
pharmacological and physiological methods, the intestinal
CaSR has recently been found to affect the transcellular
transport of Ca2þ.6 Basolateral but not apical CaSR activa-
tion by cinacalcet or higher Ca2þ concentration in the duo-
denum, cecum, and proximal colon decreased apical
TRPV6-mediated intestinal Ca2þ absorption through the
PLC pathway.6

In addition to nutrient sensing, maintenance of epithelial
barrier integrity, and regulation of Ca2þ absorption, the
intestinal CaSR modulates water transport in the intestine.
Both the apical and basolateral CaSR in the colon are func-
tionally active and modulate water transport there.36

Consistent with this in isolated perfused rat colonic
crypts an increase in luminal or basolateral Ca2þ from 0.1
to 2.1mmol/L or addition of CaSR agonists resulted in an
increased intracellular Ca2þ response and reduced fluid
secretion. The PLC–IP3 pathway was implicated in mediat-
ing the intracellular Ca2þ increase, since CaSR activation
increased intracellular IP3 accumulation and a specific
inhibitor of PLC, U-73122, prevented the response. An
additional study found that both luminal and basolateral
CaSR activation in isolated perfused colonic crypts,
reduced forskolin-stimulated fluid secretion.45 Similarly,
ex vivo perfusion of small intestinal segments with luminal
addition of a CaSR agonist, reduced fluid secretion.81

Overall intestinal epithelia clearly can sense extracellular

Ca2þ levels and respond to maintain plasma Ca2þ but
more work is required to fully understand the signaling
pathways mediating this and if the paracellular pathway
is involved.

Clinical conditions associated with increased
CaSR signaling

The maintenance of serum Ca2þ levels within a normal
range is dependent on the CaSR.2 Consequently, mutations
in the CaSR that alter the affinity for Ca2þ ‘reset’ serum
Ca2þ levels either upwards or downwards.82 Low Ca2þ

levels, or hypocalcemia, is not normally detected by the
CaSR, enabling the secretion of PTH and preventing its
degradation.2 A small decrease in serum Ca2þ may be cor-
rected entirely through alterations in PTH release.
However, activating mutations in the CaSR, bind serum
Ca2þ and signal, even when serum Ca2þ is low, resulting
in hypocalcemic syndromes (Table 1). These mutations
increase the receptor’s affinity for Ca2þ inducing a left
shift in the dose response curve, such that even lower
serum Ca2þ levels are sufficient to activate the receptor.83,84

Patients with activating CaSR mutations typical display
a syndrome referred to as autosomal dominant hypocalce-
mia type 1 (ADH1). They exhibit mild to moderate low
blood Ca2þ levels with inappropriately low PTH levels.84

They can exhibit neuromuscular irritability, seizures, and
basal ganglia calcification. Heterozygous mutations are
most common and those with homozygous mutations do
not appear to exhibit a more severe phenotype. Other gain-
of-function CaSR mutations cause Bartter’s syndrome type
V. This is a more severe phenotype characterized by urinary
sodium loss, due to inhibition of sodium reabsorption from
the TAL as well as hypocalcemia, hypoparathyroidism, and
hypomagnesemia since Mg2þ is reabsorbed by a similar
mechanism to Ca2þ in the TAL.85

The CaSR signals by coupling to G-proteins, including
Ga11. It is not surprising then that gain-of-function muta-
tions in Ga11, cause hypocalcemia with reduced PTH
levels, i.e. ADH type 2 (ADH2; Table 1).53,86 Mutations in
GNA11 (the Ga11 gene) were identified by screening
patients with ADH, but without mutations in the CaSR.87

Mutations in GNA11 causing ADH2 increase the affinity of
the CaSR for Ca2þ similar to CaSR gain of function muta-
tions. Interestingly, patients with ADH2 described thus far
have not presented with hypercalciuria, in contrast to 10%
of ADH1 patients who exhibit this at presentation.
However, ADH2 is less common and the number of
patients studied to date is limited.

