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Abstract
Microphysiological systems (MPS) are promising in vitro tools which could substantially

improve the drug development process, particularly for underserved patient populations

such as those with rare diseases, neural disorders, and diseases impacting pediatric pop-

ulations. Currently, one of the major goals of the National Institutes of Health MPS program,

led by the National Center for Advancing Translational Sciences (NCATS), is to demonstrate

the utility of this emerging technology and help support the path to community adoption.

However, community adoption of MPS technology has been hindered by a variety of factors including biological and technological

challenges in device creation, issues with validation and standardization of MPS technology, and potential complications related

to commercialization. In this brief Minireview, we offer an NCATS perspective on what current barriers exist to MPS adoption and

provide an outlook on the future path to adoption of these in vitro tools.
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Introduction

The process of bringing a new drug or therapeutic to
market is extremely complex and challenging, with the
average R&D cost for each new medicine estimated at
nearly $3 billion dollars and a timeframe of over 10 years
from initial lead compound discovery to successful approv-
al by the Food and Drug Administration (FDA).1–3 The
extensive length of time and low efficiency of the drug
development process is largely due to toxicity of com-
pounds in early preclinical stages, and lack of efficacy
within later clinical stages.4,5 The attrition rate of promising
therapeutics is even higher for rare diseases,6,7 neural-
based conditions, and diseases affecting pediatric
populations.7

Preclinical testing of new candidate therapeutics is con-
ventionally performed in 2D cell culture systems, and in
in vivo animal models consisting of at least a rodent species
(mice and rats) and non-rodent species (non-human
primates, pigs, dogs). Simple 2D systems comprising
cells grown in monolayers on flat surfaces are used in
mainstream drug development due to their ease of

manipulation, rapid scalability, and high-throughput capa-
bilities.8 However, 2D cell culture systems often lack the
complexity, structure, proper cellular composition, inter-
and intracellular interactions, and microenvironmental
niche of native human tissues, thereby inhibiting cells
from reaching maturity and proper response.9 In fact, 2D
cell culture models rely on growing cells on hard, flat plas-
tic substrates, which may not accurately mimic human
physiologic response.10 Animal models such as mice have
advantages over other model organisms, including their
short gestation period, availability of a large number of
offspring, ease of genetic manipulation, and amenability
for use in medium to high-throughput screening.11

However, despite these many advantages, animal models
may not replicate critical off-target effects and toxicities that
could occur in humans due to specific species differences in
metabolism, pathophysiology, immune response, micro-
biota, and drug response.12 These current preclinical
models can be poorly predictive of human responses, pro-
viding evidence that alternative tools and approaches are
needed to speed up, potentially reduce cost, and increase
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the efficiency of developing new drugs that are safe and
effective.12 Microphysiological systems (MPS) or “tissue-
chips”/“organs on chips” are one such new alternative
method which could improve and expedite the drug devel-
opment process by resolving the discrepancies in drug
safety and efficacy observed between conventional
models and human/clinical responses.8 Perhaps in the
future MPS will be considered a “third-species” for testing
of candidate therapeutics.13

As defined by the FDA’s Alternative Methods Working
Group, MPS are in vitro platforms composed of human or
animal cells, tissue/organ-derived explants, and/or self-
assembling organoids contained in microenvironmental
niches that facilitate proper biochemical, electrical, and
mechanical organ/tissue level responses (https://www.
fda.gov/science-research/about-science-research-fda/
advancing-alternative-methods-fda). These 3D biomimetic
devices, which combine advancements made in materials
science, bioengineering, microscale technologies and
human stem cell biology, aim to model specific biological
properties that define organ and tissue function.14 MPS
platforms can provide controlled tissue perfusion via pres-
surized fluid reservoirs or microfluidic output devices such
as pumps and valves to recreate relevant biomechanical
forces, or other mechanical actuation in a controlled and
explicit manner.15,16

Precise design of MPS platforms allows researchers to
exert unparalleled control over tissue composition and
architecture by providing an array of cellular and extracel-
lular cues including molecular, structural, and physical
cues found within the human in vivo organ system.17,18

