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Abstract
Induced pluripotent stem cells (iPSCs) serve as a robust platform to model several human

arrhythmia syndromes including atrial fibrillation (AF). However, the structural, molecular,

functional, and electrophysiological parameters of patient-specific iPSC-derived atrial car-

diomyocytes (iPSC-aCMs) do not fully recapitulate the mature phenotype of their human

adult counterparts. The use of physiologically inspired microenvironmental cues, such as

postnatal factors, metabolic conditioning, extracellular matrix (ECM) modulation, electrical

and mechanical stimulation, co-culture with non-parenchymal cells, and 3D culture techni-

ques can help mimic natural atrial development and induce a more mature adult phenotype

in iPSC-aCMs. Such advances will not only elucidate the underlying pathophysiological

mechanisms of AF, but also identify and assess novel mechanism-based therapies

towards supporting a more ‘personalized’ (i.e. patient-specific) approach to pharmacologic

therapy of AF.
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Introduction

Atrial fibrillation (AF), the most commonly encountered
sustained cardiac arrhythmia in clinical practice,1,2 is asso-
ciated with significant morbidity and increased mortality.
Epidemiological studies have projected that by the year
2050, 12.1 million Americans will be diagnosed with AF;
however, this number is likely to increase to �16 million
with the aging of the population and the identification of
novel risk factors such as obesity and obstructive sleep
apnea.3 It is estimated that one in three individuals of
European descent over the age of 40 will be diagnosed
with AF, and this is associated with a considerable increase

in risk of stroke, heart failure, dementia, and death.4,5 The
typical symptoms associated with AF include palpitations,
presyncope, exercise intolerance, extreme fatigue, chest
pain, and shortness of breath with exertion.

Over the last decade, tremendous progress has been
made in catheter-based therapies, but antiarrhythmic
drugs are still the most commonly used form of therapy
for patients with symptomatic AF.6,7 However, individual
response to membrane-active drugs can be associated with
serious toxicities and is highly variable, with �50% of
patients experiencing a recurrence of AF within six
months.8 Due to the heterogeneity of the underlying
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electrical and structural substrate of AF, as well as the fail-
ure to target therapy to the underlying mechanisms, there
currently exists a wide range of therapies to treat AF.
Genetic approaches to the mechanisms of AF have not
only provided important insights into the underlying path-
ophysiology but also identified novel therapeutic targets.5,9

However, the direct impact of these genetic discoveries to
the bedside care of patients has been limited because the in
vitro (heterologous expression systems) and in vivo
(murine, sheep, canine) models established to assess the
role of AF-causing ion channels variants do not fully cap-
ture the complex array of ion channels in atrial cardiomyo-
cytes (aCMs), or model human AF and pharmacological
response.10,11 The development of a comprehensive model-
ing system for AF that not only identifies the underlying
pathophysiological mechanisms of AF but also enables the
screening of mechanism-based therapies would be a major
advancement in providing personalized, i.e. patient-
specific, care for patients with AF.

Patient-specific models are needed to elucidate the
underlying cellular and molecular mechanisms and

abnormal electrophysiological (EP) properties of mutations
that cause AF. However, access to human atrial tissue is
rarely available to harvest primary aCMs, and even if har-
vested, expanding and maintaining aCMs in sufficient
amounts for longitudinal studies and drug screening are
nearly impossible. Therefore, patient-derived induced plu-
ripotent stem cell-derived atrial specific cardiomyocytes
(iPSC-aCMs) can provide insights into the underlying
genetic mechanisms of AF and be useful to explore pheno-
type–genotype relationships (Figure 1). These cells also
express the complex array of cardiac ion channels generat-
ing the atrial action potential (AP) and can be electrically
coupled to elucidate AF mechanisms.12,13 Overall, iPSC-
aCMs offer distinct advantages over heterologous expres-
sions systems and animal models.

IPSC-aCMs are particularly suited to modeling
AF-causing mutations as they elicit cell-autonomous EP
phenotypes, and disease-specific iPSC models maintain
functional trademarks of the mutation in vitro.14 In addi-
tion, correcting the genetic variant with clustered regularly
interspaced short palindromic repeats (CRISPR)-Cas915

