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Abstract
Cancer-induced muscle wasting, i.e. cachexia, is associated with different types of cancer

such as pancreatic, colorectal, lung, liver, gastric and esophageal. Cachexia affects prog-

nosis and survival in cancer, and it is estimated that it will be the ultimate cause of death for

up to 30% of cancer patients. Musculoskeletal alterations are known hallmarks of cancer

cachexia, with skeletal muscle atrophy and weakness as the most studied. Recent evi-

dence has shed light on the presence of bone loss in cachectic patients, even in the

absence of bone-metastatic disease. In particular, we and others have shown that

muscle and bone communicate by exchanging paracrine and endocrine factors, known

as myokines and osteokines. This review will focus on describing the role of the most

studied myokines, such as myostatin, irisin, the muscle metabolite b-aminoisobutyric

acid, BAIBA, and IL-6, and osteokines, including TGF-b, osteocalcin, sclerostin, RANKL,

PTHrP, FGF23, and the lipid mediator, PGE2 during cancer-induced cachexia. The interplay

of muscle and bone factors, together with tumor-derived soluble factors, characterizes a

complex clinical scenario in which musculoskeletal alterations are amongst the most debil-

itating features. Understanding and targeting the “secretome” of cachectic patients will

likely represent a promising strategy to preserve bone and muscle during cancer cachexia

thereby enhancing recovery.
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Cancer cachexia

Cachexia is defined as “ongoing loss of skeletal muscle
mass (with or without loss of fat mass) that cannot be
fully reversed by conventional nutritional support and
leads to progressive functional impairment”.1 This
condition is a comorbidity of cancer and other chronic dis-
eases such as heart failure, chronic kidney disease, as
well as chronic obstructive pulmonary disease, and is
known to impair physical function, alter quality of life,

reduce tolerance to anticancer therapy, and shorten
patients’ survival.2 It is estimated that the prevalence
of cachexia in the cancer population varies from 50%
up to 80% depending on stage of the disease and tumor
type. As such, cachexia is particularly common in pancre-
atic, esophageal, gastric, colorectal, lung, and liver
cancer patients.3 Moreover, it is estimated that cachexia
will be the ultimate cause of death for up to 30% of all
cancer patients.4

Impact statement
The concept that muscle and bone com-

municate not only mechanically, but also

by exchanging soluble biochemical factors

has triggered new investigations in mus-

culoskeletal research. The idea that not just

tumor-derived factors, but also the inter-

action of secreted myokines and osteo-

kines can induce musculoskeletal loss

paves the way to the development of new

therapeutics. This review summarizes the

most recent progress in the study of bone

and muscle-derived factors in a setting of

cancer cachexia. We highlight that soluble

factors initially thought to derive exclu-

sively from bones and muscles can instead

be released also by tumors, suggesting a

new concept of the trifecta of cancer-

bone-muscle crosstalk. Lastly, we suggest

the idea that future personalized thera-

peutic interventions should target not just

the cancer soluble factors, but also bone

and muscle to mitigate the negative effects

of this triple “secretome” in order to

improve outcomes and enhance retention

and recovery of musculoskeletal function.
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The etiology of cachexia is influenced by a complex
interplay between the tumor burden and the consequent
immune/inflammatory response of the host body. As
such, several tumor-derived and host-derived humoral fac-
tors participate in the organ damage characterizing this
syndrome.5 New evidence from ours and other groups
clearly shows the detrimental role of anticancer treatments
(e.g. chemotherapy) in the pathogenesis of cachexia.6,7 The
progression of cachexia is a continuum composed of three
stages of clinical relevance: pre-cachexia, cachexia, and
refractory cachexia. Not all patients experience all phases
and the progression depends on different individual fac-
tors.1 This classification is critically important for the clin-
ical management of cancer patients. Based on this, the
identification of biomarkers of pre-cachexia is crucial to
design clinical interventions targeting muscle and bone
that, when administered in its earliest stages, may be able
to correct this condition.