Researchers are also able to precisely control nutrient dif-
fusion and tissue oxygenation profiles, which allow signif-
icant prolongation of MPS viability from several weeks to
several months.19 The ultimate goal of MPS systems is not
to build an entire living human organ, but rather to create a
minimally functional organ/tissue unit that is able to accu-
rately recapitulate specific relevant aspects of human phys-
iology and response.20 For example, MPS are able to model
multicellular architectures and tissue interfaces, physico-
chemical microenvironments, vascular perfusion, and
innervation of human organs, as well as maintain proper
establishment of growth hormone gradients, cytokines, and
other signaling pathways highly relevant to modeling any
human organ system.12 Through inclusion of biosensor
technologies (sensors to measure oxygen, glucose, and
other small molecules/chemicals)21 and automated high-
resolution real-time imaging and monitoring
approaches,22,23 genetic, metabolic, and biochemical activ-
ities of living cells are able to be studied in the context of a
functional human organ.7 In addition, MPS are also respon-
sive to the 3R principles of animal use in research – refine-
ment, reduction, and replacement – and offer a way for
significant reduction on the use of animals or animal
models for preclinical studies.8,24

It is now becoming increasingly clear that MPS can serve
as in vitro tools within many areas of drug develop-
ment,25,26 including serving as physiologically-relevant
platforms for early lead compound target validation and
therapeutic safety and toxicity assessment during the

preclinical phase.12,27–29 In addition, MPS can be used for
modeling of both common and rare diseases,7 with success-
ful modeling of a number of rare disorders, such as
Progeria,30,31 Barth syndrome,32 and hereditary hemor-
rhagic telangiectasia.33 MPS have also been employed to
better understand drug response pathophysiology, stratifi-
cation of patient subpopulations,7 and patient-specific
chips for personalized medicine.34 In addition, MPS have
found utility in assessment of environmental exposures
and environmental toxicology,35–38 reproductive and devel-
opmental toxins, infectious diseases,39 microbiome,40 and
countermeasure agents.12 A useful prioritization of MPS
applications can be found in Table 1 of the review by
Watson, Hunziker, and Wikswo, 2017.10 Currently, there
are MPS of nearly every major human organ20 including
liver,16,41 vasculature,42,43 blood–brain barrier (BBB),44–46

skeletal 47–49 and cardiac muscle,50–57 kidney,58–61 female
reproductive tissues (uterus, cervix, fallopian tubes),62

testes,63 brain,37,64 skin,65–67 gut,40 bone,68 and eye.69,70

Specific MPS organ systems have also been linked to
form multi-organ systems to more accurately depict sys-
temic responses to a variety of drugs and therapeu-
tics.62,71–73

The US National Institutes of Health (NIH) MPS pro-
gram, alongside a sister program at the US Defense
Advanced Research Projects Agency (DARPA), began in
2012 and have helped to catalyze the development of
MPS technology.12 The programs focused on developing
single organ human chips with viabilities of at least
28 days that could be interconnected or linked to form a
more representative example of a “human-body-on-a-
chip” and improve modeling of human inter-organ inter-
action.12 Ultimately, this 5-year program provided proof of
principle that tissue chips could accurately recapitulate
human physiology and drug responses.12 While DARPA
funding ended in 2017, the NIH MPS program has contin-
ued and since evolved to look at various tissue chip tech-
nology end uses, including disease modeling and efficacy
testing;74–79 modeling opioid use disorders; using tissue
chips to improve clinical trial design and execution; and
creating independent validation/testing centers 59,80–82

plus a publicly accessible database 83,84 for MPS data. In
addition to the NIH and DARPA MPS programs, the US
Environmental Protection Agency established the “Science
to Achieve Results” (STAR) grant program, one goal of
which is to further the development of organotypic culture
models, including organs-on-chips (OoCs) for predictive
toxicology.71,85,86

One of the major goals of the NIH MPS program now is
to demonstrate the utility and disseminate the use of this
emerging technology into a variety of communities includ-
ing but not limited to academic organizations, industry,
regulatory agencies such as the US FDA, and for profit enti-
ties such as contract research organizations.12 However,
adoption of this emerging technology is hampered by
many confounding factors including biological challenges
such as (1) cell sourcing and linkage of multiple platforms,
(2) technical challenges such as platform fabrication
and design, (3) issues surrounding validation and stan-
dardization of MPS technology; and (4) commercial
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considerations and potential complications. In this review
we briefly address some of these pressing challenges, pro-
viding an outlook on the future of MPS technology adop-
tion. However, we note that these challenges we address
represent in no way an exhaustive list. For more informa-
tion on pressing hurdles to MPS adoption, we recommend
the following reviews: Watson et al., Low and Tagle, and
Ewart et al.10,87,88

