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Abstract
Cytokinesis, the final step of mitosis, is critical for maintaining the ploidy level of cells.

Cytokinesis is a complex, highly regulated process and its failure can lead to genetic insta-

bility and apoptosis, contributing to the development of cancer. Human hepatocellular car-

cinoma is often accompanied by a high frequency of aneuploidy and the DNA ploidy pattern

observed in human hepatocellular carcinoma results mostly from impairments in cytokine-

sis. Many key regulators of cytokinesis are abnormally expressed in human hepatocellular

carcinoma, and their expression levels are often correlated with patient prognosis.

Moreover, preclinical studies have demonstrated that the inhibition of key cytokinesis reg-

ulators can suppress the growth of human hepatocellular carcinoma. Here, we provide an

overview of the current understanding of the signaling networks regulating cytokinesis, the

key cytokinesis regulators involved in the initiation and development of human hepatocel-

lular carcinoma, and their applications as potential diagnostic and therapeutic biomarkers.
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Impact statement
Cytokinesis is a complex, highly regulated

process, and its failure can lead to genetic

instability, apoptosis, and cancer.

Abnormal expression of cytokinesis regu-

lators has been widely detected in cancers,

including HCC, indicating crucial roles for

cytokinesis regulators in HCC diagnosis

and therapy. Moreover, our laboratory

recently reported that cytokinesis regula-

tors, such as RACGAP1, ECT2, and PRC1,

can act as oncogenic drivers for HCC early

recurrence post-surgery. However, cytoki-

nesis is a short and dynamic stage during

mitosis, and cytokinesis regulators often

exhibit versatile functions in multiple

oncogenic signaling network. Therefore,

we still know little regarding how to target

cytokinesis regulators for HCC treatment.

Here, we summarize the updates on the

roles and small-molecule inhibitors of

cytokinesis regulators in HCC, aiming to

accelerate both basic and translational

studies and focus more attention on this

topic.
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Introduction

Hepatocellular carcinoma (HCC) is the most common pri-
mary liver cancer with over half a million cases diagnosed
annually worldwide.1,2 The major risk factors for HCC are
cirrhosis, chronic infection with hepatitis B virus (HBV)
and hepatitis C virus (HCV), alcoholic liver disease, and
nonalcoholic fatty liver disease.3,4

For early HCC, multiple treatment options, such as liver
transplantation, surgical resection, radiofrequency ablation,
transcatheter arterial chemoembolization (TACE), and sys-
temic targeted chemotherapy, are available.5 Unfortunately,
the clinical symptoms of early HCC are atypical, and as a
consequence, most HCC patients are diagnosed at an inter-
mediate or advanced stage. Due to the scarcity of organ
donors and the high rates of recurrence following resection,
the prognosis of advanced HCC is dismal. Although sorafe-
nib, a kinase inhibitor, iswidely offered as the standard first-
line therapy for advanced HCC, its efficacy remains unsat-
isfactory as a monotherapy, and novel combination thera-
pies are being explored.6 Hence, the outlook remains bleak
for patients with advanced-stage HCC, with a median sur-
vival time <10months and a 5-year survival rate of <5%.7

There remains an immediate need for the development of
novel therapeutic strategies to improve the outcome of
advanced-stage HCC patients. Uncontrolled cell division
is the most prominent feature of cancer cells, and this
review focuses on cytokinesis, the final step of mitotic cell
division, as a feasible avenue to identify potential novel tar-
gets to tackle HCC.

Cytokinesis: Concept and molecular
mechanisms

The concept of cytokinesis

Cell division is the process by which a mother cell divides
into two or more daughter cells. For eukaryotic somatic
cells, this process is referred to as mitosis, which consists
of nuclear division and cytoplasmic division.8 Nuclear divi-
sion includes five phases, namely interphase, prophase,
metaphase, anaphase, and telophase, during which the rep-
licated chromosomes are evenly distributed to the two
poles of the spindle apparatus and enveloped by nuclear
membranes to form two daughter nuclei.9 Cytoplasmic
division, which is referred to as cytokinesis, generally ini-
tiates at late stages of nuclear division and finishes shortly
after the telophase. During cytokinesis, the cleavage furrow
is formed along the cell division plane under the synergistic
action of both the central spindle and the actomyosin con-
traction ring. The cleavage furrow is further deepened to
shrink the overlapping microtubules (MTs) of the central
spindle into a tight bundle, thus forming a narrow intracel-
lular bridge connecting the two daughter cells. Eventually,
the intracellular bridge is abscised, and the two daughter
cells become completely detached from each other10