Features of cachexia

Some of the principal systemic features of cachexia are
reduced food intake, altered energy balance, metabolic
abnormalities, and imbalance between anabolism and
catabolism. These systemic derangements affect several tis-
sues and organs, thus contributing to defining cachexia as a
multi-organ syndrome. Among the most important drivers
of cachexia are the systemic inflammatory response, the
presence of high levels of tumor-derived factors, and the
exacerbated protein catabolism that characterizes tumor
metabolism per se.4

Systemic inflammation appears to be a hallmark of the
majority of cancer patients, and proinflammatory cyto-
kines, including IL-6, TNF-a, IFN-c, and IL-1b are found
chronically elevated in blood, peripheral tissues, and the
central nervous system of subjects with cancer cachexia.8

Pro-inflammatory cytokines can be produced by both the
immune system and by tumor cells. Interestingly, the pres-
ence of tumor cells stimulates the body’s innate immune
system to produce an acute phase response, characterized
by the production of acute phase proteins such as C-reac-
tive protein, which in turn can negatively impact muscle
mass, thus playing a critical role in the pathogenesis of
cachexia.9 Cytokines and chemokines are known to act in
both paracrine and endocrine manners and together can
generate a negative energy balance, altered metabolism,
and a dramatic imbalance between anabolism and catabo-
lism.10 Moreover, it has been shown that inflammatory
mediators can affect the central nervous system, thus pro-
moting the occurrence of anorexia,11 which, along with
altered food taste, early satiety, pain and nausea, contrib-
utes to the reduction of food intake and to overall malnu-
trition,4 thereby leading to the progressive body wasting
that characterizes cachectic cancer patients.

Amongst the most relevant features of cancer cachexia
are severe skeletal muscle loss and weakness. Skeletal
muscle atrophy is due to an imbalance between protein
synthesis and degradation rates that together determine a
negative nitrogen balance.12 During cancer cachexia, the
increased skeletal muscle protein breakdown is primarily

due to the hyperactivation of different proteolytic systems
such as the ubiquitin-proteasome, Ca2þ-dependent cal-
pains, caspases, and autophagy-lysosome systems.13

However, whether alterations of protein synthesis rates
also play a role in cancer-induced muscle wasting remains
unknown. In this regard, we recently showed that impaired
ribosomal production can determine anabolic deficit in
cancer cachexia, although the causes of such impairment
remain partially unclear.14 In contrast, a reduced muscle
regenerative process has also been found to contribute to
muscle atrophy in a cancer setting.13

Fatigue and weakness (i.e. reduction of muscle strength
and endurance) often accompany skeletal muscle atrophy
and are both complications that severely compromise qual-
ity of life. The drivers of these functional impairments are
not clearly defined. Interestingly, in combination with
tumor burden, anticancer cytotoxic agents appear to play
a detrimental role in muscle mass and function, and it has
been shown that chemotherapy muscle toxicity can persist
for long periods of time, even after tumor remission. In this
regard, proper assessment of body composition (i.e. the
proportion between lean and fat mass in a body) is becom-
ing crucially important in choice of cancer treatment, espe-
cially considering that lower lean mass in cancer patients
frequently associates with discontinuation, dose limitation
of the therapy, and poor survival.15

While the alterations of skeletal muscle consequent to
the onset of cancer are extensively studied, on the contrary,
the bone loss occurring during cancer cachexia is poorly
understood. Bone is the preferential site of metastasis for
several types of malignancies, including breast and pros-
tate cancer, and is a fairly common event in melanoma,
lung, colorectal, and thyroid cancers. Cancer metastases
can dramatically affect quality of life and ultimately
reduce survival in cancer patients since once cancer has
entered bone it is more difficult to treat.16 Cancer metasta-
ses to bone, as well as anticancer agents are known to
increase osteoclast number and activity, thus leading to
reduced bone mass by enhanced bone resorption and for-
mation of osteolytic lesions.16 These events increase the risk
of fracture, pain, and hypercalcemia.16