The need to define MPS context of use

Before delving into the diverse array of biological and tech-
nical hurdles hindering MPS adoption, it is important to
discuss context of use (CoU) – or the specific use case
where MPS can provide informative preclinical data.
Currently, specific contexts of use for MPS platforms
include toxicology, pharmacokinetics (ADME), pharmaco-
dynamics, efficacy, and drug safety.61,89–91 CoU is extremely
important, as no single MPS system is able to fully recapit-
ulate a functional or integrated tissue/organ in its entire-
ty.20,26 Currently, systems are designed to model important
features of a tissue/organ, while mimicking specific mor-
phological and functional phenotypes. Therefore, it is crit-
ical that end users of this technology select the appropriate
MPS model as a tool to answer a specific set of questions
germane to the disease being modeled or the intended use
of the candidate therapeutic being tested in the system.92

The International Consortium for Innovation and
Quality in Pharmaceutical Development (also known as
the IQ Consortium) has made significant progress in help-
ing to define MPS CoU within the industrial sector. The IQ
Consortium has established an IQ MPS Affiliate (https://
www.iqmps.org/) to provide a venue for cross-pharma col-
laboration, data sharing, implementation, and qualification
of MPS models. Recently, IQ MPS Affiliate scientists pre-
pared a series of organotypic manuscripts for various key
drug safety and disposition target tissues including lung,
liver, kidney, cardiovascular, blood brain barrier/central
nervous system, skin, and gastrointestinal sys-
tems.61,66,90,91,93–96 The goal of these organotypic manu-
scripts is to provide relevant information on MPS CoU
and the key characterization data required to incorporate
MPS into pharmaceutical safety screening.91 For example,
the initial CoU for MPS in applications of safety are likely to
include testing compounds during the lead and candidate
optimization stages; drug absorption, distribution, metab-
olism and excretion (ADME) applications; and identifica-
tion of toxicity mechanisms in all clinical stages but
particularly within Phase 1 clinical trials when adverse
events in humans are first observed.88,91 In addition to the
need for further MPS characterization, the IQ MPS Affiliate
have identified a variety of other hurdles impeding MPS
adoption in the pharmaceutical industry including the
need for standards, bridging and comparing pre-clinical
animal model data with tissue chip data, providing
enough data to increase confidence in the technology, and
increasing throughput for specific applications.25,91 For
example, the level of throughput needed varies widely
based on CoU, e.g. the quantity of actively investigated

compounds and the degree of certainty required to
inform data-driven decisions.91

In addition to industry, regulatory bodies such as the
FDA have also made significant progress in helping to
guide CoU for MPS. For example, the FDA has signed col-
laborative agreements with various tissue chip companies
to assess the utility of these systems in house. In 2017, the
FDA signed a collaborative agreement with the MPS com-
pany Emulate, Inc., to study how their organ chips can be
used as a toxicology testing platform for products affecting
human health and safety (https://www.emulatebio.com/
press/fda-collab-agreement-emulate). Recently, FDA
researchers evaluated the effects of the known hepatotoxin,
diglycolic acid (DGA), within Emulate’s Human Liver
Organ-Chip in comparison to a 2D multi-well plate
format.97 They assessed the Liver-Chip’s capabilities, limi-
tations, performance, and concordance with previous
in vitro and in vivo studies, and found that the Liver-Chip
(as well as the 2D 24-well plates) displayed similar toxicity
upon DGA exposure, in concordance with in vivo studies.97

Overall, the Liver-Chip platform had high specificity and
sensitivity, good power, and low variability.97 Studies such
as this help define CoU for specific MPS devices, furthering
regulatory acceptance of this technology. In addition, the
FDA recently announced a new pilot program, “Innovative
Science and Technology Approaches for New Drugs”
(ISTAND), designed to expand types of Drug
Development Tools (DDT) that are currently out of scope
for current DDT qualification programs but that may prove
beneficial for the drug development process. The use of
tissue chips (MPS) to assess safety or efficacy questions
are cited as an example of submissions that may be consid-
ered for ISTAND qualification as a novel DDT. In addition
to pilot programs such as these, recommendations and a
roadmap towards regulatory acceptance of MPS models
from nearly 50 leading academic, regulatory, pharmaceuti-
cal and biotechnology experts was recently published by
the t4 (the transatlantic think tank for toxicology)
workshop.98

Technical and biological challenges to MPS
adoption

There are a variety of technical and biological challenges
hindering MPS adoption. We briefly discuss a few major
hurdles below.