(Figure 1).
In the human liver, approximately 30% of hepatocytes

are polyploid due to endoreplication, cytokinesis failure,
and cell fusion.11 The biological importance of liver poly-
ploidization remains unclear. Previously, scientists

hypothesized that excess genetic material would provide
a material basis for higher transcription and translation
activities on a per cell basis.12 However, microarray
comparison on gene expression profiles of fluorescence-
activated cell sorting-isolated diploid, tetraploid and octo-
ploid hepatocytes revealed that the difference in RNA
transcription was subtle.13 In contrast, a study focused on
stochastic production of mRNA from transcription sites
(transcriptional bursts) demonstrated that liver polyploidy
could dampen the intrinsic variability associated with tran-
scriptional bursts, leading to more controlled gene expres-
sion.14 More recent research on Cdk1-knockout livers,
which produced a large proportion of the mononucleate
polyploid hepatocytes following partial hepatectomy,
showed that polyploidy promotes the anaerobic energy
production by decreasing the expression of mitochondrial
and de novo lipid biosynthesis genes and increasing the
expression of glycolytic genes.15 The altered metabolic pro-
file and genetic instability due to excess genetic material
should contribute to higher resistance to stresses such as
chemical irritants, inflammation, and imbalanced metabol-
ic pathways. Recently, in vivo lineage tracing in mouse
models showed that polyploid hepatocytes readily
formed liver tumors via frequent ploidy reduction.16

Comprehensive analysis of the ploidy spectra in HCC
specimens demonstrated that highly polyploid tumors are
associated with a poor prognosis.17 Considering the high
frequency of polyploidy in the liver and its importance in
cell proliferation, a thorough understanding of cytokinesis
regulation might inspire novel diagnostic and therapeutic
strategies for HCC.

Key regulators of cytokinesis

Cytokinesis consists of the following three critical steps: the
initial formation of the cleavage furrow, deepening of the
cleavage furrow, and abscission of the intracellular
bridge.18 All of these processes are precisely controlled by
specific groups of kinases (Figure 1).

The initial formation of the cleavage furrow

The timing and position of cleavage furrow formation
during cytokinesis are closely coupled with chromosome
segregation during nuclear division, and both processes are
highly dependent on the mitotic spindle. During the
metaphase-to-anaphase transition, CDK1 (cyclin-depen-
dent kinase 1) activity dramatically decreases, relieving
the inhibition of the CDK1 substrates PRC1 (protein regu-
lating cytokinesis 1), MKLP1 (mitotic kinesin-like protein
1), PLK1 (Polo-like kinase 1), and ECT2 (epithelial cell
transforming 2)19,20 PRC1 can then promote microtubule
bundling at the spindle midzone to form the central spin-
dle, where MKLP1 and MgcRacGAP (also known as
RACGAP1, Rac GTPase Activating Protein 1) assemble to
form a heterotetrameric complex called centralspindlin.21

PRC1 also recruits PLK1 (Polo-like kinase 1), which in
turn activates MgcRacGAP for the recruitment of ECT2 to
the central spindle.22

The chromosomal passenger complex (CPC) also trans-
locates from the centromeres to the central spindle during
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anaphase with the help of MKLP2 (Mitotic Kinesin-Like
Protein 2), a plus-end-directed kinesin activated by
PLK1.23 The CPC is formed by the kinase module
AURKB (Aurora B Kinase), a localization module consist-
ing of the scaffolding protein INCENP (Inner Centromere
Protein), Survivin, Borealin, and the guanine exchange
factor TD-60 (Telophase Disk Protein of 60 KDa), which is
not stably associated with the CPC.24 The activity of
AURKB is indispensable for the function of the central
spindle and the centralspindlin complex since KIF2A
(Kinesin Family Member 2A), KIF4A (Kinesin Family
Member 4A), MKLP1, and MgcRacGAP are all substrates
of AURKB.25 The phosphorylation gradient created by
AURKB along the midzone MTs provides a critical spatio-
temporal cue for furrow positioning during anaphase.26

Decreased CDK1 activity also leads to the removal of
inhibitory phosphorylation on the myosin regulatory light
chain.27 Moreover, the phosphorylation of the centralspin-
dlin complex by AURKB and PLK1 generates a docking site
for ECT2 at the central spindle.22 ECT2 then activates RhoA
(Ras Homolog Family Member A), eventually leading to
the assembly and recruitment of myosin II around the cell
equator.28 Myosin II interacts with actin filaments to pro-
mote node condensation to form the contractile ring.29 On
the other hand, myosin II accumulation is suppressed at
regions of high astral MT density around both poles, thus
generating a region of relatively low contractility around
the poles.30 This spatial and temporal regulation of
Actomyosin contractility initiates the formation of the
cleavage furrow in the equatorial region.