Interestingly, bone loss can occur also in the absence of
bone metastases. Indeed, the incidence of vertebral fracture
was found five times higher in women with breast cancer
without bone metastases.17 Similarly, cervical cancer
patients were found to present lower bone mineral density
in the absence of bone metastases,18 whereas 40% of
patients affected by non-small lung cancer without tumor
dissemination to bone were shown to present with osteo-
porosis and osteopenia.19 Several preclinical models for the
study of cancer support the idea that bone alterations can
occur in the absence of bone metastases. We showed that
mice bearing the ES-2 ovarian cancer or the MC-38 colorec-
tal cancer present with severe bone loss along with the
development of skeletal muscle atrophy and weakness.20,21

In addition, we also previously showed that routinely
administered chemotherapy regimens can affect bone
tissue and, for this reason, may play a critical role in driving
the harmful musculoskeletal alterations that affect cancer
patients.22,23
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Bone and muscle: A mutual interaction

Bone and muscle both derive from the paraxial meso-
derm,24 share common mesenchymal precursors, and
develop synchronously during embryonic development.25

Together, they are the most abundant tissues in the whole
body. With the contribution of tendons, ligaments, joints,
vascular and nervous systems, they constitute the support
and the locomotion apparatus for the organism. While
muscle contraction loads the bone, hence improving bone
strain leading to maintenance or new bone formation, in
contrast, immobility, and muscle atrophy induces bone
loss due to unloading of bone.26 It is well known that exer-
cise is essential to maintain a healthy musculoskeletal
system. However, different types of exercise have distinc-
tive effects on bone and muscle. For example, endurance
exercise, such as running, stimulates oxidative fibers can be
associated with lower bone mineral density, BMD, com-
pared with the resistance exercise, such as lifting weights,
that increases muscle mass and is associated with higher
BMD.27 Dogmawas that the mechanical interaction was the
only interaction between the two tissues. More recently,
several studies have suggested that muscle and bone can
interact also in a biochemical and endocrine manner, in
both physiological and pathological conditions.28 Based
on this idea, bone and skeletal muscle can function as secre-
tory organs that can release paracrine and endocrine factors
named “osteokines” and “myokines”, respectively. This
new concept of biochemical signaling is becoming an
important area of study and the balance between myokines
and osteokines likely plays a critical role in the mainte-
nance of a healthy musculoskeletal system.

One example of the importance of bone and muscle inter-
action is in fracture healing. Using a murine open tibia frac-
ture model in which skeletal muscle tissue was
simultaneously damaged, faster bone recovery and a superior
quality of the repair were observed.29 The same observation
can be appreciated also in human open tibia fractures.26 A
possible explanation of this event is that the muscle flaps
adjacent to the bone fracture produce factors that improve
bone repair.26 Moreover, skeletal muscle stem cells have also
been shown to act like osteoprogenitors, thus improving bone
healing.30 Overall, these findings show that access of skeletal
muscle, i.e. “muscle flaps”, to the fracture location can
improve the fracture outcome.31 Another example of bone-
muscle communication was shown by using a murine
model of osteogenesis imperfecta, a genetic connective
tissue disorder characterized by “brittle bone” more suscep-
tible to fractures. Surprisingly thesemice also develop skeletal
muscle weakness in spite of the absence of anymuscle pathol-
ogy. The investigators suggest that abnormal bone can release
factors that compromise skeletal muscle function.26,32

The role of myokines in muscle-bone
crosstalk

Myostatin

Myostatin (GDF-8) is a well-known myokine and member
of the transforming growth factor (TGF) b superfamily.

It was first described in double-muscled cattle, character-
ized by dramatically increased muscle mass due to a muta-
tion in the myostatin gene.33 Myostatin is a negative
regulator of skeletal muscle mass; high levels induce
muscle atrophy, whereas lower or lack of expression indu-
ces muscle hypertrophy in not only animals, but also in
humans. Myostatin binds the activin receptor type-2 result-
ing in the phosphorylation of Smad2 and Smad3 leading to
downstream signaling to inhibit the Akt-TORC1 anabolic
pathway to ultimately impact muscle differentiation.34 The
skeletal muscle atrophy and adipose tissue wasting
induced by overexpression of myostatin were the first indi-
cation of a potential role in the pathogenesis of cancer
cachexia.35 Several preclinical models of cancer cachexia,
such as the Yoshida AH-130 hepatoma in rats and the
C26 adenocarcinoma in mice, were shown to have
increased myostatin levels in skeletal muscle, consistent
with severe skeletal muscle wasting.36,37 High levels of
myostatin were also found to be elevated in the skeletal
muscle of cancer patients.38 However, the actual function
of myostatin in human cancer-associated cachexia remains
less clear.