Cell types used in microphysiological systems

To independently validate emerging tissue chip technology,
the US NIH MPS program, led by the National Center for
Advancing Translational Science (NCATS), established
Tissue Chip Testing Centers 12 to independently onboard
and validate chips developed under the NIH program (see
section 2 below: Commercialization, validation and automa-
tion of MPS technology). A recent case study by one of these
centers investigating a human kidney proximal tubule tissue
chip revealed that overall reproducibility in data is greatly
dependent on the cell source.59,80 The source, cell types, and
microenvironment of cellular materials used within MPS
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devices are therefore of great importance. Various cell types
are currently being used including primary cells, immortal-
ized cell lines, and human pluripotent stem cells.99 Primary
cells, normally taken from discarded surgical tissues or
biopsy specimens, have the advantages of being phenotyp-
ically and functionally mature. However, primary cells are
difficult to obtain from the majority of human organs, finite
in quantity, and at higher passages will decline in health and
function, which can lead to variable data.100–103

Alternatively, the use of human induced pluripotent stem
cells (hIPSCs) has specific advantages over the use of prima-
ry cells, including a potentially unlimited renewable cell
source derived from blood or skin fibroblasts that are patient
specific, and can be expanded and selectively differentiated
into multiple cellular lineages.99,104,105 Use of a single iPSC
line to generate a variety of tissue and organ systems within
an MPS platform allows separation of genotype and pheno-
type effects, with genetic homogeneity being particularly
advantageous for modeling drug ADME profiles in both
individuals and patient groups.106,107 Additionally, the crea-
tion of genetically identical (isogenic) cell lines from iPSCs,
using technologies such as CRISPR-Cas9 to introduce or
remove disease-modifying mutations, allows modeling of
monogenic disorders. This use of isogenic lines allowsmech-
anistic studies of the disease process and allows target-
specific development of new drugs.92 While the use of
iPSCs allows scientists to further understand the critical dif-
ferences in patients’ genetic diversity, sex, age, and ethnici-
ty,77 there are disadvantages to using pluripotent stem cells.
Not all iPSC lineages are able to be effectively derived from
the same iPSC line (have varying differentiation poten-
tials108) and lineages commonly lose epigenetic markers
during the derivation process.109 In addition, pluripotent
stem cells often fail to mature phenotypically or functional-
ly.110 In addition, the generation of iPSCs is very time con-
suming and expensive. Currently, our incomplete
understanding of iPSC biology slows the development of
robust and reliable iPSC differentiation and maturation pro-
tocols and presents a major hurdle to all sectors utilizing
iPSC technology, including the MPS field.111 Ultimately,
each organ and tissue system is unique and will benefit
from different approach methodologies, including the
choice of cell type – i.e. primary, iPSC, etc.

MPS platform fabrication

MPS platforms or OoCs rely on material support for proper
cellular organization and tissue attachment. Many com-
mercially available MPS devices rely on replica molding
processes using soft lithography for microfabricated
design.112 Elastomeric replicas are created using polydime-
thylsiloxane (PDMS)113 for precise designs which permits
spatiotemporal control over cell growth and maturation,
rates of fluid flow, and compound/drug exposures. Soft
lithography is popular as it is a fast, cheap, and easy
method of prototyping. Unfortunately, soft lithography is
an extremely manual process and is often difficult to auto-
mate. In addition to lithography, 3D-printing is also being
used to fabricate microfluidic systems, as 3D-printing
allows automated, assembly-free 3D fabrication at higher

