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Abstract
The traditional view is that the occurrence and development of hallux valgus (HV) are mainly

due to environmental factors. Recent studies have suggested the large contribution of

genetic heritability to HV, but it remains elusive about the genetic variants underlying the

development of HV. To gain knowledge about the molecular mechanisms of HV pathogen-

esis by genetic approach, whole exome sequencing studies were performed in 10 individ-

uals (7 affected by HV and 3 unaffected) from three independent families. Specific mutations

were found to be related to the pathogenesis of HV and conform to the laws of inheritance. A

total of 36 genes with functional candidate single nucleotide variants were identified.

Genetic predisposition plays an important role in the development of HV. Interestingly,

some of these genes are related to chronic arthritis, such as the complement encoding

gene C7, or are related to long toe or long fingers, such as TTN, COL6A3, LARS, FIG4, and

CBS. This study identified rare potentially pathogenic mutations represented by genes related to digital anomalies and chronic

arthritis underlying the familial types of HV, which acquired new insights into the genetic and physiological foundations of HV,

thereby might improve accurate prevention and drug development for HV.
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Introduction

Hallux valgus (HV), also known as a bunion, which refers
to the lateral deviation of first toe at the metatarsophalan-
geal joint, is the most common forefoot deformity.1–3 HV
usually develops with age progressively,3,4 and can cause
pain and decreased mobility.5 The prevalence of HV is esti-
mated to be 23% (95% CI:16.3%–29.6%) in adults aged
18–65 years, and 35.7% (95% CI: 29.5–42.0) in adults aged
over 65 years.2 The prevalence of HV is higher in women

[30% (95% CI: 22–%38%)] than that in men [13% (95% CI:
9%–17%)].2 The pain of HV mainly focuses on the bunion,
the medial surface of the foot, the load-carrying subface of
the foot, and the little toes.1 Progressive subluxation of the
first metatarsophalangeal joint may occur at the later stage
of HV development.3,6 Several types of non-operative treat-
ment may alleviate symptoms of HV. However, none of
them can fully reverse the HV deformity, and surgery is
usually recommended if the pain persists.1,3
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The pathogenesis of HV is complex, which is attributable
to both extrinsic and intrinsic factors. HV is subjected to
genetic predisposition and is related to ligamentous
laxity, other foot deformities, age, and neuromuscular dis-
orders.3,4 Nonlinear osseous alignment or a laxity of the
static stabilizers due to genetic predisposition may contrib-
ute to HV development, while restrictive footwear can
accelerate the process of HV.4 As genetic predisposition
plays an important role in the development of HV as evi-
denced by the results from family studies, important
knowledge could be gained about the molecular mecha-
nisms of HV pathogenesis. A research including three-
generation pedigrees of 350 patients showed that 90% of
probands had at least one family member affected, which
suggested autosomal dominant inheritance with incom-
plete penetrance.7 The heritability of HV in men and
women of European descent ranges from 0.29 to 0.89
depending on age and sex,8 and that in Korean monozy-
gotic twins is estimated to be 0.51 (CI: 0.42–0.59).9 The
genome-wide genotyped single nucleotide polymorphisms
(SNP) explained 50% of HV variance in men and 48% in
women.10 Common genetic variants showed sex specific
association with HV, peaking at the SNP rs9675316 near
the axin 2 gene (AXIN2) in males (p¼ 5.46E–07) and
rs7996797 (p¼ 7.21E–07) near the esterase D gene (ESD)
in females. Genome-wide significant SNP-by-sex interac-
tion was identified for the SNP rs1563374 near the MAS
related GPR family member X3 gene (MRGPRX3) (interac-
tion p¼ 4.07E–09).10 Important knowledge was acquired by
the discoveries of this study, highlighting molecular path-
ways related to skeletal development and inflammation in
HV. However, the knowledge about the genetic basis of HV
is far from complete, e.g. rare mutations underlying the
familial types of HV cannot be identified by a GWAS
study.11

Although the exome accounts for only �1% of the whole
human genome, 85% of the pathogenic mutations related to
Mendelian diseases were harbored in this region.12,13 The
whole exome sequencing (WES) technology thus presents
an opportunity to discover rare causative variants related
to familial types of HV. Families with significant HV history
are an essential resource for rare causative genetic variant
study. Here, we present the first WES study on three HV
families to search for rare variants related to HV.