Figure 1. Differentiation of iPSCs to atrial cardiomyocytes: (a) Protocol for differentiation of iPSCs into atrial cardiomyocytes. iPSCs are differentiated into cardio-

myocytes using a commercially available cardiomyocyte differentiation medium for 5 days, then incubated with 1 lM retinoic acid (RA) or DMSO (vehicle control or CT)

for another 5 days to enrich iPSC-aCMs, and the iPSC-aCMs are further enriched via glucose starvation for 5 more days, for a total of 15 days. (b) Immunostaining

showing the protein expression of pan-CM marker cardiac cTnT and atrial marker Kv1.5 in hiPSC-CMs at day 10 comparing RA treated cells to CT cells. (c) qRT-PCR

of ventricular marker, MYH7, in RA-treated and CT cells and atrial markers, KCNJ3 and KCNA5, in RA-treated and CT cells at day 30. Figure adapted from Argenziano

et al.10 (A color version of this figure is available in the online journal.)
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permits assessment of the AF phenotype in different genet-
ic backgrounds, and helps determine human pharmacolog-
ical responses targeted to the mutation, paving the way for
a more “personalized” approach to AF therapy.16,17

Although iPSC-derived cardiomyocytes (CMs) faithfully
model several human arrhythmia syndromes including
AF, when compared with adult CMs, their structural,
molecular, metabolic, and EP immaturity is a limitation.18,19

Thus, enhancing the maturity of iPSC-aCMs will not only
elucidate the underlying cellular mechanisms of AF, but
also help identify signaling pathways that are critical for
atrial development.10,20

Metrics of CM maturity

Structural and functional assessment

During cardiac development, CMs undergo a series of
structural, metabolic, EP, and functional changes that lead
to its adult phenotype (Table 1). The structural maturity of
CMs is crucial to internal cytoskeletal organization/integ-
rity and functional properties including membrane capac-
itance, bioenergetics efficiency, excitation–contraction
coupling, and conduction velocity. Cell morphology is
also critical for maximizing and optimizing cell–cell com-
munication since CMs communicate with each other on the
longitudinal edge via gap junctions. Cell size is critical
because it influences impulse propagation, conduction
velocity, contractile force, and membrane capacitance.21

Sarcomeres are the contractile units of CMs and are impor-
tant for the structural integrity, cytoskeletal organization,
and contractile strength of CMs. To assist the sarcomeres in
propagating the AP from cell to cell, T-tubules,

invaginations in the CM sarcolemma between sarcomeres
at the Z-disks, transmit AP impulses to the sarcoplasmic
reticulum (SR). T-tubules are also responsible for rapid
excitation–contraction coupling and synchronous calcium
release from the SR to allow the myocardium to function as
a syncytium.

Structural and sarcomeric genes are upregulated, and
there is an isoform shift to the adult isoform throughout
development. Immature iPSC-aCMs, however, lack suffi-
cient expression of general CM markers, such as cardiac
troponin T (cTnT; TNNT) and cardiac troponin I (cTnI;
TNNI3). Even when matured, iPSC-aCM and aCMs for
that matter share many characteristics with immature ven-
tricular CMs (Table 2). For example, myosin heavy chain
(MHC) is responsible for hydrolyzing ATP in energy pro-
duction and contractile force, and is thus also crucial for
maintaining sufficient maximal velocity (Vmax).

22

Ventricular CMs transition from the a-isoform (MYH6) to
the b-isoform (MYH7) during development, whereas the
dominant MHC isoform in primary atrial CMs is the a-iso-
form, resulting in lower overall contractile force produc-
tion. Myosin light chain (MLC) controls the maximum
tension produced by the cells.23 Ventricular CMs transition
from MLC2-a (MYL7) to MLC2-v (MYL2), while MLC2-a
dominates in atrial CMs; this is likely the primary reason
why atrial CMs produce reduced active tension, reduced
resting tension, reduced resting stiffness, and faster rate of
sarcomeric shortening than ventricular CMs.22,23 Titin is
expressed in two isoforms: N2B and N2BA. N2B is the
larger and more compliant isoform, and is more dominant-
ly expressed in ventricles as ventricular maturation pro-
gresses. N2BA, the shorter and stiffer isoform, is

Table 1. Metrics of maturity.

Assessment of maturity iPSC-aCM Adult aCM

Structural

Morphology Circular Rod-shaped, length:width¼ 7:118

Type of growth Hyperplastic, proliferative Hypertrophic

Membrane surface area 1000–1300 lm2 23 10,000–14,000 lm2 23

Sarcomere length 1.7 lm 2.2 lm
Sarcomere organization Unorganized, perinuclear clustering21–23 Organization maintained throughout the cell21–23

Specialized intracellular organelles Lacking, or not fully formed Sarcoplasmic reticulum, T-tubules, sarcomeric subu-

nits (H-, A-, I-bands, Z-disks)

Multinucleation Primarily mononucleated 25–30% binucleated, up to 8 nuclei

Myofibrillar isoform ssTNI MHC-a>MHC-b29MLC2-a>MLC2-

v30TTN-N2BA>TTN-N2B31

cTnI MHC-a >> MHC-b29MLC2-a >> MLC2-v30TTN-

N2BA >> TTN-N2B31

Gap junction localization Random clustering, circumferential18 Co-localization with intercalated disks18