throughput.114,115 PDMS is one of the most common elas-
tomeric organic materials used for microfabrication of MPS
platforms due to its excellent biocompatibility, low stiff-
ness, elasticity, and optical transparency making it amena-
ble to real-time optical imaging.116 Additionally, it is gas
permeable, its surface chemistry can be modified, and it
is sterilizable by autoclave. However, PDMS absorbs
small hydrophobic molecules, meaning large amounts of
drug can bind to the platform material and affect the con-
centration reaching the tissues, which must be taken into
account when designing drug studies.26 In addition, use of
PDMS can lead to cross-contamination of chambers or adja-
cent channels leading to reduction of drug predictivity and
reliability of the system.26 Methods have been developed to
improve PDMS qualities, such as fabrication of coatings
that reduce permeability117 and design considerations
that account for or reduce absorption and unintended
mixing of drugs and compounds.118 Alternative materials
for chip fabrication include silicon, glass, thermoplastics
such as cyclic olefin copolymer and poly(methyl methacry-
late), polyurethane, and tetrafluoroethylene-propylene
elastomer.20,26,119,120 Often the material choice is a trade-
off between the platform requirements and the affordabil-
ity, availability, and/or ease of fabrication of the material in
question.26 Regardless of the choice of fabrication material
(s), all MPS platforms require extensive testing and charac-
terization of drug absorption and biocompatibility.26 In
addition, the biocompatibility of all platform materials
should be assessed for potential biotoxicity.121

Multi-organ MPS platform integration

Individual MPS “organs” can be integrated or linked to one
another to allow assessment of disease or drugs in more
human-relevant systems. Integration of linked organ sys-
tems provides newways to research the pharmacokinetics/
pharmacodynamics (PK/PD) profile of a drug. It also
allows modeling of hormone, cytokine and immune
responses to compound exposure, and invites analysis of
human systemic physiological responses to drugs and their
associated metabolites. MPS platform integration is partic-
ularly advantageous for studying diseases that involve
multi-organ pathologies, such as specific types of cancers.
The integration of MPS organ systems also allows research-
ers to study off-target drug effects, as well as unexpected
metabolism of drugs by a non-target organ. Recently,
researchers at Columbia developed a bone cancer tumor
(Ewing Sarcoma) and heart muscle integrated system,
which they subjected to the clinically used dosage of the
novel anti-cancer drug, Linsitinib.79 They measured the
anti-tumor efficacy as well as the cardiotoxicity of
the drug and compared these results with recent clinical
trial results. Linsitinib treatment in the integrated platform
matched the clinical trial results, with poor tumor response
and mild cardiotoxicity, indicating that the integrated
tissue platform was able to accurately predict both the
direct and off-target effects of the drug.79 Integrated
model systems such as these could be used preclinically
to allow better and earlier prediction of clinical outcomes.
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The easiest way to integrate systems is through function-
al coupling, whereby one takes effluent from one MPS and
transfers it to another MPS to simulate passage of drug/
compound from one tissue/organ type to another.71

Linkage of systems to create in vitro models of human
body subsystems enables organ crosstalk and communica-
tion through secreted factors such as exosomes, soluble
molecules, and immune cells.122,123 The main advantages
to functional coupling are technical ease and flexibility to
integrate individual specialized single-organ chambers cre-
ated in different laboratories into functional multi-organ
platforms that can be configured and re-configured for a
variety of study designs.20 However, this approach fails to
mimic the physiological flow occurring between organ sys-
tems, and because of this, physical linkage of systems may
be a better approach, depending on the intended CoU of the
MPS. Physical linkage of individual systems, while more
physiologically accurate and biologically meaningful,
brings about major biological challenges such as organ scal-
ing and the need for a universal/common medium. Organ
scaling, or how best to represent the size and/or cell
number of linked organ platforms in a physiologically rel-
evant way, continues to be a hurdle. Some investigators
have proposed that MPS scaling should be based on
human organ sizes, i.e. respective mass.124 However,
others have discussed the need for functional scaling
based on blood flow or metabolic rates, which may be
more appropriate in determining correct ratios between
individual organs with the organ volume determined
from levels which support functionality.20,124,125 For exam-
ple, an appropriate level of drug metabolism per fluidic
pass in the liver could be created by combining multiple
functional liver organ chambers. Allometric scaling is
another strategy to quantify the relationship between dif-
ferently sized organs; however, this scaling strategy fails to
consider specific size differentials and complexities
between MPS and in vivo tissues.124,126

