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Abstract
Thyroid cancer is a frequently diagnosed malignancy and the incidence has been increased

rapidly in recent years. Despite the favorable prognosis of most thyroid cancer patients,

advanced patients with metastasis and recurrence still have poor prognosis. Therefore, the

molecular mechanisms of progression and targeted biomarkers were investigated for devel-

oping effective targets for treating thyroid cancer. Eight chip datasets from the gene expres-

sion omnibus database were selected and the inSilicoDb and inSilicoMerging R/

Bioconductor packages were used to integrate and normalize them across platforms.

After merging the eight gene expression omnibus datasets, we obtained one dataset that

contained the expression profiles of 319 samples (188 tumor samples plus 131 normal

thyroid tissue samples). After screening, we identified 594 significantly differentially

expressed genes (277 up-regulated genes plus 317 down-regulated genes) between the

tumor and normal tissue samples. The differentially expressed genes exhibited enrichment in multiple signaling pathways, such as

p53 signaling. By building a protein–protein interaction network and module analysis, we confirmed seven hub genes, and they

were all differentially expressed at all the clinical stages of thyroid cancer. A diagnostic seven-gene signature was established

using a logistic regression model with the area under the receiver operating characteristic curve (AUC) of 0.967. Seven robust

candidate biomarkers predictive of thyroid cancer were identified, and the obtained seven-gene signature may serve as a useful

marker for thyroid cancer diagnosis and prognosis.
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Introduction

Thyroid cancer is an endocrine malignancy and the inci-
dence keeps increasing around the world.1,2 There were
approximately 64,300 new cases of thyroid cancer diag-
nosed in 2016, resulting in nearly 1980 deaths.3 Thyroid
cancer is sub-classified into papillary, follicular, medullary,
poorly differentiated, and anaplastic thyroid cancers
according to specific histopathological characteristics.
The prognosis of the cancer largely depends on the
cancer type and stage, so it is particularly necessary to
understand the molecular mechanisms that underlie
cancer development and progression. The key biomarkers

as well as targets for thyroid cancer treatment shall be iden-
tified crucially.

High-throughput technologies have allowed the discov-
ery and integration of many gene expression data, which
provide a basis for more deeply understanding the molec-
ular mechanisms regarding thyroid cancer. Multiple data-
sets have been integrated and screened to detect genetic
markers for thyroid cancer. Li et al. identified 423 DEGs
related to papillary thyroid cancer (PTC) using three sets
of gene expression omnibus (GEO) expression profile data-
sets, and mined and screened 21 core PTC-related genes in
a protein interaction network.4 Zhao et al. 5 identified FN1
and TRAF6 as two key genes associated with thyroid cancer
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by analyzing five GEO microarray datasets. Qu et al. 6 used
two GEO microarray datasets to screen a large number of
DEGs and identified potential regulatory pathways of FN1
and SERPINA1 in PTC. Together, these findings helped us
to more deeply understand the regulatory mechanisms
underlying thyroid cancer development as well as
opened new directions for discovering PTC biomarkers
and therapeutic targets.

Integrating and analyzing multiple datasets that were
obtained using different study cohorts, different sequenc-
ing platforms, and different sample processing methods
can be hindered by noisy data and batch effects.7 Various
algorithms have been designed to solve these problems.
Cross-platform data integration is effective in screening
disease markers and can greatly improve the reproducibil-
ity and robustness of the results. Multi-dataset integration
can greatly enlarge the sample size and enhance the reli-
ability of the results 8 by reducing the effects of individual
datasets.9

In this study, eight GEO datasets were integrated and
594 DEGs were identified, which were enriched mainly in
signaling pathways closely related to p53, a tumor suppres-
sor protein, and other tumors. We constructed a protein–
protein interaction (PPI) network, meanwhile identifying
seven hub genes (NMU, COL1A2, LPAR5, CXCL8,
COL5A2, COL11A1, COL5A1). A seven-gene signature
with diagnostic value was established using a logistic
regression model with AUC of 0.967. These seven genes
can be considered robust candidate biomarkers predictive
of thyroid cancer, and the seven-gene signature is a candi-
date marker for diagnosis and prognosis prediction of thy-
roid cancer.