Materials and methods

Participants

The study was approved by the institutional review board
and the informed consents were obtained from all the par-
ticipants. Ten Chinese individuals were enrolled in this
study. Three unrelated participants had been diagnosed
with HV from October 2014 to December 2018, and all of
them (i.e. the three probands in this study) had a positive
family history of HV (i.e. first-degree relative(s) with HV).
A total of seven direct family members (spouses and chil-
dren/biological parents) of the probands were also
enrolled into the study (Figure 1). The diagnoses were
made by orthopedic surgeons of foot and ankle expert

based on the expert consensus from the Foot and Ankle
Surgery Group of Orthopedics Branch of Chinese Medical
Association. The diagnosis of HV was based on a compre-
hensive evaluation of clinical manifestations, medical his-
tory, physical examination, and imaging findings. The
severity of HV was graded into three levels in terms of
hallux valgus angle (HVA, also known as hallux
abductus angle, normally <16�) and intermetatarsal angle
(IMA, normally< 10�): mild (HVA� 20�, IMA� 13�), mod-
erate (20� <HVA� 40�, 13� < IMA� 16�), and severe
(HVA> 40�, IMA> 16�).

Whole-exome capture and sequencing

Genomic DNA was extracted from whole blood. Exome
capture was performed using human exome capture kit
TargetSeqTM Enrichment Kit (iGeneTechTM) following the
manufacturer’s instructions. Paired-end next generation
sequencing was performed on the Illumina NovaSeqTM

6000 Sequencing System.

WES data analyses

The analysis pipeline is shown in Supplementary Figure 1.
The quality of raw exome sequencing reads was assessed
using FastQC (version 0.11.7, http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Automated quality and
adapter trimming were performed using Trim-Galore (ver-
sion 0.6.4_dev, https://www.bioinformatics.babraham.ac.
uk/projects/trim_galore/) with Cutadapt (version 1.18),14

and the quality was reassessed using FastQC. Analysis-
ready sequencing reads were aligned to the human
reference genome (GRCh37/hg19) using BWA (Burrows-
Wheeler Aligner)-MEM (version 0.7.17). Next, the align-
ment outputs were sorted by genomic coordinates, and
polymerase chain reaction (PCR) duplicates were marked
using GATK15–17 (version 4.1.6.0). Quality control of inter-
mediary binary alignment map file was performed using
Samtools18 (version 1.58). Base quality score recalibrations

Figure 1. The pedigree charts of the three families. The relationships among

subjects from three families included in this study are shown in standard pedi-

gree charts. Elements filled with horizontal hachures indicate patients with mild

hallux valgus. Elements filled with diagonal lines indicate patients with moderate

hallux valgus. Blank elements indicate family members without hallux valgus.
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(BQSRs) were performed using GATK. After BQSRs, we
confirmed no contamination of cross-samples prior to var-
iants calling using verifyBamID19 (version 1.1.3). The kin-
ship coefficient between samples was calculated using the
software VCFtools20 (version 0.1.17) based on VCF files to
verify the self-reported relationship among participants of
the study. Then, variants calling, joint genotyping and basic
hard-filtration of SNPs and indels were performed using
GATK coherently. The basic hard-filter parameters were as
follow: (a) for SNPs: quality by depth (QD)< 2.0, fisher
strand (FS) > 60.0, mapping quality (MQ)< 40.0, mapping
quality rank sum (MQRankSum)< –12.5, read position
rank sum (ReadPosRankSum)< –8.0, strand odds ratio
(SOR) > 3.0; b) for indels: QD< 2.0, FS > 200.0,
ReadPosRankSum< –20.0, SOR > 10.0, InbreedingCoeff
<–0.8. Quality control of variant call format file20 was per-
formed using SNPEff21 (version 4.3t). MultiQC22 (version
1.9) was used to integrate the quality control parameters of
the whole process.

Variant annotation

Functional annotation of variants and in silico functional
prediction of SNVs were performed using ANNOVAR23

(version 20180416), based on different databases. The vari-
ant allele frequency was annotated by the 1000 Genomes
Project24 (1000G, release August 2015) data, the Exome
Aggregation Consortium25 (ExAC, version 0.3) databases,
the exome sequencing data of the Genome Aggregation
Database (gnomAD, version 2.1.1).26 The predicted muta-
tion effect scores were annotated by SIFT27 and
Polyphen2.28 The human gene mutation database
(HGMD)29 was searched for any known mutations or
genes in the results of our study. The variant allele frequen-
cy was also obtained from the ChinaMAP30 and the
KOREAN population from KRGDB.31