One of the first simple integrated proto-MPS devices
consisted of a three-chamber – lung-liver-“other” – micro-
scale cell culture platform with a dissolved oxygen sensor
for real-time measurements/readouts.127 The device,
which fits on a one-inch square silicon chip, contained com-
partments connected by recirculating tissue culture media
(blood surrogate), with a flow rate that was able to approx-
imate physiological liquid-to-cell ratios and hydrodynamic
shear stress. Over the last decade, a variety of intercon-
nected MPS have been developed such as the three-organ
chip “first pass” model of the liver, gut, and kidney or bone
marrow, which demonstrates quantitative prediction of
human drug PK with two different drug compounds via
both oral and IV administration routes.128 In addition, a
female reproductive system on a chip containing organ
modules of the ovaries, fallopian tubes, uterus, cervix,
and liver within a single MPS platform has also been engi-
neered.62 This “EVATAR” device could simulate a 28-day
human female menstrual cycle and hormonal profile.62

Recently, two publications from DARPA’s MPS program
were published, including a human physiome-on-a-chip73

and an automated “Interrogator” device able to culture up
to 10 human organ chips.72 The physiome-on-a-chip,

containing interconnected liver (immune), gut (immune),
brain, pancreas, kidney, skin, heart, endometrium, and
skeletal muscle73 is able to generate complex molecular dis-
tribution profiles and has been found suitable for PD/PK
and PBPK modeling using quantitative systems pharma-
cology (QSP) approaches.12 The “Interrogator” device
maintains fluidic coupling for 3weeks between eight vas-
cularized, two-channel cultured organ chips (intestine,
liver, kidney, heart, lung, BBB, brain, and skin) (Figure 1).72

Although there has clearly been major progress in link-
age of MPS devices, there are still many challenges on the
road ahead. These include more basic technical challenges
such as inhibiting air bubble formation which can impede
fluid flow, maintaining sterility when physically linking
separately cultured platforms, preventing leakage during
the integration process, and controlling oxygenation levels
between different organ systems.8 Fluidic integration of
multiple tissue chips also creates the need for a common
universal medium capable of keeping the heterogeneous
cell types within the platform healthy and functional.
This medium, which would function either as a blood
mimetic or as interstitial fluid, would contain all growth
factors, chemokines, and nutrients required to support all
tissue types in the system.129 Currently, no medium has
been developed that can function as a universal medium,
although it is possible to circumvent this issue through
inclusion of organ-specific endothelial barriers between tis-
sues, with a common basic circulating medium that allows
some tissue crosstalk as well as inclusion of immune cells
and other circulating factors.20,26 Incorporation of immune
cells into MPS platforms, particularly to better understand
innate and adaptive immunity, will be a key step in wider
adoption of MPS models.130,131

Commercialization, validation and automation of MPS
technology

MPS are becoming increasingly commercially available,
with many organ-on-a-chip companies advancing products
to market.132 In fact, a variety of MPS start-up companies
have been established, each bringing unique device con-
structs and ways to perform tissue assembly.132 NIH has
supported a number of these MPS small business entities
through Small Business Innovation Research (SBIR) and
Small Business Technology Transfer (STTR) funding pro-
grams. These programs allow US-owned and operated
small businesses to receive early-stage capital for innova-
tive technology commercialization in the US. Phase II SBIR
funding from NCATS was awarded to the MPS company
Hesperos, Inc, to commercialize their “body-on-a-chip”
technology. Hesperos offers pumpless and serum-free
multi-organ systems with built-in mechanical and chemical
sensors for bioanalysis and systemic toxicology.132

Hesperos has constructed MPS representing many major
human organ systems including cardiac, skeletal muscle,
liver, vasculature, neuronal, BBB, neuromuscular junctions,
and the gastrointestinal tract. A number of these organ con-
structs can be combined and integrated into single plat-
forms to probe the tissues and systemic responses to
drugs and their associated metabolites. Another MPS
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company that was awarded NIH SBIR/STTR funding for
further commercialization of their platforms is Nortis, Inc.
Nortis was awarded Phase-II SBIR funding for commercial-
ization of a microfluidic platform for modeling drug trans-
port and cell trafficking across the BBB. While initially
developing vessel-on-a-chip133 and kidney-on-a-chip134

platforms for drug testing, currently, Nortis offers pre-
seeded organ platforms such as vasculature, kidney, liver,
BBB, heart, immune system, and pancreatic islets in plug-
and-play settings for drug screening and precision medi-
cine applications. SBIR/STTR funding of MPS companies
such as Nortis and Hesperos helps push the technology
along the path to mainstream adoption.