Materials and methods

GEO microarray dataset selection and processing for
thyroid cancer

Eight gene expression profiling datasets were screened
from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/): GSE3467 10, GSE3678 (no citation), GSE6004 11,
GSE29265 (no citation), GSE33630 12, GSE53157 13,
GSE60542 14, and GSE65144 15. There were three inclusion
criteria:

1. The dataset contained data for both normal and thy-
roid tumor samples.

2. The detection platform was an Affymetrix gene chip
3. Sample sizes were >10.

We downloaded the raw data files about the eight GEO
datasets from the GEO website. A standard robust multi-
array average (RMA) method served for data preprocess-
ing.16 The processed data were converted to IDs and
transformed to gene symbols. In the case of multiple
probes corresponding to one gene, we used the median
gene expression value. Probes that corresponded to multi-
ple genes were removed. Finally, each dataset was quantile
normalized by virtue of the affy package in R
(Supplementary Figure 1).

Merging the eight microarray datasets

The inSilicoMerging served for dataset normalization.7 The
batch effects across platforms were removed by
inSilicoDb17 and adjusted using ComBat.18 ComBat is an
empirical Bayesian method that estimates the parameters
representing the batch effect by summarizing the informa-
tion among genes in each batch for reducing the batch effect
parameters to the overall estimated average.19 After merg-
ing the eight GEO datasets, one dataset that incorporated a
total of 319 samples (188 tumor and 131 normal thyroid
tissues) was obtained.

Screening of DEGs

We used the limma package in R 20 to identify DEGs related
to thyroid cancer in the merged dataset. |log2FC| >1 and
corrected P-values <0.05 were considered as the threshold.

Functional enrichment analyses

We conducted gene ontology (GO) enrichment analysis
using the DAVID online analytical tool (https://david.
ncifcrf.gov/), for figuring out the functional role played
by DEGs.21 Enriched GO terms under the three main cate-
gories, namely molecular function (MF), biological process
(BP), and cellular component (CC), and false discovery rate
(FDR) <0.05 were considered significant. A Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was carried out using the KOBAS
server;22 FDRs <0.05 exhibited significance.

PPI network construction and module mining

STRING (version 11.2) (https://string-db.org/) assisted in
building a network between known and predicted pro-
teins.23 An interaction score of 0.9 was considered as the
threshold for obtaining reliable PPI data, and local
Cytoscape (version 3.6.2) software (https://www.cyto
scape.org/) served for visualizing the network. The topo-
logical properties of the network were analyzed, and
module mining was carried out using the MCODE plug-in.

Identification of hub genes in the PPI network

The Cytoscape software plug-in cytoHubba 24 with maxi-
mum neighborhood component (MNC) and maximal
clique centrality (MCC) assisted in identifying significant
hub genes. The top 10 hub genes were screened and a Venn
diagram was created to select mutual hub genes.

Validation of key gene using an external dataset

We downloaded the FPKM data of gene expression profiles
derived from 502 thyroid cancer and 58 paracancer samples
from The Cancer Genome Atlas (TCGA) database 25using
gdc-api and used the data for verifying the expressions of
key genes. The GEPIA2 database (https://gepia2.cancer-
pku.cn/) 26 was used to verify the prognostic differences
among the genes. A ROC was plotted and a logistic regres-
sion model was adopted for evaluating the diagnostic per-
formance owned by the seven-gene signature for thyroid
cancer.
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Results

Identification of DEGs related to thyroid cancer

An integrative multi-platform analysis was conducted
against the gene expression profiles in the merged GEO
dataset to identify key biomarkers of thyroid cancer
(Figure 1). Five hundred ninety-four DEGs were identified,
277 up-regulated, and 317 down-regulated, with corrected
P-values <0.05 and |log2FC| >1. Figure 2 displays
Volcano plots and a heatmap of the DEGs. Table 1 lists
the top five DEGs.