Metabolic

Mitochondria morphology Small, rounded, lacking cristae Larger, elongated, with increased cristae surface

area, 30% of cell volume32,33

Mitochondria localization Nucleus or cell periphery34 Along myofibrils34

Method of energy production Glycolysis (�80%)26 Fatty acid b-oxidation (�50–70%)26

Electrophysiologic/Functional

Automaticity Spontaneous Beats only in response to stimuli

Resting membrane potential �50 to 60 mV31 �70 to �80 mV31

Upstroke velocity 50 mV/ms35 150–300 mV/ms35

Action potential duration Decreased Lengthened

Calcium kinetics Lowered Ca2þ release, influx velocity, and

reuptake velocity from SR

Rapid Ca2þ release, influx velocity, and reuptake

velocity from SR

iPSC-aCM: induced pluripotent stem cell-derived atrial cardiomyocytes; ssTnI: slow skeletal troponin I; cTnI: cardiac troponin I; MHC: myosin heavy chain; MLC:

myosin light chain; TTN: titin.
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commonly cited as the more immature isoform, but natu-
rally matured atrial myocardium expresses a higher pro-
portion of the N2BA isoform.24

Metabolic assessment

From heart development through terminal differentiation/
formation and postnatal growth, cardiac metabolism
undergoes dramatic change.25 As a continually contracting
organ, the heart has an extremely high energy demand and
must supply itself constantly and efficiently with renewed
ATP. The primary method of energy metabolism in early
CMs is glycolysis utilizing glucose as the primary energy
substrate, which promotes the proliferative (as opposed to
hypertrophic) state of early CMs.26,27 In natural CM devel-
opment, once the CMs have terminally differentiated, the
metabolic pathway switches to the more mature and effi-
cient fatty acid b-oxidation.28 Mitochondrial oxidative
capacity is much more substantial and efficient than glyco-
lytic metabolism, and thus aids in generating a more force-
ful and sustainable contractile function.25 The
mitochondrial and energy production factors that develop
with aCM maturation translate to both an increased maxi-
mal oxygen consumption rate and mitochondrial respira-
tory capacity, as well as an upregulation in genes involved
in fatty-acid b-oxidation, and downregulation of genes
involved in lipid synthesis and glucose metabolism
(including CD36, CPT-1B, PDK4, the peroxisome prolifera-
tor activated receptors—PPAR). Fatty acids also serve as
ligands to increase phosphorylation, thus activating signal-
ing pathways involved in translating external stimulation
to internal responses, including ERK and p38 mitogen-
activated protein kinase (MAPK).

EP assessment

The heart is both electrical and mechanical, and each car-
diac cycle and contraction is initiated by an electrical
impulse that originates from pacemaker cells in the sino-
atrial node. Due to cell–cell communication and the pres-
ence of non-parenchymal cells, this impulse is propagated
to adjacent CMs, spreading throughout the heart. Each CM
possesses an electrochemical gradient that relies on this
electrical impulse. Once a CM receives the electrical
impulse, the membrane potential is altered, which subse-
quently causes a cascade of activation/inactivation of
membrane-bound and voltage-gated ion channels that
mediate both the morphology and the magnitude of the

AP. EP assessment relies on ion channel expression and
function, with techniques such as single-cell whole-cell
patch clamping (gold-standard), multielectrode arrays,
and optical voltage imaging.

The cardiac AP consists of five phases: phase 0 (depo-
larization with rapid upstroke), phase 1 (transient repolar-
ization), phase 2 (plateau), phase 3 (rapid repolarization),
and phase 4 (resting membrane potential; Figure 2). The
phases are mediated by the interplay of various ion chan-
nels (e.g. subtypes of Naþ, Kþ, and Ca2þ channels). Factors
that are crucial to developing a mature atrial cardiac AP
include adequate expression and density of ion channels,
appropriate localization of ion channels to structural and
metabolic cellular machinery, and effective translation into
functionality of the cell to generate a sufficient atrial AP. As
with structural maturity, there are several EP characteristics
that distinguish matured atrial CMs from ventricular CMs
(Table 2). For example, gap junction/connexin expression
differs between atria and ventricular myocardium. During
fetal to adult transition in development, connexin 40 (CX40,
GJA5) is expressed throughout both the atria and ventricles,
but as maturation progresses, CX40 expression is restricted
to the atria.22 Connexin 43 (GJA1), on the other hand, is
expressed throughout the myocardium in both atria and
ventricles. The sole expression of CX43 in ventricles may
explain the faster conduction velocity (CV) in ventricular
myocardium.29 There are also several genes that are solely
present in atrial CMs, including KCNA5, KCNJ3, and SLN.
KCNA5 encodes for the ultrarapid delayed rectifier current
IKur, andmay provide an explanation for the shorter APD in
atrial CMs compared with ventricular CMs. KCNJ3 is
unique to the atria, while other members of the KCNJ
family are more highly expressed in the ventricular myo-
cardium. Sarcolipin (SLN) is an atrial specific regulator of
calcium handling and functions by inhibiting SERCA2 via
the lowering of SERCA2a affinity to calcium and thereby
decreasing Vmax.