Not only does myostatin have a negative effect on
muscle, but it also has negative consequences on bone.
Myostatin deficiency was associated with increased osteo-
genic differentiation of bone marrow-derived mesenchy-
mal stem cells, as well as with increased bone mass and
strength.39 More recently, it was shown that myostatin
inhibits osteoblast differentiation by directly reducing the
osteocyte-derived production of exosomal miR-218.40

Myostatin was also found able to enhance the action of
RANKL on osteoclast formation, both in vitro and in
vivo.41 In elderly subjects, the levels of mature myostatin
were found to negatively correlate with BMD and positive-
ly with markers of bone resorption.42

Other members of the TGF-b superfamily such as activin
are associated with muscle and bone alterations during
cachexia. We recently showed that treatment with antago-
nists to the activin receptor type-2B (ACVR2B) was able to
improve the cachectic phenotype. Indeed, the administra-
tion of the ACVR2B/Fc soluble receptor decoy was able to
preserve body weight, bone mass, skeletal muscle mass,
and strength both in models of chemotherapy and meta-
static colorectal cancer-induced cachexia.22,43

Irisin

Irisin is the cleavage product of the transmembrane protein
fibronectin type III domain-containing protein 5 (FNDC5)
and was first described as released from skeletal muscle
after exercise.44 This protein can increase oxidative metab-
olism, promote myogenesis, and increase skeletal muscle
mass.45 Due to its potent action on regulating the browning
of white adipose tissue, hence leading to reduced body
weight and reduced adipose accumulation, a role for
irisin in the regulation of obesity has also been intensely
investigated.46 In a model of atrophy induced by denerva-
tion, irisin was able to improve muscle mass by affecting
myogenic signaling.47 Interestingly, cortical bone mass was
also modestly increased by the treatment with a low-irisin
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dose.48 In post-menopausal women with osteoporosis, as
well as in patients with diabetes, liver and heart disease,
irisin levels negatively correlated with the risk of frac-
tures.49 However, on the contrary, work from other
groups showed that global FNDC5 knock-out mice show
reduced RANKL levels in the circulation, consistent with
increased trabecular bone.50 Also, irisin was found to
increase the expression of the negative bone regulator scle-
rostin, in MLO-Y4 osteocyte cultures and in vivo, thus pos-
sibly stimulating bone catabolism.50 Based on these
opposing observations, the role of irisin on bone regulation
remains controversial.

In a model of gastric cancer-induced cachexia, the
expression of FNDC5 was increased in adipose tissue, as
were high circulating levels of irisin.51 Moreover, irisin
levels were found increased in the serum of patients suf-
fering from cardiac cachexia, along with changes in the
expression of markers of heart failure.52 Interestingly,
irisin protein expression was also recently shown to be
highly expressed in lung, liver, and gastrointestinal
tumors,53 and in the tumor of cachectic patients, irisin
levels were higher than cancer patients with stable body
weight.54–56 On the other hand, the levels of irisin were
reduced in colorectal and breast cancer patients compared
to normal subjects.57,58 Again, as in bone metabolism, the
role of irisin in cancer cachexia remains unclear.