GO term and KEGG pathway function enrichment
analysis of the DEGs

DAVID helped to identify 12 enriched GO terms in total
(20). Under molecular function, the up-regulated genes pre-
sented significant enrichment in serine-type endopeptidase
activity, extracellular matrix structural constituent, and
protease binding (Figure 3(a)). Under biological process,
the up-regulated genes presented enrichment in the colla-
gen catabolic process, extracellular matrix organization,
and cell adhesion. Under cellular component, the up-
regulated genes presented enrichment mainly in extracel-
lular space, proteinaceous extracellular matrix, and colla-
gen trimer. Under biological process, the down-regulated
genes exhibited enrichment in the BMP signaling pathway
and thyroid hormone generation. Under cellular compo-
nent, the down-regulated genes exhibited enrichment
mainly in extracellular space, proteinaceous extracellular
matrix, and extracellular exosome (Figure 3(b)).

KOBAS helped to identify 14 significantly enriched
KEGG pathways in total.21 The up-regulated genes
played a role in protein digestion and absorption, p53 sig-
naling, complement and coagulation cascades, and path-
ways related to cancer (Figure 3(c)). The down-regulated

genes showed significant enrichment in thyroid hormone
synthesis, TGF-beta signaling, as well as tyrosine metabo-
lism (Figure 3(d)). These results indicate the close involve-
ment of DEGs in biological functions and pathways
associated with cancer.

PPI network construction and module mining

STRING (22) was employed for constructing a PPI network
that had a total of 203 nodes comprising 117 up-regulated
genes plus 86 down-regulated genes (Figure 4(a)). Four net-
work modules were identified using the MCODE plug-in
(Figure 4(b) to (e)). We explored the significantly enriched
pathways in eachmodule using KOBAS.21 In module 1, the
DEGs showed significant enrichment in chemokine signal-
ing, cAMP signaling pathway, and cytokine-cytokine
receptor interaction. In module 2, the DEGs showed enrich-
ment in the protein digestion and absorption, ECM-
receptor interaction, and focal adhesion. In module 3, the
DEGs showed enrichment in Staphylococcus aureus infec-
tion, complement and coagulation cascades, as well as bac-
terial invasion regarding epithelial cells. In module 4, the
DEGs showed enrichment mainly in neuroactive ligand-
receptor interaction, calcium signaling pathway, and
renin-angiotensin system. These results confirm the
involvement of the DEGs in the four network modules in
different biological processes in the development of thyroid
cancer.

Identification of network hub genes

The Cytoscape plug-in cytoHubba 24 helped to detect key
hub genes. A Venn diagram about the top ten hub genes
was plotted to select shared hub genes. Seven genes—
NMU, COL1A2, LPAR5, CXCL8, COL5A2, COL11A1, and
COL5A1—were identified (Figure 5(a)). These genes may

Figure 1. Flow chart of the integrative multi-platform analysis conducted in this study (A color version of this figure is available in the online journal.)
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Figure 2. DEGs related to thyroid cancer identified in the study. (a) Volcano graph of the 594 identified DEGs. The horizontal axis indicates gene expression multiples;

the vertical axis indicates significant P-values. (b) Heatmap of the 594 identified DEGs. (A color version of this figure is available in the online journal.)

Table 1. Top 10 DEGs of thyroid cancer.

Gene symbol Gene name Log2(Fold-Change) Corrected P-value Regulation

ZCCHC12 Zinc finger CCHC-type containing 12 3.598 1.45746539074895e-36 Up

PRR15 Proline-rich 15 3.316 6.6507222979452e-40 Up

CHI3L1 Chitinase 3-like 1 3.094 8.35633170653537e-32 Up

LRP4 LDL receptor-related protein 4 3.061 3.40155936718936e-42 Up

GABRB2 Gamma-aminobutyric acid type A receptor beta2 subunit 2.976 5.29826988266041e-43 Up

TFF3 Trefoil factor 3 �4.117 2.56113340224372e-70 Down

TPO Thyroid peroxidase �3.943 1.47946458958149e-48 Down

DIO1 Iodothyronine deiodinase 1 �3.804 2.83170255583346e-39 Down

PKHD1L1 PKHD1 like 1 �3.718 1.22427913897898e-56 Down

IPCEF1 Interaction protein for cytohesin exchange factors 1 �3.217 5.52506500130381e-74 Down

Figure 3. Function enrichment analysis on DEGs related to thyroid cancer. (a, b) String diagrams of the enriched gene ontology (GO) terms for (a) the up-regulated

genes and (b) the down-regulated genes. Genes are on the left; GO terms are on the right; colors indicate the difference in multiples. (c, d) Bubble charts of the enriched

KEGG pathways specific to (c) the up-regulated genes and (d) the down-regulated genes. Colors indicate the significance; dot size indicates the number of DEGs.