24

Current approaches and technologies to
further mature iPSC-CMs

During embryonic development, CMs are exposed to envi-
ronmental factors including extracellular matrix (ECM),
electrical stimulation, mechanical signaling, soluble factors,
and nutritional influx; these factors influence CM tissue
architecture and function. Altering the physiochemical
aspects of cellular microenvironment by mimicking

Table 2. Comparison of mature atrial cardiomyocytes with immature and mature ventricular cardiomyocytes.

Mature atrial CMs Immature ventricular CMs Mature ventricular CMs

MHC-a (MYH6)22 MHC-aþMHC-b (MYH6þMYH7)22 MHC-b (MYH7)22

MLC2-a (MYL7)23 MLC2-vþMLC2-a (MYL2þMYL7)23 MLC2-v (MYL2)23

TTN-N2BA24 TTN-N2BA24 TTN-N2B24

CX43þCX40 (GJA1þGJA5)22 CX43þCX40 (GJA1þGJA5)22,29 CX43 (GJA1)22,29

KCNA5 – –

KCNJ family, including KCNJ3 KCNJ family KCNJ family, excluding KCNJ3

SLN24 – –

NPPA – –

CM: cardiomyocytes; MHC: myosin heavy chain; MLC: myosin light chain; TTN: titin; CX: connexin.
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physiological mechanical load, electrical pacing, 3D cul-
ture, supplementing with soluble factors, and/or engineer-
ing ECM geometry and modulating ECM substrate
stiffness are some strategies for directing iPSC-CMs
towards adult-like structural and functional maturation
(Figure 3).12,13,20,30,31 However, currently even the most
advanced methods of maturation result in a lack of matu-
rity that fails to match even the late fetal stages of CM
maturity (Figure 4). Understanding natural fetal develop-
ment would help to bridge our understanding of progres-
sion of iPSC-CMs to the adult mature phenotype.32 Most
maturation approaches have focused on ventricular CMs or
a heterogeneous population of nodal, ventricular, and atrial
cells. Less is known about the effects of these maturation
approaches on iPSC-aCMs, a necessity to faithfully model
AF in a dish.

Postnatal, biochemical, and metabolic conditioning

Postnatal and biochemical conditioning that have been
investigated on iPSC-derived ventricular CMs include tri-
iodothyronine (T3), insulin-like growth factor-1 (IGF-1),
and dexamethasone.33–35 Towards the end of gestation,
fetal cortisol concentrations rise prepartum in preparation

for extrauterine survival. The preparation for the postpar-
tum life is dependent on a prepartum rise in fetal serum
cortisol concentration, which activates adaptations in car-
diac function.34 Rise in plasma T3, a primary driver in the
maturation of fetal CMs in humans, primarily occurs in the
final 10weeks of gestation and when T3 levels are severely
reduced, several characteristics of CM growth and matura-
tion are negatively affected.36 T3 also acts indirectly by con-
trolling the bioavailability and efficacy of other hormones
crucial to fetal development and growth, including IGF-1,
which is important in fetal and placental growth. T3, IGF-1,
and dexamethasone (collective known as “TID”) provide
maturational signals that are especially important for
developing binucleated CMs and cardiac contractile pro-
teins in human fetuses, and improve cell size and resting
membrane potential.33 Postnatal and biochemical condi-
tioning likely also has a positive effect on the metabolic
maturity of cells, such as increased ATP production,
increased expression of PGC-1a and PGC-1b (fatty acid oxi-
dation regulators), enhanced mitochondrial function, and
decreased levels of reactive oxygen species.33

The nutritional substrate that the developing heart
receives plays a crucial role in determining the metabolic

Phase Current/Mechanism Primary Genes

Phase 0: Depolarization, 
Rapid Upstroke

Na+ Influx: INa A5NCS

Phase 1: Transient 
Repolarization

Inactivation of Nav1.5 

K+ Efflux: ITo (transient outward) 

Ca2+ Influx: ICa, L

Fast ITo: KCNA4, KCNA7, KCNC4 

Slow ITo: KCND2, KCND3 

CACNA1C, CACNA1D

Phase 2: Plateau Ca2+ influx: CICR 

K+ efflux: Ikur

CACNA1C, CACNA1D, RYR2, CAMK2D, 
SERCA2, PLN, SLN 

KCN5A

Phase 3: Repolarization L-type Ca2+ channels dissipate 
K+ influx: 