Interleukin-6

Interleukin-6 (IL-6) is a pleiotropic proinflammatory cyto-
kine. The main producer and regulator of this cytokine is
the adipose tissue, but also other cells and tissues such as
immune cells, hepatocytes and neoplastic cells can secrete
IL-6 59. IL-6 plays an important role in the immune and
acute phase responses.59 The role of IL-6 as a myokine
was first described by Pedersen and collaborators by show-
ing evidence that IL-6 is a product of the skeletal muscle
contraction, and that its levels are regulated by duration
and intensity of the contraction.60 On this regard, in exer-
cised human muscle, the IL-6 receptor was described as
increased, suggesting a autocrine role of IL-6 on muscle.61

The signaling of IL-6 on skeletal muscle improves insulin-
stimulated glucose uptake as well as fatty acid oxidation
via AMPK.62 This cytokine has also an important role in
muscle stem cell-mediated hypertrophy. Indeed, it has
been shown that IL-6 is produced by growing myofibers,
whereas IL-6 deficiency reduces muscle hypertrophy by
inhibiting muscle stem cell proliferation and fusion with
preexisting myofibers.63 A recent study by Chowdhury
et al. reported that the bone-derived protein, osteocalcin,
enhanced the effects muscle-derived IL-6 to enhance exer-
cise capacity. They also showed that IL-6 from muscle
induced osteoblasts to send signals to osteoclasts which is
turn were responsible for the release of osteocalcin from
bone. Therefore, bone and muscle crosstalk can occur
through the release of osteocalcin from bone due to the
action of Il-6 produced by contracted muscle.64 However,
high, pathologic levels IL-6 are able to directly inhibit oste-
oblast maturation and differentiation both in vivo and
in vitro.65,66 High IL-6 levels were also described in

association with increased osteoclastogenesis and bone
loss,62 and IL-6 released by apoptotic osteocytes was
found to improve the adhesion of osteoclast precursors,
thus enhancing bone resorption.67

The role of IL-6 in cancer-induced cachexia is extensively
described. Several murine preclinical models for the study
of cancer cachexia showed elevated levels of IL-6 in the
circulation.20,43,68 In human cancer cachexia, elevated IL-6
levels are predictors of body weight loss,69 as well as a
negative prognostic factor especially in cachectic lung
cancer patients.70 In cancer, IL-6 is often directly produced
by cancer cells, and both IL-6 levels and body mass return
to normal values when IL-6-producing tumors are removed
from cachectic mice.71 Similarly, the use of specific neutral-
izing antibodies against IL-6 was effective in reducing
muscle protein hypercatabolism and preserving muscle
mass.72 The mechanisms of IL-6-dependent muscle atrophy
are well characterized. In particular, IL-6 has been shown to
drive muscle atrophy during cancer cachexia by activating
the JAK/STAT3 pathway, thereby stimulating muscle pro-
tein degradation and the activation of an acute phase
response in skeletal muscle.9

b-aminoisobutyric acid

b-aminoisobutyric acid (BAIBA), a novel small molecule
metabolite, has been described to participate in several
bone and muscle processes. BAIBA was first described as
being produced by skeletal muscle during exercise in
humans and rodents via the regulation of the transcription
factor PGC-1a.73 BAIBA promotes the browning of white
adipose tissue by increasing the expression of specific
genes such as uncoupling proteins, and improves glucose
tolerance and enhances hepatic fatty acid b-oxidation.73 In
skeletal muscle, L-BAIBA has an autocrine function and
was found to improve insulin resistance and inflammation,
and to stimulate fatty acid b-oxidation through the regula-
tion of the AMP and PPARd pathways.74 BAIBA was also
shown to improvemuscle contraction and strength in a sex-
dependent manner.45 The L/S enantiomer of BAIBA is a
natural catabolite of valine and the D/R enantiomer is pro-
duced from thymine. Normally, one enantiomer is active
and the other inactive, although there are examples of both
enantiomers being concurrently active. In the first study to
test the different potential functions of L and D BAIBA,
L-BAIBA was found to play a role in the maintenance of
bone mass by protecting osteocytes from reactive oxygen
species.75 Trabecular bone loss resulting from hindlimb
unloading was attenuated along with osteocyte cell death
in mice receiving drinking water supplemented with
L-BAIBA.75 L-BAIBA exerts its function by binding the
receptor Mas-related G-protein receptor type D.75 In osteo-
cytes, the expression of this receptor is reduced with aging,
and this could explain the involvement of this pathway in
the osteoporotic process.75 The ability of L-BAIBA to
increase muscle function and maintain bone volume sug-
gests the potential use of this molecule for the detrimental
effects of cancer cachexia on musculoskeletal health.
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Osteokines in muscle-bone crosstalk