The CaSR signals in a biased manner.88 Activating or
inactivating mutations in the CaSR act as ‘molecular
switches’ to direct signaling either by increasing intracellu-
lar Ca2þ or via MAPK signaling. Mutations causing ADH1
appear to preferentially signal via increased Ca2þ, in con-
trast to loss-of-function mutations, which signal mainly
through the MAPK pathway.57 However, exceptions exist,
as the R680G activatingmutation in the CaSR stimulates the
MAPK pathway without altering intracellular Ca2þ

responses, in contrast to the majority of other activating
mutations that bias the CaSR towards Ca2þ signaling.
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The treatment for ADH is non-specific and includes
active vitamin D and Ca2þ supplementation.82 However,
treatment with Ca2þ and active vitamin D can cause neph-
rocalcinosis resulting in impaired renal function. Calcilytics
are antagonists of the CaSR that are a possible treatment for
ADH. Calcilytics are proposed to cause normocalcemia in
ADH patients by negatively modulating the CaSR, sup-
pressing CaSR signaling, and thus stimulating PTH secre-
tion.89 Importantly, calcilytics have yet to show broad
efficacy likely due to the heterogeneity of a treatment
response caused by large variability in CASR mutations
causing ADH and thus differences in drug-binding with
mutant CaSR receptors.

Clinical conditions associated with
decreased CaSR signaling

In response to increased serum Ca2þ levels, CaSR signaling
decreases PTH secretion, increases renal Ca2þ excretion,
and decreases intestinal Ca2þ absorption.2 In contrast to
gain-of-function CaSR mutations, loss-of-function muta-
tions decrease the set-point for PTH secretion, primarily

by reducing the receptor’s affinity for agonists or failing
to activate G-coupled proteins.53,83 Heterozygous inactivat-
ing mutations in the CaSR cause familial hypocalciuric
hypercalcemia type 1 (FHH1), a disease that typically
presents with mild to moderate symptoms (Table 1).82

Homozygous inactivating mutations, however, produce a
severe hypercalcemic disorder with high PTH levels, called
neonatal severe hyperparathyroidism (NSHPT).82 This
gene dosage effect, found commonly with many inactivat-
ing mutations of the CaSR, causes PTH levels to increase
more than five-fold, resulting in hyperplasia of the para-
thyroid glands.90 Affected neonates also have demineral-
ized bones and rib fractures from chronically elevated PTH,
which can cause respiratory difficulties and even death.82

Approximately 65% of FHH patients have FHH1, which
is due to inactivating mutations in the CaSR.91 The majority
of FHH1CaSRmutations (>50%) aremissensemutations in
the large ECD, which reduce the receptor’s affinity for ago-
nists.92 Patients, however, generally only have mild hyper-
calcemia, normal PTH, and mild hypermagnesemia.
They are usually heterozygous and thus the normal func-
tioning CaSR typically limits the clinical phenotype.91

Table 1. Disorders of CaSR signaling.

Syndrome Gene Mutations Clinical phenotype* References

Hypercalcemic

FHH1 CaSR I40F, I555T, E297K, 1608þ 3A>G,

G571W, G146D, P798T—(Het)

Q459R & I81K (Hom)

Hypercalcemia, hypophosphatemia, hypocalciuira,

hyperparathyroidism, hypermagnesemia

98,104–112

FHH2 GNA11 F220S, T54M—heterozygous Hypercalcemia, hypophosphatemia,

hyperparathyroidism, hypocalciuria

113,114

FHH3 APS2 R15C, R15H and R15L—

heterozygous

Hypercalcemia, low bone mineral density,

hypocalciuria

115

NSHPT CaSR P39A, E519X, IVS5þ 1 G>A,

206G>A—homozygous

R185Q (Het)

Hypercalcemia, hypophosphatemia, hypocalciuria,

hyperparathyroidism, hypermagnesemia,

hypotonia, fractures, osteopenia, bell-shaped ribs,

elevated Alk Phos, elevated 1,25(OH)2D3, low

25OHD3

93,107,116–123

Hypocalcemic

Barter syndrome CaSR L125P, A843E, Y825F—

heterozygous

Hypokalemia, met. alkalosis, hypocalcemia,

hypoparathyroidism, hyperphosphatemia, hyper-

calciuria, hypomagnesemia, hyperaldosteronism,

nephrocalcinosis, tetany

98,124

ADH1 CaSR L123S, N732S, P221L, T888M,

C131S, E767K, C129S,

Q681R—heterozygous

Hypocalcemia, hypoparathyroidism, hyperphospha-

temia, hypercalciuria, hypomagnesemia, tetany,

nephrocalcinosis, nephrolithiasis, elevated 1,25

(OH)2D3, low 25OHD3

125,126,109,127–132

ADH2 GNA11 V340M, R60L—heterozygous Hypocalcemia, hypoparathyroidism, hyperphospha-

temia, tetany

133

OCS/GBD FAM111A S343del, T338A, D528G,

P527T—heterozygous

Hypocalcemia, hypoparathyroidism, hyperphospha-

temia, fractures, frontal bossing, large ant.