IKur

IKs

IKr

IK1

KCN5A 
KCNQ1, KCNE1 
KCNH2, KCNE2 
KCNJ3, KCNJs

Phase 4: Resting 
Membrane Potential

K+ influx: IK1 sJNCK,3JNCK

-70 – -80 mV

+30 mV

0

1 2

3

4

Figure 2. Atrial action potential: the action potential is initiated by a depolarization (Phase 0) caused by a rapid influx of Naþ ions, followed by a transient repolarization

(Phase 1) mediated by an efflux of Kþ balanced with an influx of Ca2þ. This is followed by a plateau phase (Phase 2) maintained by massive influx of Ca2þ through

calcium-induced calcium release from the sarcoplasmic reticulum, and efflux of Kþ through the quickly activating but slower inactivating ultrarapid delayed rectifier,

followed by a late repolarization phase (Phase 3) primarily induced by dissipation of Ca2þ and Kþ efflux through activation of several Kþ channels, before returning to

the resting state (Phase 4). (A color version of this figure is available in the online journal.)
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maturation of CMs. Fetal cardiac glucose uptake is drasti-
cally reduced in the late fetal stage to prime CMs for the
drastic shift from placental nutrition to breast milk contain-
ing various fatty acids.37,38 As CMs reach terminal differ-
entiation, metabolism shifts to increased reliance on
mitochondrial b-oxidation to more efficiently generate
ATP, precluding the CMs’ ability to metabolize the diverse
carbon sources that the native myocardium receives from
blood.39 High glucose suppresses cardiac maturation,
increases mitotic activity, and causes the myocardium to
be more susceptible to congenital heart disease.40 Typical
iPSC-CM media is glucose rich and lipid poor, which pro-
motes lipogenesis and suppresses fatty acid oxidation.
Fatty acid supplementation focuses on optimizing metabol-
ic maturation of iPSC-aCMs by increasing their depen-
dence on fatty acids, decreasing basal glycolytic activity,
and improving adaptability to environmental changes.41

Encouraging cells to rely on fatty acid metabolism by lim-
iting their access to glucose can increase/enhance (a) tran-
scription of genes related to fatty acid metabolism, (b)
sarcomeric length and expression of mature structural
markers, (c) upstroke velocity and AP duration at 90%
(APD90) and cardiac-specific Naþ, Kþ, and Ca2þ handling
genes, and (d) force production and calcium dynamics.41–43

ECM modulation

The ECM, with its organ-specific composition, stiffness,
and geometry, plays an important role in stem cell fate
decisions, normal development, and cardiogenesis.12

Methods for modulating ECM composition include the
use of individual and combined ECM proteins that com-
prise the native myocardium, including collagen I/III

(structural support and organization), collagen IV (base-
ment membrane formation and cellular alignment facilita-
tion), fibronectin (integrin connection to other ECM
proteins and migration of cardiac precursor cells), and lam-
inin (sarcomeric organization).32,44 The use of cardiac decel-
lularized ECM (dECM) has demonstrated promising
results due to its high bioactivity, ability to revascularize,
and use as a biological scaffold for cardiac regeneration and
prevention of fibrosis; fetal dECM, in particular, can pro-
vide regenerative and proliferative signals involved in car-
diac development.32,45

The stiffness of ECM can also modulate gene expression,
producing more robust and highly organized gap junctions
as compared with stiff surfaces. Specifically, culture on
softer ECM improves CV, increases Kþ and Naþ current
densities, increases the expression and localization of inter-
cellular gap junction proteins, induces hypertrophic and
mature isoforms thereby promoting greater tension devel-
opment and responsiveness to autonomic input, and
increases integrin expression and activation.12,46

Furthermore, dynamically increasing ECM stiffness over
time significantly upregulates AKTand p38 MAPK mecha-
nosensitive pathways.32

ECM patterning helps control the geometry for cell
adhesion, and iPSC-CMs show improved sarcomere forma-
tion, cell alignment, transverse tubule development, Ca2þ

handling, and CV on patterned ECM.47 Such alignment
enhances focal adhesion formation, improves polarization
from cell elongation, and controls directionality of cell–cell
junctions, thus also impacting sarcomeric organization,
contraction-induced mechanical loading, and AP propaga-
tion.48 Micropatterning also improves cell–cell contacts
towards replicating the polarized fibrous tissue structures

Figure 3. Methods for iPSC-derived atrial cardiomyocyte maturation: postnatal and metabolic conditioning, extracellular matrix, electrical stimulation, mechanical

stimulation, co-culture, and three-dimensional culture have all been utilized to increase iPSC-derived cardiomyocyte maturity in culture. Figure created using