Transforming growth factor b

Cancer invasion of bone activates the latent bone trans-
forming growth factor b (TGF-b) leading to the release of
active TGF-b, which through a vicious cycle stimulates
tumor growth, cancer cell invasion, and more bone destruc-
tion.76 In addition to the devastating effects of this auto-
crine factor on bone, TGF-b released from the bone matrix
was also described to induce muscle weakness by decreas-
ing Ca2þ-induced muscle force production. Breast, lung
and prostate metastatic cancer, as well as multiple myeloma
are potent activators of TGF-b leading to not only devasting
effects on bone but also on muscle.77 Moreover, body mass,
skeletal muscle atrophy, and weakness were improved by
blocking TGF-b signaling by using the TGF-b receptor I
kinase inhibitor SD-208 or the bone-targeting bisphospho-
nate zoledronic acid.77 Using a similar approach, treatment
with the bisphosphonate pamidronate was found to reduce
bone loss and improve muscle atrophy in pediatric burn
patients,78 and we recently demonstrated that pamidronate
exerts its beneficial effect in pediatric burn patients by
reducing the release of TGF-b by the bone matrix.79

Osteocalcin

Osteocalcin (Ocn) is a non-collagenous protein involved in
bone mineralization. Ocn is produced by mature osteo-
blasts and stored in the bone matrix.28 The carboxylated
form of Ocn has affinity for hydroxyapatite, and its release
from bone into the circulation as an undercarboxylated bio-
active form is due to osteoclast-mediated pH decrease on
the bone surface.28 Ocn acts in target tissues by binding to
the Gprc6a receptor, and primarily impacts the regulation
of glucose uptake and energy metabolism.80 It has been
shown that Ocn levels are increased in both humans and
murine models after aerobic exercise.64,81 In this regard,
Ocn was shown to play an important role in the adaptation
to exercise. Indeed, mice with deletion of Ocn or its receptor
Gprc6a displayed reduced exercise capacity and reduced
muscle mass, accompanied by enhanced uptake of energy
substrates, including glucose and fatty acid by myofibers.80

Interestingly, Ocn levels were reduced with aging in both
mice and humans, and exogenous administration of Ocn
was able to restore exercise capacity andmuscle mass in old
mice and increase exercise performance in young ani-
mals.80,81 Whether Ocn plays a role in cancer cachexia
remains to be elucidated. These findings highlight the
potential role of Ocn/Gprc6a to improve muscle atrophy
and weakness associated with cancer and other chronic
conditions.

Sclerostin and Wnts

Sclerostin is a glycoprotein predominantly expressed by
mature osteocytes, although also some tumors were
found to be a source of this factor.82 Sclerostin is an antag-
onist of the Wnt/b-catenin signaling pathway and consid-
ered to be the most important bone-derived negative
regulator of bone mass and osteoblast differentiation.83

Interestingly, high sclerostin levels were found associated
with lower muscle mass, but not lower bone mass in female
and male subjects.84 In another study, low skeletal muscle
mass index was correlated with higher serum levels of scle-
rostin in hemodialysis patients.85 Moreover, type 2 diabetic
patients undergoing high-intensity interval training exer-
cise showed improved muscle mass, along with reduced
levels of circulating sclerostin.86 Hesse et al. showed that
tumor-derived sclerostin inhibits bone formation in breast
cancer-induced cachexia, hence suggesting sclerostin as an
important driver of both bone and muscle loss.82

Interestingly, treatment with anti-sclerostin antibodies in
breast cancer-bearing mice not only was able to improve
bone mass, but also reduced skeletal muscle atrophy by
acting on the NF-kB pathway and on the differentiation
process. More importantly, in this study, sclerostin inhibi-
tion also improved muscle strength, reduced tumor mass,
and prolonged survival in tumor-bearing mice.82 These
data provide evidence that sclerostin directly contributes
to maintain muscle homeostasis and its levels may be
used as predictors of low skeletal muscle mass. Of note, it
was recently shown that sclerostin can be produced and
released by C2C12 and primary myoblasts, and the condi-
tioned media derived from muscle cells was able to inhibit
the differentiation of 2T3 osteogenic cells.87 These findings
were further confirmed by evidence that sclerostin is also
produced in vivo by muscle, regardless of age, muscle type,
or phenotype (i.e. glycolytic vs. oxidative).87 Altogether,
these observations would seem to suggest that also
muscle-derived sclerostin can affect bone mass.87