In addition to NIH SBIR and STTR funding, NCATS and
NIH funding of MPS developers in the NIH Tissue Chip
Program has also led to the formation of start-up compa-
nies, such as TARA Biosystems, Inc. Founded in 2014,
TARA Biosystems’ BiowireTM platform is being used for
cardiovascular drug testing and is based on initial work
performed in the Vunjak-Novakovic laboratory to create
functional cardiac tissue.135 A recent validation study
showed that treatment of TARA’s in vitro human cardiac
tissues with eight drugs from several inotrope classes (ther-
apeutic agents which increase the strength of cardiac
muscle contraction) mimicked contractile responses
observed in native human heart tissue.136 These results
demonstrate the potential of TARA’s BiowireTM platform
in identifying inotropes with different mechanisms and
ultimately as an in vitro model for evaluating potential car-
diac therapeutics.136 Despite promising results from com-
panies such as TARA Biosystems, there are still commercial
hurdles that remain. One major commercial hurdle is how
to scale up MPS platform manufacturing to reach an indus-
trial pace.26 Because many early MPS platform designs are
created in academic labs and university institutions, fabri-
cation is often limited by cost and equipment and

personnel availability.26 Therefore, it would be helpful for
academic laboratories to focus on quality control very early
on within device development to ensure reproducibility
and reliability before scale-up in manufacturing.26

Developers must carefully compile standard operating pro-
cedures for design and fabrication of tissue chip, as well as
providing extremely clear quality control practices and pro-
cedures that are able to be easily followed by outside man-
ufacturers or laboratories.26 Indeed, all manufacturers
should maintain Good Manufacturing Practices, such as
those issued by the FDA. These Good Manufacturing prac-
tices include issues such as equipment verification, sanita-
tion, cleanliness of manufacturing facilities, appropriate
personnel training, and validation of collective processes.26

As commercial availability of MPS devices increases and
this technology evolves, so comes the need for independent
reproducibility and validation of these systems at multiple
sites. Validation studies are absolutely critical to provide
quantitative proof that organ-on-a-chip devices are faithful-
ly able to reproduce adult human organ functional charac-
teristics, for example action potential recordings, enzyme
function, barrier permeability, gene expression, protein
translation, metabolomic profile, and ultimately systemic
response.132,137 Ultimately, any technology that will be
used to understand disease and test drugs should be
robust, reliable, and reproducible. However, there are no
agreed upon “gold standard” validation methods that fit
all tissue and cell types within the field, which poses a
variety of problems. To attempt to address this, the NIH-
funded Tissue Chip Testing Centers were tasked with the
goal of onboarding a variety of tissue chips while monitor-
ing and validating assay reproducibility and investigating
parameters set forth by the community.8 These Testing
Centers collaborate with the FDA and pharmaceutical
industry partners to validate assays and outcomes from
MPS platform developers, and a variety of platforms

Figure 1. Example of a linked multi-organ system. (a) The ‘Interrogator’ device maintains fluidic coupling for 3weeks between eight vascularized, two-channel

cultured organ chips (intestine, liver, kidney, heart, lung, blood–brain barrier, brain, and skin). Scale bar, 5mm. (b) These individual organ constructs can be linked to

form a ‘human body-on-a-chip’. Individual organ chips were connected through vascular endothelial channels, allowing a variety of linkage possibilities and multiple

sampling points. (A color version of this figure is available in the online journal.)

Source: Adapted with permission from Novak et al.72
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have been tested to date.59,80,87,138 Data collected from both
developers and the Testing Centers are deposited into a
central, publicly accessible MPS Database, where users
are able to access assay data as well as compare chip data
with preclinical data from other modalities 83,84 (Figure 2).
In addition to these validation efforts, the Tissue Chips in
Space Program are working to develop robust automated
MPS platforms with small laboratory benchtop foot-
prints.139 The miniaturization of the instrumentation sup-
porting the chips along with a more turn-key MPS platform
is expected to catalyze the adoption of technology by min-
imizing the need for highly specialized infrastructure and
highly trained personnel currently required for MPS imple-
mentation.139 In addition, more automated, miniaturized
MPS platforms will be critical to increasing throughput
and the number of replicates available per platform,
which will be potentially advantageous within the early
stages of the drug development process.