BioRender.com. (A color version of this figure is available in the online journal.)
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of CMs.48,49 CMs form intercalated disks with neighboring
cells axially and form costameres with ECM ligands
laterally.48

In vitro mechanical and electrical stimulation of
iPSC-CMs

Electrical signals and mechanical loading are major deter-
minants of in vivo CM development/maturation to prime
the CMs and the native myocardium to appropriately
respond to electrical conduction and constant contraction.
Electrical signals are known to play an important role
during fetal development, and in vivo, direct current elec-
tric fields are involved in embryonic development, the dis-
ruption of which leads to abnormal development.50

External electrical stimulation has the potential to mimic
the electrical stimuli to which the native heart responds.
Electrical stimulation greatly improves ventricular pheno-
type and maturity by targeting cell volume/size, sarco-
meric banding and alignment, and myofilament
ultrastructure with increased expression of adult atrial iso-
forms of myosin light and heavy chains, and cardiac

troponins.31,50,51 Improvement with sarcomeric organiza-
tion and structure is accompanied by enhanced contractile
force and tensile stiffness, as well as oxidative metabolism
and energetics with enhanced transport of nutrients and
metabolites during contraction.20,52,53 Electrical stimulation
also directly impacts ion channels and key Ca2þ handling
pathways, particularly via localization of T-tubules to car-
diac calcium pump (SERCA2) and sodium-calcium
exchanger (NCX), expression of Ca2þ-induced calcium
release modulators (RYR2), other Ca2þ handling channels
and regulators, improved gap junction formation, and
decreased automaticity, as well as correlated improvement
in cardiac gene expression.20,31,51,52,54,55

Electrical stimulation has been explored alone, as seen
with 2D monolayers, cardiac biowires,56 and tissue con-
structs, or in combination with different types of mechan-
ical stress such as fluid flow, cyclic strain, or static stress.
Mechanical stimulation is characterized by systems that
physiologically mimic blood flow and cardiac cycles by
using fluid flow, chamber pressure, and cyclic or static
strain. These systems have been shown to improve

Figure 4. Bioengineered models of cardiomyocytes and cardiac tissue: (a) Treatment of iPSC-CMs with postnatal factors triiodothyronine (T3), insulin-like growth

factor-1 (IGF-1), and dexamethasone (Dex) leads to increased cardiomyocyte size and sarcomere alignment. Figure adapted from Birket et al.33 (b) Representative

traces for control and fatty acid (FA)-treated hPSC-CMs responding to the ATP synthase inhibitor oligomycin, the respiratory uncoupler FCCP, and the respiratory

chain blockers, rotenone and antimycin A. Higher maximal oxygen consumption rate (OCR) was seen in FA-treated versus control (CNTL) cells. Upstroke velocity

(right) was also increased with FA treatment. Figure adapted from Yang et al.37 (c) Micropatterned cardiomyocytes led to alignment of cardiomyocytes and their actin

filaments. Figure adapted from Salick et al.48 (d) Electrical stimulation promoted improvement in Ca2þ handling properties as evident by non-stimulated control cells

not responding to caffeine while stimulated cells responded to caffeine by releasing more calcium ions. Fluorescence recording (right) of calcium transients before and

after administration of caffeine (arrow) in cells exposed to 6-Hz electrical stimulation. Figure adapted from Sun and Nunes.20 (e) Mechanical stimulation of iPSC-CMs

led to an increase in Connexin 43 (Cx43 and Cnx43) formation compared with static controls. Figure adapted from Mihic et al.57 (f) Three-dimensional culture (N-

cadherin (red) and EH-myomesin (green)) as well as co-culture with cardiac fibroblasts (CF) lead to increases in APD and amplitude (AMP). Figure adapted from

Beauchamp et al.71 (A color version of this figure is available in the online journal.)
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functionality and contractility, with increases in SERCA2, L-
type Ca2þ channels, and RyR expression, as well as an
increase in electrical coupling. Mechanical stimulation
also enhances structural maturity with an increase in
cTnT, MHC-b and connexin-43 (GJA1 ventricular specific;
atrial isoforms include MHC-a and GJA5), and improved
sarcomeric organization and Z-disk formation.57

Mechanical stimulation also improves the expression of
KCNJ2, one of the Kþ channels responsible for restingmem-
brane potential maintenance.57–59 When electrical stimula-
tion is combined with static stress, an increase in SERCA2
and hypertrophy is observed, and when combined with
cyclic/static stress, SERCA2 and RYR2 increase, along
with improved sarcomeric alignment, contractility, electri-
cal coupling, and CV.31 Determining if electromechanical
stimulation alone or in combination with other maturation
approaches enhances iPSC-aCM maturity is important as
genetic variants in TTN, the gene encoding the sarcomeric
protein titin, are not only associated with dilated cardiomy-
opathy, but also AF.