Whereas sclerostin is an inhibitor of the Wnt/b-catenin
signaling pathway, the Wnts are agonists of this pathway
and are also made by bone cells. Brotto et al. showed that
osteocyte-derived Wnt3a was able to play a role in muscle-
bone crosstalk. Specifically, Wnt3a released in the condi-
tioned media of MLO-Y4 osteocyte-like cells stimulated
C2C12 myoblast differentiation, as well as improved
muscle contractility ex vivo by modulating intracellular
Ca2þ signaling.88 Also Wnt7a, another member of the Wnt
family of ligands, was shown to improve muscle atrophy
induced by the cachexiogenic C26 colon adenocarcinoma
cells, both in vitro and in vivo, mainly by reactivating the
AKT/mTOR anabolic pathway and by stimulating muscle
stem cell differentiation.89 Therefore, the Wnts appear to be
positive regulators of both bone and muscle in contrast to
sclerostin.

Rank/RANKL/OPG

Receptor activator of nuclear factor b ligand, RANKL, is the
most important regulator of bone resorption. Though made
by immune cells, in bone the production of RANKL is car-
ried out mostly by late osteoblasts and osteocytes.90

RANKL binds its receptor, RANK, on bone monocytes/
macrophage osteoclast precursors inducing fusion and acti-
vation into bone resorptive osteoclasts. The activity of
RANKL is regulated by its decoy receptor osteoprotegerin
(OPG), that binds to RANKL and inhibits its osteoclasto-
genic activity.90 The ratio and relative abundance of each
determine the degree of bone resorption/bone formation.
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Interestingly, RANK receptor was found also in skeletal
muscle and in C2C12 myotubes, thereby suggesting a reg-
ulatory role of the RANK/RANKL/OPG axis on skeletal
muscle. It was subsequently discovered that in denervated
fast-twitch fibers, the RANK/RANKL pathway affects
skeletal muscle function by modulating SERCA activity
and Ca2þ storage.91 RANK/RANKL muscle levels were
found elevated in mdx mice, a murine model of Duchenne
muscular dystrophy, and the use of neutralizing antibodies
against RANKL was able to improve muscle histology and
function.92 The anti-human RANKL antibody (i.e.
Denosumab) is an FDA-approved drug for the treatment
of bone loss in patients who have risk of bone fracture.
Bonnet et al. showed that the treatment of osteoporotic
post-menopausal women with Denosumab not only
improved BMD, but also increased appendicular lean
mass and muscle handgrip strength.93 Furthermore, alter-
ations of the RANKL/OPG balance using OPG�/� mice
were sufficient to cause bone loss, as well as atrophy and
weakness in fast-twitch myofibers.92 Though developed for
the treatment of osteoporosis, anti-RANKL therapies clear-
ly have potential to benefit muscle in addition to bone with
regard to cancer cachexia

Parathyroid hormone-related protein

Parathyroid hormone-related protein (PTHrP) is highly
expressed in the lactating breast and in the placenta to
insure calcium uptake but has also been shown to be pro-
duced by osteoblasts.94,95 Abnormal expression in tumors is
well described resulting in hypercalcemia. In cancer, this
factor is an important driver of cancer-induced osteolysis
and calcium release.96 In particular, hypercalcemia due to
elevated PTHrP can induce neuromuscular symptoms and
muscle weakness.97 Onuma et al.were the first to show that
in a model of cancer cachexia, treatment with anti-PTHrP
antibody was able to reduce hypercalcemia, as well as
restore locomotor activity, along with attenuation of body
weight loss, fat wasting, and skeletal muscle atrophy.98