Current status and future directions for MPS
technology

MPS technology is uniquely positioned to play a role in
precision medicine, particularly with the ability to seed
patient-specific primary or iPS cells into MPS models
(“patient-on-a-chip”).26 These patient-specific chips could
help stratify patients into different subpopulations based
on response to various drugs or treatments. In addition,
personalized MPS will also lead to the development of
“clinical-trials-on-a-chip” (CToCs), particularly

advantageous for patients with neural diseases, rare dis-
eases or cancers, or diseases affecting pediatric popula-
tions.26 Rare disease sufferers in particular are extremely
limited in the number of clinical trials they can participate
in, and are often disqualified from new emergent trials due
to involvement in previous trials.6 CToCs are advantageous
as platforms can be made from individuals and banked cell
lines from deceased patients, which helps increase the
number of “subjects” in initial safety trials.7 In addition,
CToCs allow for the designing of patient-centric trials,
where trials are designed with the feedback of affected
patient groups, and patient-related data and outcome infor-
mation are collected.7 Ultimately, if tissue chip data can
predict which patient populations may benefit the most
from investigational new drugs and therapeutics, this
data could potentially improve clinical trial success rates.

Although tissue chips hold much promise for applica-
tions including precision medicine; improving the clinical
trial process; diseasemodeling; drug safety and toxicity test-
ing; and understanding human systemic drug responses,
many challenges remain to widespread adoption of MPS.10

To help support the implementation and adoption of tissue
chips in the drug development process, there must be con-
tinued collaborations between tissue chip developers, end
users, and regulatory bodies such as the FDA.26 The MPS
field is rapidly evolving, and diverse stakeholders have
expressed interest in the broad potential applications of
this technology. These applications include therapeutic
safety, toxicity, and efficacy testing within preclinical
stages of drug development, plus common and rare disease

Figure 2. The microphysiological systems (MPS) database is Key for the development and application of MPS. (a) The NCATS-funded MPS Database is a web-based

system that aggregates experimental data taken from tissue chip developers, the NCATS-funded Tissue Chip Testing Centers, the FDA and the IQ Consortium

(pharmaceutical partners). TheseMPS data are then aggregated with preclinical and clinical data taken from a variety of databases to enable analysis and comparison.

The Database contains built-in tools to enable assessment of reproducibility and transferability of MPS experimental models and platforms, while additional com-

putational models are being developed to enable utilization of MPS experimental models to better understand disease mechanism(s), drug and compound toxicity, and

PK/PD drug predictions. (A color version of this figure is available in the online journal.)

Source: Adapted from Schurdak et al.84 CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

FDA: Food and Drug Administration; MPS: microphysiological systems; NCATS: National Center for Advancing Translational Sciences.

Hargrove-Grimes et al. Community adoption of microphysiological systems 1441
...............................................................................................................................................................

https://creativecommons.org/licenses/by/4.0/


modelingandmechanisticdissection, aswell as forprecision
medicine e.g. improving clinical trial design and execution.
Despite challenges, tissue chips could contribute positive
changes in drug discovery and development. Ultimately,
the type of platform utilized will likely depend on the
stage of drug development, for example high-throughput
plate-based platforms with simplistic but cheap tissue con-
structs may be useful in the target identification, lead selec-
tion, or lead optimization phases of pre-clinical drug
discovery.26 Alternatively, lower to medium throughput
platforms capable of modeling tissue–tissue/organ–organ
interactionswithmore complexity could also be used in pre-
clinical single or double-organ efficacy and toxicity stud-
ies.26 For example, convergence of self-organizing
organoidswithmicrofluidics/organ-on-chip based technol-
ogies through “synergistic engineering” may prove useful
for preclinical drug toxicity studies.140 Multi-organ systems
could be useful in reducing the need for animal studies (per-
haps as a “third species”),13 and could be used in parallel
with phase I and II clinical trials.26 Patients with rare dis-
eases, neurological diseases, rare cancers, and pediatric dis-
orders could benefit from incorporation of MPS into clinical
trial planning and execution.6,7 One day, the safety and effi-
cacy of drug candidates may be able to be evaluated in indi-
vidualized, humanMPS platforms, with less need for often-
times dangerous “first-in-human” testing.10 To increase
adoption and implementation of this technology, continued
cooperation, coordination, and engagement between end-
users such as MPS developers, industry, CROs, and regula-
tory bodies is critical. Ultimately, all end-users must work
together to push this paradigm-shifting technology forward
to bring more drugs to more patients faster.
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