Co-culture of iPSC-CMs with fibroblasts and
endothelial cells

Cardiac maturation/functionality is orchestrated via cross-
talk with various cell types. Although CMs maintain the
largest cell occupancy by volume,60 CMs constitute 20–
30% of the total numbers of the cells in the heart, while
endothelial cells comprise �25% and cardiac fibroblasts
(CFs) comprise �45–55%.61 CFs are in direct contact with
CMs61,62 and interact via paracrine signaling, cell surface
molecules, and ECM interactions.63 CFs also express
voltage-dependent Naþ channels which allow for inward
current. Though not inherently excitable, CFs can modulate
CM EP properties.64 In addition, gap junctions, specifically
GJA1 andGJA5,65,66 allow for impulses to be directly passed
between cells and activate electromechanical transduction
pathways. CM/CF ratio modulation influences the electri-
cal characteristics of the CMs, and by inhibiting GJA1
expression, cell–cell gap junction communication modu-
lates electrical functionality.67 The balance between ECM
production and degradation by CFs is finely tuned, pertur-
bation of which can cause pathologic remodeling via CF
differentiation to myofibroblasts.68–70

Co-culture of iPSC-CMs with CFs in 3D spheroids leads
to increased AP magnitude and duration compared with
2D controls.71 Combining the iPSC-CM/CF co-culture with
a collagen hydrogel exposed to mechanical stimulation
synergistically allowed for improved ECM remodeling
and cell alignment as well as decreased (moremature) beat-
ing rate.72 In another study, encapsulation of iPSC-CMs and
fibroblasts (dermal) within poly(ethylene glycol) hydrogels
followed by layer-by-layer coating/deposition of fibronec-
tin and gelatin onto the hydrogels improved cell–cell inter-
actions, viability, and increased the beating strength
two-fold as compared with iPSC-CMs in hydrogels without
any ECM coating.73 Lastly, fetal CFs induced a higher
expression of functional cardiac genes while adult CFs
led to fibrotic-like state with decreased CV, prolonged
APD, and decreased Ca2þ transient amplitude.74

Cardiac endothelial cells (CEs) provide a necessary bar-
rier that acts as a gateway between the myocardium and the
blood by lining the endocardium and blood vessels, and the
high-density capillary networks that form throughout the
myocardium in close contact with CMs help meet the met-
abolic needs of the cardiac tissue.75,76 During development,
CEs produce myocardial maturation signals, including
platelet-derived growth factor and neuregulin, which
binds to the epidermal growth factor receptor family on
CMs leading to proliferation, survival, and hypertrophy
of neonatal CMs.77–79 In the adult heart, CEs regulate con-
tractility through secretion of nitric oxide (NO) and endo-
thelian-180 and regulate hypertrophy, oxidative stress, and
inflammation through factors including angiotensin II,
prostaglandin I2, endothelin-1, and NO.81–83 CEs also
improve cellular alignment and activate numerous devel-
opmental pathways in iPSC-CMs including Ca2þ handling
and sarcomeric structural genes82 in 2D monolayers, 3D
hydrogels, hanging drop cultures, and spheroids.84–87

Because CEs are exposed to shear stress due to blood
flow, microfluidic devices are increasingly utilized to
study EC biology and CM-CE interaction. In dynamic
microfluidic devices that capture the effects of blood flow,
the physiologic sheer stress can lead to phenotypic
improvements in the ECs, including cellular alignment.88

Three-dimensional culture of iPSC-CMs in
different platforms

The 2D culture platforms are unable to model the native 3D
heart architecture, which comprises of uniaxially com-
pacted ECM and cardiac cells.35,89–92 The simplest
approach to 3D cardiac models is formation of spheroids
via self-clustering of cells on a non-fouling culture substrate
(e.g. non-adhesive culturing dish, hanging drop
devices).71,82,93–99 Compared with 2D culture, 3D spheroi-
dal cultivation accelerates the structural maturation of
iPSC-CMswith upregulated expression of cTnT, sarcomeric
a-actinin, and sarcomere length.98 The 3D spheroids also
improve metabolic maturation at both the molecular and
fluxome levels with downregulated glycolysis and lipid
biosynthesis, and upregulated oxidative phosphoryla-
tion.97 Spheroid culture can be easily integrated into other
maturation techniques such as co-culture and electrical
stimulation.82,99 However, the spheroid model for iPSC-
CMs has limitations, including phenotype modulation
from atrial to ventricular, poor cell-ECM signaling-mediat-
ed maturation, lack of anisotropic alignment of CMs, and
unidirectional mechanical stretch.94,95,97,98