PTHrP was also shown to stimulate browning of the
white adipose tissue (WAT), hence inducing the thermo-
genic program in mice implanted with Lewis lung carcino-
mas (LLC).99 Conversely, in vivo neutralization of PTHrP
was able to prevent WAT browning and reduce energy
wasting, as well as improve weight loss and skeletal
muscle wasting in tumor hosts.99 Interestingly, it was
shown that LLC tumors are able to release extracellular
vesicles (EVs) containing PTHrP, and this event induces
lipolysis in 3T3-L1 adipocytes in vitro.100 In in vivo condi-
tions, the same EVs-containing PTHrP were found to be
important drivers of fat loss and WAT browning in LLC
bearers.100 Altogether, these observations support PTHrP
as a new target to counteract muscle, WAT, and bone loss
during cancer cachexia.

Fibroblast growth factor 23

Fibroblast growth factor 23 (FGF23) was the first osteocyte-
derived hormone described to have a systemic regulatory
function.28 The most important role of FGF23 is the regula-
tion of phosphate reabsorption by the kidney.101 FGF23 has

negative effects on cardiac muscle by inducing left ventric-
ular hypertrophy;102 however, even though FGF23 recep-
tors are expressed in skeletal muscle, ex vivo treatment with
recombinant FGF23 did not significantly alter muscle func-
tion.28,103 Further studies are needed to elucidate a direct
role of FGF23 in skeletal muscle homeostasis other than
phosphate uptake by muscle.

Prostaglandin E2

Prostaglandin E2 (PGE2), an arachidonic acid metabolite,
secreted by mechanically stimulated osteocytes was
described to improve myogenic differentiation in primary
myoblasts.104 This molecule is produced by various cell
types, including osteocytes, when stimulated by fluid-
flow stress or under bone loading.104 For example, it is esti-
mated that osteocytes produce 100-fold more PGE2 when
compared to themuscle tissue.28 Regardless of the source of
the PGE2, a recent study showed increased activity of 15-
PDGH, an enzyme that degrades PGE2, in aging skeletal
muscle, suggesting a critical role of PGE2. In 24- to 28-
month-old mice muscle, specific inhibition of 15-PGDH
using adeno-associated virus containing the short hairpin
RNA to 15-PGDH resulted in increased PGE2 to levels sim-
ilar to those found in young mice and this was sufficient to
preserve muscle mass and function.105 The question
remains as to the major source of PGE2 targeting muscle
in young animals, an autocrine source or from a distant
organ-such as bone.

Figure 1. Schematic representation of the bone-muscle crosstalk in a

context of cancer cachexia. Osteokines and myokines contribute to the bone-

muscle derangements associated with tumor burden. Some of the factors pro-

duced by muscle and bone can be released also from the tumor, thus compli-

cating the bone-muscle interaction. Images adapted from Servier Medical Art

(https://smart.servier.com). (A color version of this figure is available in the online

journal.)
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Conclusions

Skeletal muscle and bone have a long-lasting relationship
that starts with embryogenesis and, through a harmonized
development, reaches completion in the adult organism.
Together bone and muscle share the decline that character-
izes aging, resulting in the loss of bone and muscle known
as osteoporosis and sarcopenia, respectively. The two tis-
sues are regulated in tandem and can be concomitantly
compromised in different pathological conditions. The rea-
sons for this close association not only include the mechan-
ical interactions but also the biochemical crosstalk. In this
review, we emphasized the importance of the communica-
tion between muscle and bone during cancer cachexia. We
summarized some of the most studied myokines and osteo-
kines that are known to be directly involved in the muscu-
loskeletal pathologies associated with cancer cachexia,
representing a clinical scenario in which the biochemical
exchanges between muscle and bone are complicated by
the ability of the tumor to produce and release factors nor-
mally made by bone or muscle to target and compromise
bone and muscle function (Figure 1). Given that different
tumors are known to secrete soluble factors and to affect
muscle and bone tissue homeostasis, we propose that per-
sonalized therapeutic interventions targeting myokines
and osteokines should be taken into account and combined
with routinely used anticancer strategies to better preserve
bone and muscle in a context of cancer cachexia.
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