Identification of potential pathogenic variants

The following filters were adopted to identify potentially
pathogenic genetic variations: (a) Based on the pedigree
information of each family in our analysis, we screened
for the variants according to the likely inheritance pattern.
If HV is inherited in an autosomal dominant pattern, then
the affected child(ren) should carry heterozygous muta-
tions, the affected parent should carry the same mutations,
and unaffected parent should be wild-type. Conversely, if
HV is inherited in an autosomal recessive pattern, the
affected child(ren) and the affected parent should carry
the same homozygous mutations, and the unaffected
parent should carry the heterozygous mutations; (b) var-
iants are located at exonic or splicing sites; (c) functional
variants, including nonsynonymous SNVs, stop loss, stop
gain, frameshift indels, variants at splicing donor/recipient
sites; (d) SNVs predicted to be deleterious by both SIFTand
PolyPhen-2 HDIV; (e) variants with mAF > 0.001 in East
Asian Population (EAS) of the 1000G, ExAC or gnomAD,
and variants with mAF > 0.01 in ChinaMAP databases or
the KOREAN population from KRGDB were excluded
from further analysis; (f) allelic depths (ADs) of alternative
alleles >4.

Sanger sequencing validation

Sanger sequencing was conducted to verify the mutations
we found. The genomic DNA of patients and their unaf-
fected relatives in each pedigree was extracted (QIAamp
DNA BloodMini Kit, Germany). The primers of each muta-
tion site were designed with a length of approximately
200bp from upstream and downstream (Supplementary
Table 1). All sequences information was extracted from
NCBI database. Phanta max super-fidelity DNA polymer-
ase (Vazyme, China) was used to perform PCR (95�C 3min;
35 cycles: 95�C 15 s, 56�C 15 s, 72�C 30 s; 72�C 5 min). All
PCR products were verified by DNA agarose gel electro-
phoresis and purified by gel DNA extraction. The product
after purification and matching primers were used for
sanger sequencing.

Results

To identify causative variants for HV, we performed WES
(Supplementary Figure 1) on the three probands and their
family members (Figure 1). The primary clinical character-
istics of all participants are shown in Table 1. The proband
in each family had first-degree relatives affected, and most
probands self-reported that they developed HV around
teenage. The appearance of the patients’ and direct rela-
tives’ feet and the X-rays of the probands’ affected feet
are shown in Supplementary Figures 2 to 7.

The average value of median coverages in the capture
area of all samples was �139.4X. Coverage more than 30X
was obtained in�95.76% capture area averagely. More than
99.9% reads were aligned to reference genome.
Transitions/transversions ratios varied from 2.365 to
2.386. The detailed quality parameters of each sample are
shown in Supplementary Table 2.

The numbers of remaining SNVs and indels after each
screening step are shown in Table 2. A total of 36 SNVs in
the exon regions meeting the aforementioned screening cri-
teria were identified from the families (Table 3). All SNVs
that meet the filter criteria are in line with the classic
Mendelian autosomal or X chromosome homologous
regions dominant inheritance mode, and no recessive
mode SNVs (i.e. homozygous) that meet the filter condi-
tions have been obtained, which is basically consistent with
the suggested dominant inheritance of HV.7 In addition, all
indels and variants in splicing sites were finally eliminated
due to not meeting certain filter criteria.

Among the candidate genes with the identified SNVs,
genes involved in bone development and digital anomalies
deserve particular attention. In Family 2, three functional
candidates were highlighted, i.e. the titin gene (TTN), the
collagen type VI alpha 3 chain gene (COL6A3), and the
leucyl-tRNA synthetase gene (LARS). In Family 3, two
genes were highlighted, i.e. the FIG4 phosphoinositide 5-
phosphatase gene (FIG4), and the cystathionine beta-
synthase gene (CBS). Furthermore, the complement C7
gene (C7) was highlighted in Family 1, which suggested a
different mechanism. These abovementioned mutation
sites have been verified by Sanger sequencing. Sanger
sequencing results were consistent with WES results
(Figure 2).
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Discussion

This study identified functional candidate SNVs from three
HV families. The candidate genes identified in each family
bring insights into the mechanisms of HV occurrence and
development.