Electrospinning technology that produces anisotropic
fibrous scaffolds incorporates ECMmodulation with align-
ment.100,101 Anisotropically electrospinning biocompatible
polymers such as poly-e-caprolactone (PCL) and polyure-
thane result in efficient construction of a highly ordered
fibrous scaffold exhibiting a high and tunable surface-to-
volume ratio, which allows anisotropic alignment of iPSC-
CMs in a direction that is parallel to the fibers.100–103 In
contrast to culture on bare tissue culture polystyrene,
iPSCs showed more elongated cellular morphology,
increased expression of genes encoding for structural
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proteins (e.g. TNNT2, MYL7, and TTN), improved sarco-
meric organization, and improvements in ion channels/
Ca2þ handling on electrospun aligned scaffolds.104

However, iPSC-CM penetration into electrospun scaffolds
is generally limited, which does not fully mimic the native
human myocardium.104

The utilization of a soft 3D ECM hydrogel that exhibits
lower stiffness than PCL fibers as a cell-anchoring matrix
has been extensively studied.35,95,105,106 Although the inher-
ent polymeric structure of ECM hydrogels does not allow
for uniaxiality and static tension, anisotropic ECM orienta-
tion can be generated by applying supportive structures
such as post, pillars, pins, and clips during the hydrogel
forming process, all of which can be engineered to also
induce mechanical tension and synchronized contraction/
stretching of the aligned iPSC-CMs.107–111 The auxotonic
contraction of CMs encapsulated in a hydrogel can be
manipulated by adjusting the mechanical property of sup-
portive structures.

Despite improving CMmaturation and enabling electro-
mechanical stimulation, hydrogel-based 3D cardiac plat-
forms pose difficulty in scaling up the study throughput
due to complex and expensive fabrication/operation of
support structures and mechanical tools.112–114 On the
other hand, 3D printing technology (e.g. microextrusion
method, ink-jet method, and stereolithography) has the
potential to overcome this barrier with large/macro scale
tissue generation of hydrogel-based 3D cardiac struc-
tures.115,116 For example, gelatin methacrylate and
alginate-based microfibrous scaffold with encapsulated
endothelial cells was 3D printed using a microextrusion-
based bioprinter to form a vascular bed, which was then
seeded with rat neonatal CM and human iPSC-CMs, result-
ing in improved sarcomere structure and contractility in the
anisotropic scaffold exhibiting higher aspect ratios of
microfibrous structures compared with the isotropic scaf-
fold.117 Although 3D printing is highly promising in cardiac
tissue engineering for drug screening and maturation plat-
forms, more comprehensive studies are still required to
demonstrate maturation parameters and application utility
relative to simpler model systems.

Conclusions and future outlook

Generation of patient-derived iPSC-aCMs has great poten-
tial to aid in the development of novel therapies that target
the underlying abnormalities in AF-causing mutations.
However, while large strides have been made to further
mature iPSC-aCMs, they still do not fully recapitulate the
full mature phenotype of adult aCMs. Furthermore, there is
currently no universal metric(s) for defining when an iPSC-
aCM has met acceptable maturation for the desired end-
point application. Continued research is required to deter-
mine key processes in fetal cardiac development that syn-
ergistically lead to aCM maturation. A balance of adapting
natural developmental cues and mimicking the developing
microenvironment with the incorporation of advanced
engineering techniques such as those discussed above can
likely improve iPSC-aCM maturation more efficiently in
high-throughput platforms for specific applications.

The purity of differentiated iPSC-aCMs must also be
improved. Protocols to generate iPSC-aCMs are less effi-
cient than those for the ventricular phenotype118 or require
suspension cultures based on embryoid body formation.16

Large pharmaceutical screens require high yields of uni-
form populations of iPSC-aCMs that can be readily repro-
duced; therefore, advances in differentiating purer
iPSC-aCM populations as well as reducing batch-to-batch
variability will be vital for pharmaceutical screening of
novel AF therapies. Availability and use of technologies
such as glucose starvation,119 antibiotic resistant cas-
settes,120 and cell sorting strategies such as magnetic bead
sorting121 to select for specific iPSC-aCM populations will
reduce experimental variability. Lastly, the ability to derive
aCMs, endothelial cells, and fibroblasts from the same iPSC
lines will aid in the fabrication of fully personalized AF
platforms.

In conclusion, engineered heart models for the study of
AF are being fabricated with varying cellular and techno-
logical complexities based on the specific application.
Further maturation of iPSC-aCMs using advanced engi-
neering techniques will lead to improved patient-specific
evaluation of the underlying causes of AF. Such an outcome
will undoubtedly improve treatment options for patients
and lead to a better understanding of heart disease.
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