(A color version of this figure is available in the online journal.)
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potentially serve for thyroid cancer treatment as novel
biomarkers.

Robustness of gene signatures

For validating our results, we extracted the expression data
about the seven hub genes from the TCGA gene expression
dataset of thyroid cancer. We analyzed the differences in
their expression profiles between the carcinoma and para-
cancer samples (Figure 5(a)), and found that the significant
difference was in line with our results (Figure 5(c)). How
these seven genes affect the prognosis of thyroid cancer was
analyzed using GEPIA2 (24) and found that only LPAR5
showed significant differences (log-rank P-value¼ 0.0049,
Figure 5(d)). Additionally, all seven hub genes showed dif-
ferential expression throughout the different stages of thy-
roid cancer (Supplementary Figure 2(a) to (g)). On the basis
of these results, we established a seven-gene signature and
evaluated its diagnostic performance. A combined ROC
was drawn using a logistic regression model, and the com-
bined AUC was 0.967 (Figure 5(e)). In order to further
verify the seven gene diagnosis performance, we download
a set of thyroid cancer data from GEO database validation
set GSE35570,2 the seven gene expression profiles were
extracted, genes expression differences were detected in
the cancer samples and paracancerous samples. As
expected, they are significantly highly expressed in tumor
samples (Figure 6(a)). Furthermore, we obtained the
expression profile and prognosis information of seven
genes from TCGA, and observed the prognostic signifi-
cance of these seven genes from univariate and

multivariate aspects, respectively. Univariate analysis
showed that LPAR5, COL5A2, and COL5A1 had significant
prognostic differences. Multivariate analysis of significant
LPAR5 had a significant prognostic difference (Figure 6(b)),
which followed the results from the GEPIA database.

Discussion

An integrative multi-platform analysis was conducted over
the gene expression profiles to identify key biomarkers for
thyroid cancer. The gene expression profiles of eight GEO
datasets were integrated after removing batch effects
among the datasets from different sources. The integrated
dataset contained a total of 319 samples; 188 tumor and 131
normal thyroid tissue samples. GO terms and KEGG path-
ways were used to annotate significant DEGs between
tumor samples and normal samples, a PPI network was
constructed, and the network modules were analyzed.
The key DEGs were validated using a TCGA gene expres-
sion dataset. Seven hub genes—NMU, COL1A2, LPAR5,
CXCL8, COL5A2, COL11A1, and COL5A1—were identified
as potential and novel biomarkers for thyroid cancer.

The rapid increases in thyroid cancer cases worldwide
and the availability of high-throughput gene expression
data encouraged us to study human malignancies, includ-
ing thyroid cancer. Pan et al. 27 identified four down-
regulated microRNAs (miRNAs) associated with thyroid
cancer using the GEO and ArrayExpress databases, and
suggested these miRNAs may influence tumorigenesis by
regulating critical pathways. Furthermore, by analyzing
TCGA, ArrayExpress, and GEO databases, it was

Figure 4. PPI network and module analysis. (a) Proposed PPI network of the proteins encoded by the differentially expressed genes. (b–e) Network modules identified

with the MCODE plug-in: (b) module 1 (c) module 2, (d) module 3, and (e) module 4. (A color version of this figure is available in the online journal.)
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discovered that miR-486-5p often suffered down-regulation
in PTC compared with its expression in normal tissues, and
that miR-486-5p expression was associated with cancer
stage, pathological lymph node status, metastasis, tumor,
as well as recurrence.28 Luo et al. 29 analyzed the expression
profiles regarding long non-coding RNAs (lncRNAs) in
TCGA RNA-sequencing datasets, and established a three-
lncRNA (AC079630.2, CRNDE, CTD-2171N6.1) survival
signature that was confirmed to be able to independently
predict PTC patients’ survival. Other studies have also pro-
vided novel and promising diagnostic, prognostic, and
therapeutic markers for thyroid cancer.6,30,31 Liu et al. iden-
tified five hub genes (LPAR5, NMU, FN1, NPY1R, CXCL12)
by constructing a PPI network.30 Griffith et al. conducted a
comprehensive meta-analysis on the thyroid cancer bio-
markers from 21 studies and proposed a method for
identifying biomarkers based on gene ranking.31

Although various genetic markers for thyroid cancer have
been proposed, so far no clinical genetic markers are avail-
able; therefore, more studies are needed to identify genetic
markers that can be used by clinicians and
experimentalists.