Among the candidate genes identified in Family 2, TTN,
COL6A3, and LARS have been suggested of their roles in
the anatomical development of long toe and long fingers by
previous studies.32–34 TTN contains as many as 363 exons

and encodes titin which is the largest known protein.35 Titin
plays an important role in maintaining the physiological
position of myosin molecules and passive muscle tension.
It connects the Z-line and M-line of the sarcomere and is
especially important in the contraction of striated
muscle.36,37 COL6A3 is necessary for the generation of
type VI collagen. Type VI collagen can be located in the
extracellular matrix of skeletal muscle cells, thereby affect-
ing the movement of the muscles; it can also be located
around the cells in the connective tissue to provide strength

Table 1. The primary clinical characteristics of all participants.

Family ID Kinship Sex

Current

age Hallux valgus Degree

Age of

onset Surgery Other conditions BMI

Wearing

unfit shoes

F1 I-1 Father Male 64 � N/A N/A N/A Coronary heart disease

and diabetes

27.10 �

I-2 Mother Female 64 � Mild 45 � High blood pressure 26.67 �
II-1 Proband Female 29 � Moderate 5 � None 25.15 �
II-2 Sister Female 37 � Moderate 10 � None 30.11 �

F2 I-1 Wife Female 48 � N/A N/A N/A None 25.39 �
I-2 Proband Male 45 � Moderate Congenital � None 27.68 �
II-1 Daughter Female 23 � Moderate Congenital � None 24.22 �

F3 I-1 Mother Female 50 � N/A N/A N/A None 27.14 �
I-2 Father Male 54 � Moderate 10 � None 23.53 �
II-1 Proband Female 26 � Moderate 10 � Fourth metatarsal

short deformity

20.70 �

The table shows a series of clinical information of the subjects enrolled in this study.

Family: the serial number of the family which the subject belongs to. ID: the subject’s anonymized number. Kinship: the relationship between the family member and

the proband. Current age: the age at which the subject participated in the study, received orthopedic evaluation, and blood samples were collected. Hallux valgus:

whether the subject was diagnosed with hallux valgus when participating in this study. Degree: the degree of hallux valgus of the patient. Age of onset: approximate

onset age of hallux valgus reported by the patient and his/her family members. Surgery: whether the patient has undergone an orthomorphia. Other conditions: other

diseases that the patient has been diagnosed with in the past. BMI: the subject’s body mass index. Wearing unfit shoes: whether the subject wears unfit shoes. N/A:

not applicable.

Table 2. The number of remaining SNVs and indels after each filtering step.

5265 2086 1003 90 3 3 

1428 536 262 14 0 . 

427 41 13 0 . . 

109 6 2 0 . . 

9503 3708 1760 187 18 18 

2982 1097 489 16 0 . 

790 86 28 0 . . 

230 10 3 0 . . 

8898 3526 1664 206 15 15 

2620 974 433 24 0 . 

786 79 28 0 . . 

191 19 7 0 . . 

SNV 

INDEL 

SNV 

INDEL 

SNV 

INDEL 

Family 1 

Family 2 

Family 3 

AD 

AR 

AD 

AR 

AD 

AR 

AD 

AR 

AD 

AR 

AD 

AR 

Inheritance Mode Exonic Functional Harmful mAF<0.01 
Alternative Allele 

Depths > 4 

The column headings represent the work flow of the filtering for candidate mutations, which is described in details in the section of “Identification of Potential

Pathogenic Variants” in Materials and Methods. The numbers of remaining SNV(s) or indel(s) in the family after each filtering step are shown. AD: autosomal dominant

inheritance; AR: autosomal recessive inheritance.
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and flexibility to the joints.38–41 LARS encodes the cytosolic
leucine-tRNA synthetase which belongs to the class I
aminoacyl-tRNA synthetase family, while its mutation
causes infantile liver failure syndrome 1 with the

phenotypes of long fingers and long toe.42 Among Family
3, FIG4 and CBS related to long fingers were highlight-
ed.43,44 FIG4 encodes phosphatidylinositol 3,5-bisphos-
phate 5-phosphatase. It was proved that FIG4 mutations