Fontanelle, flat nasal bridge, low set ears, clover

leaf skull, hypertelorism, cataracts, thin lone bones

and ribs, hypoplasia, shortened limbs, hepato-

megaly, oligohydramnios

134–140

KCS FAM111A R569H, Y511H, S541Y—

heterozygous

Hypocalcemia, hypoparathyroidism, hypomagnese-

mia, hyperphosphatemia, open anterior fontanelle,

prominent forehead, macrocephaly, hyperopia,

myopia, medullary stenosis, cortical thickening

129,136,137,138

FHH: familial hypocalciuric hypercalcemia; NSHPT: neonatal severe hyperparathyroidism; ADH: autosomal dominant hypocalcemia; OCS: osteocraniosyndostosis;

GBD: gracile bone dysplasia; KC: Kenny Caffey syndrome; Het: heterozygous; Hom: homozygous.

� NB there can be significant variability in clinical phenotypes and all findings may not be present.
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However, not all patients with heterozygous mutations
have mild disease.90 Disease severity appears to increase
when themutation is paternally transmitted or de novo. This
is postulated to occur as a fetus with a FHHmutation that is
gestated in a normocalcemic mother is more likely to devel-
op secondary hyperparathyroidism. However, symptoms
typically improve over time as the fetus is no longer
impacted by the maternal Ca2þ homeostatic system.93

These children also display some degree of bone disease
which can be treated with parathyroidectomy, improving
their disease to an asymptomatic state. FHHmutations typ-
ically demonstrate CaSR signaling bias towards MAPK
pathway activation; however, bias towards intracellular
Ca2þ mobilization has also been seen.57,88

In parallel to ADH2, FHH2 is caused by inactivating
mutations of GNA11 and thus alterations in the Gq/11 pro-
tein (Table 1). GNA11 mutations have been found in more
than 10% of FHH patients without CaSR mutations.87

Heterozygous mutants (e.g. R187Q) exhibit a dominant
negative effect as the abnormal receptor interferes with
the function of the normal receptor.93 It is postulated that
this may be due to the removal of functional G proteins,
limiting the wildtype CaSR ability to signal. FHH2 muta-
tions typically display a modest decrease in affinity for
Ca2þ, and appear to occur preferentially in the GTPase
domain of the small G-coupled protein. Patients typically
have mild alterations in serum Ca2þ if any at all.

FHH3 is caused by inactivating mutations of the AP2S1
gene (Table 1). This disease is characterized by high levels
of serum Ca2þ and PTH as well as hypophosphatemia.91

Plasma membrane CaSR expression is regulated by inter-
nalization and insertion, the former occurring via clathrin-
mediated endocytosis.94 AP2r, the protein encoded by
AP2S1, binds the CaSR directly initiating endocytosis.11

AP2S1 mutations causing FHH3 interfere with binding to
this motif and consequently impair CaSR endocytosis.95

Specifically, missense mutations that affect Arg15, which
is known to form contacts with dileucine-based motifs of
clathrin-coated vesicle cargo proteins cause FHH3.91,96

More than 20% of patients with FHHwithout a CaSR muta-
tion have AP2S1 mutations.91 These mutants cause delayed
CaSR internalization which increases CaSR plasma mem-
brane expression, yet also hypercalcemia.94,97 This seem-
ingly paradoxical relationship is hypothesized to be due
to a decrease in sensitivity of the CaSR to Ca2þ and reduc-
tions in Ca2þ-mediated phosphorylation of the receptor in
response to increasing Ca2þ levels. It is important to note
that AP2r mutants hinder, but do not abolish CaSR inter-
nalization, explaining the relatively mild phenotype of
FHH3 compared with NSHPT, which is caused by homo-
zygous mutations in the CaSR.2

An emerging treatment for hypercalcemic disorders is
calcimimetics, which are positive modulators of the
CaSR.89 Calcimimetics interact with the transmembrane
domain of the CaSR, increasing the receptor’s affinity for
Ca2þ.82 Thus, calcimimetics are an emerging therapy which
might be useful to lower serum Ca2þ levels, assuming that
the mutant CaSR is responsive.82