Limitations, such as small sample size and the combina-
tion of different platforms or groups, often result in inaccu-
rate data. The potential diagnostic and prognostic
applications of microarray data analysis have contributed
to developing useful methods for data integration from var-
ious microarray platforms.8 Cross-platform data integra-
tion can improve the reproducibility and robustness of
genetic biomarkers by increasing sample size and statistical
power to draw more general and reliable conclusions.9 We
used ComBat to remove batch effects because it reduces
computational costs and is independent of sample size.32

This helped to avoid the influence of different batch

Figure 5. Verification of key genes using the TCGA gene expression dataset of thyroid cancer. (a) Venn diagram of hub genes identified with MCC and MNC

algorithms. (b) Heatmap of hub genes in TCGA database. (c) Expression differences of the seven hub genes between the carcinoma and paracancer samples in TCGA.

(d) Kaplan–Meier curves of prognosis differences in samples with highly or lowly expressed LPAR5. (e) ROC of the seven-gene signature for diagnosis of thyroid

cancer. (A color version of this figure is available in the online journal.)
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processing parameters across platforms. We also compared
our model with previously published models,33–35 and
found that our model had a higher AUC (Supplementary
Figure 3). In this study, we used the inSilicoMerging and
inSilicoDb packages in R to merge the eight selected GEO
datasets into one integrated expression dataset. The
merged dataset contained 319 samples (188 tumor samples
plus 131 normal thyroid tissue samples) that were further
examined.

According to the KEGG pathway enrichment analysis,
the up-regulated genes showed significant enrichment in
several cancer-related pathways, namely p53 signaling,
pathways in cancer, ECM-receptor interaction, proteogly-
cans in cancer, and PI3K-Akt signaling, whereas the down-
regulated genes experienced enrichment mainly in thyroid
hormone synthesis and TGF-beta signaling. TGF-b1 was
shown to be overexpressed in anaplastic thyroid cancer,
and therapies targeting the TGF-b1 pathway were found
to be effective in preventing primary tumor formation.36

The PPI network together with the module analysis
assisted in identifying seven hub genes (NMU, COL1A2,
LPAR5, CXCL8, COL5A2, COL11A1, COL5A1) among
which NMU and LPAR5 had been identified previously
in a PPI network reported by Tang et al..37 A bioinformatics
analysis identifiedNMU as a potential gene triggering alec-
tinib resistance in non-small cell lung cancer (NSCLC),38

and down-regulation of LPAR5 was found to contribute
to aberrant lysophosphatidic acid (LPA) signaling in naso-
pharyngeal carcinoma associated with Epstein–Barr virus
(EBV).39 An integrated analysis of microarray datasets
revealed COL1A2 as a candidate biomarker for

cholangiocarcinoma diagnosis and prognosis;40 however,
there are no reports of COL1A2 in thyroid cancer. As
found, the aberrant expression of CXCL8 affected the thy-
roid cancer pathogenesis.41–43 Up-regulation of COL11A1 is
a candidate marker for cancer, including PTC; particularly,
the T alleles of rs1763347 and rs2229783 reduced the risk of
PTC in a Korean population.44 Qiu et al. used five paired
PTC tissues and RNA-sequencing and found a set of
collagen-encoding genes with COL5A1 as a hub node in a
PPI network for thyroid cancer.45 However, no studies have
been conducted on COL5A2 in thyroid cancer.

Conclusions

In conclusion, the identified seven hub genes can be con-
sidered as novel biomarkers, reliably used for the thyroid
cancer diagnosis, prognosis prediction, as well as targeted
therapy design.
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