Figure 2. Sanger sequencing results of highlighted variants. The chromatograms show the sanger sequencing results of some of the mutations that this study focused

on. The coordinates of the mutation (GRCh37) are marked below the graph group, and the gray vertical shading in the chromatogram indicates its location. The subject

number corresponding to each chromatogram is marked on the upper left. The color of each base peak corresponds to the color of the base letter above. The height of

the peak represents the relative signal strength of this base.
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can cause Yunis-Var�on syndrome which is an autosomal-
recessive disorder with clinical signs of cleidocranial
dysplasia and digital anomalies.43 CBS encodes
Cystathionine-b-synthase which catalyzes the first step of
the transsulfuration pathway from homocysteine to cysta-
thionine. Mutations in CBS may relate to pyridoxine-
responsive homocystinuria patients with clinical signs
including slender limbs, spidery slender fingers and toes,
weak muscles, and arched feet.44 Combining our findings
in the above two families and the reported physiological
functions related to the differentiation of osteoblasts, as
well as the phenotypic associations of these five genes,
this study suggests that HV may be a consequence of
abnormal digital and bone development, and related to
the maintenance of muscle tension and the performance
of joint functions. The local bone stress tolerance changes
caused by genetic variants may thus be related to the occur-
rence and development of HV.

In contrast, a different mechanism is suggested by the
finding in Family 1. Complement component 7 is an impor-
tant component in the complement system and plays an
essential role in innate immune system. C7 is a component
of the membrane attack complex which can mediate cell
lysis and death.45 C7 deficiency is related to ankylosing
spondylitis46 and rheumatoid arthritis.47 Our findings sug-
gest that C7 may trigger the pathological changes similar to
inflammatory joint diseases such as rheumatoid arthritis
and ankylosing spondylitis by regulating the immune
response including innate immunity, leading to the defor-
mity of the bone structure. Therefore, different from the
above five genes related to digital abnormalities and bone
development, the SNV of C7 suggests that HV could be
related to (and a consequence of) chronic inflammation.

Compared with GWAS catalog48 and the previous stud-
ies,10,49,50 all the SNVs identified in this study have not been
reported to be associated with HV before. The reason lies in
two aspects. First, the approach of WES used in our study
examined the coding region of the human genome.
However, the vast majority of the SNPs surveyed by the
GWAS approach are located in the non-coding region.11

Second, our study focused on SNVs with low-mAF
(< 0.01),51 while GWAS was not sensitive to these low-
frequency variants and instead focus on SNPs with
mAF> 0.01.11 In summary, the research target of WES
and GWAS are distinct and complementary to each other.

Whole-genome sequencing is a more comprehensive
sequencing method, especially for mutations in introns,
regulatory regions, and repetitive DNA. As mentioned in
the “Introduction” section, although the exome accounts
for only�1% of the whole human genome, 85% of the path-
ogenic mutations related to Mendelian diseases were har-
bored in this region.12,13 Therefore, compared with whole
genome sequencing, WES is more cost-efficient. However,
the disadvantages of WES must also be acknowledged.
First, it is sometimes less accurate than first-generation
sequencing. Therefore, Sanger sequencing is used to vali-
date important findings from WES. Secondly, the signifi-
cance of a considerable part of the variants discovered by
next-generation sequencing was not thoroughly clear.52,53

Therefore, it is still challenging to determine whether

certain variants are related to patients’ disease, phenotype,
etc. To get a better interpretation of the results obtained
from WES sequencing, this study jointly applied the 1000
Genomes Project (1000G), the Exome Aggregation
Consortium (ExAC), the Genome Aggregation Database
(GnomAD), ChinaMAP, KRGDB, SIFT, Polyphen2, the
HGMD, and other databases for mutation annotations.

Through WES, our study give additional insight into the
genetic basis underlying the development of HV. So far,
orthomorphia was still the main treatment for HV. If non-
invasive therapeutic approaches can be used to intervene
HV at an early stage, some patients may have the opportu-
nity to be exempt from surgery. This study laid the foun-
dation for a deeper understanding of the molecular
mechanism of HV, and it helps to provide targets to facili-
tate the development of novel therapeutic approaches.

Conclusions

This study acquires critical insights into the physiological
foundations of HV, represented by genes involved in the
anatomical development of long toe, long fingers, and other
digital anomalies, as well as a gene related to chronic arthri-
tis. These discoveries may have important clinical implica-
tion, e.g. by enabling the early identification of patients
with high risk of HV (e.g. with long toe or chronic arthritis)
for prevention and early intervention. More importantly,
chronic arthritis underlying HV should not be overlooked.
At the same time, more than one functional candidate SNVs
identified in the affected families may suggest that some
family-types of HVmay be digenic or oligogenic, instead of
a monogenic dominant-inherited disease. However, we
have to admit that this study has limitations, mainly due
to the small sample size. Further study by recruiting more
patients is warranted to confirm the findings of this study.
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