FAM111A a potential modifier of CaSR
signaling

Dominant missense mutations in FAM111A are the under-
lying cause of Kenny Caffey syndrome type 2 (KCS2), grac-
ile bone dysplasia (GBD), and perinatally lethal
osteocraniostenosis (OCS; Table 1).98 Patients with these
diseases display a phenotype that includes hypocalcemia,
hypoparathyroidism, medullary stenosis of tubular bones,
and short stature. Thus, mutations in FAM111A result in a
phenotype, which in part resembles gain-of-function muta-
tions in the CaSR. This similarity in phenotype begs the
question as to how FAM111A might affect CaSR signaling,
including across epithelia. Unfortunately, FAM111A is a
poorly characterized gene; however, it is predicted to be a
serine protease. Its C-terminus has a trypsin-like domain
containing the catalytic triad, His385, Aps439, and Ser541,
which is characteristic of the S1 family of serine pro-
teases.99–101 FAM111A appears capable of auto-cleavage
in vitro. FAM111A localizes in the nucleus and is also
found to be a proliferating cell nuclear antigen (PCNA)—
interacting protein that works to mitigate the effects of pro-
tein obstacles on replication forks that would otherwise
block replication. As such, it could act as a transcription
modifier, interacting with PCNA through its PCNA-
interacting peptide box, and thus affect CaSR transcription
and activity.102

All disease-causing mutations reported thus far are in
the serine protease domain of FAM111A, inferring alter-
ation in this function result in the CaSR activation like phe-
notype. Gain-of-function mutations in FAM111A amplify
protease activity, antagonizing chromatin-associated
processes including DNA replication and transcription by
displacing key effectors, which may result in rapid caspase-
dependent apoptosis.98 Some disease-causing mutations
(e.g. R569H, Y511H) decrease the amount of full-length
FAM111A protein and increase levels of autocleavage frag-
ments when expressed in cell culture, inferring they are
activating mutations.99 Alternatively, rather than stimulat-
ing CaSR transcription, parathyroid development could be
impaired by hyperactive FAM111A inducing apoptosis in
this gland thereby causing KCS2, GBD, or OCS. Another
possibility is that disease-causing activating FAM111A
mutations increase protease activity thereby preventing
the downregulation of CaSR expression and activity via
increased degradation of key players involved in CaSR
desensitization and internalization (e.g. b-arrestins and G
protein receptor kinases).78,103 Although highly specula-
tive, this may explain why FAM111A mutations cause
phenotypes resembling a gain of function mutation in
the CaSR.

Summary/conclusions

The CaSR plays an essential role in Ca2þ homeostasis by
sensing extracellular Ca2þ levels and signaling to maintain
the serum Ca2þ concentration within a narrow physiologi-
cal window. It is located in organs that are essential in reg-
ulating the body’s Ca2þ balance, such as the parathyroid,
kidney, and intestine. In the kidney, the CaSR is
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predominately expressed in the basolateral membrane of
the TAL and responds to changes in blood Ca2þ levels by
regulating tight junction proteins, thereby affecting urinary
Ca2þ excretion. The expression and function of the CaSR in
other nephron segments are still debated, and may not be
physiologically relevant to themaintenance of Ca2þ homeo-
stasis. The CaSR is expressed along the intestine and func-
tions in modulating Ca2þ and water absorption. It is
unknown whether and how the intestinal CaSR influences
paracellular Ca2þ permeability in response to changes in
the blood Ca2þ concentration. However, the effect of CaSR
activation on the transcellular pathway of Ca2þ absorption
is beginning to be delineated. Overall in epithelia upon acti-
vation, the CaSR signals through a variety of G-protein-
dependent and -independent pathways, with the signaling
pathway initiated potentially differing depending on the
organ or cellular localization of the CaSR. It is largely
unknown how CaSR signaling cascades specifically regu-
late downstream effectors of Ca2þ transport. Perturbations
in CaSR activity cause a range of diseases with altered
serum Ca2þ levels, such as FHH and ADH. This highlights
the importance of understanding CaSR signaling during
the maintenance of Ca2þ homeostasis in order to help
restore normal serumCa2þ levels. Indeed, the recent advan-
ces in understanding CaSR signaling have led to the target-
ing of the CaSR with calcimimetic and calcilytic drugs to
help maintain systemic Ca2þ homeostasis.
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