Figure 1. An overview of critical biological processes of cytokinesis and key signaling pathways involved in each process. (A color version of this figure is available in

the online journal.)
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The deepening of the cleavage furrow

During telophase, the membrane-bound pool of central-
spindlin recruits ECT2, which promotes RhoA activation
at the equatorial plasma membrane.30 Activated RhoA
induces the activation of Rho-associated protein kinases
(ROCKs) and formins which promote the polymerization
of myosin and actin to form filaments.31 Meanwhile, the
scaffold protein anillin recruits F-actin, septins, myosin II,
and more ECT2 to the cortex in a Rho-dependent manner.32

Such a positive feedback loop leads to the fast assembly of
the cortical contractile ring. Myosin II forms bipolar fila-
ments to exert forces on actin filaments. Activated ROCKs
increase the phosphorylation of the myosin light chains and
eventually enhance myosin II contraction.33,34 As a result of
myosin II contraction and ring component disassembly in
the around-the-ring direction, the cortical contractile ring
constricts.35 Since the contractile ring is bound to the cell
membrane with connecting proteins such as anillin, its con-
striction leads to deepening of the cleavage furrow until a
narrow intracellular bridge separating the two daughter
cells is formed.36

The abscission of the intracellular bridge

After telophase, nuclear envelopes have formed within the
daughter cells, but the cells are still connected via the intra-
cellular bridge. The intracellular bridge contains extremely
densely packed MTs and a structure named the midbody.
The connection between the midbody and the plasma
membrane is mainly mediated by an interaction between
the C1 domain of the centralspindlin subunit MgcRacGAP
and polyanionic phosphoinositide lipids within the plasma
membrane.37 The intracellular bridge is abscised nonsym-
metrically on either side of the midbody marking the com-
pletion of cytokinesis. The detailed mechanisms
underlying bridge abscission are still not fully understood.
However, recent evidence suggests that vesicle trafficking
and membrane fusion mediated by Rab GTPases, the
exocyst-tethering complex, SNAREs (Syntaxin-2 and endo-
brevin), and the ESCRT (endosomal sorting) complex are
critical for this process.10

Cytokinesis regulators as therapeutic targets in HCC

Cytokinesis failure generates tetraploid cells with four
copies of each chromosome (4N) and two centrosomes.38

Most tetraploid cells undergo apoptosis, but some tetra-
ploid cells are able to escape intrinsic regulation through
either the loss of critical tumor suppressors, such as
p53 and p21, or overexpression of oncogenes, such as
Bcl-2.39–41 Since their genetic information is highly redun-
dant, tetraploid cells are more tolerant to genetic damage,
accumulating mutations, insertions, and deletions in their
genome.42,43 Additionally, redundant centrosomes interfere
with spindle formation during the next round of cell divi-
sion, thus resulting in the generation of aneuploid proge-
ny.44,45 Therefore, cytokinesis failure is a double-edged
sword for cancer. First, cytokinesis failure can induce apo-
ptosis in cancer cells, suggesting that manual intervention
in cytokinesis could be a potential strategy to kill cancer
cells. Second, a small fraction of the tetraploid intermediate
could be the source of chromatin instability (CIN).46

Occasionally some surviving tetraploid cells and their
aneuploid progeny gain a survival advantage from their
genetic variations, eventually leading to malignant
transformation.38,47

According to the NCI Cancer Genome Anatomy Project,
approximately 80% of HCC tissues are aneuploid, with
dysregulation of many key proteins involved in cytokine-
sis.48 For example, a whole-genome and whole-exome
sequencing study demonstrated that the HCC-C1 subtype
could be identified due to mitotic checkpoint defects asso-
ciated with mutations in PLK1 and ECT2.49 Therefore, key
regulators of cytokinesis could be exploited as potential
diagnostic biomarkers and therapeutic targets in HCC,
which are topics discussed later in this review (Table 1).

CDK1

CDK1 is one of the most important and widely studied
regulators of nuclear division and cytokinesis in HCC.119

High CDK1 activity is required for proper assembly of the
mitotic apparatus and the alignment of chromosomes,
while CDK1 inhibition is a prerequisite for the initiation

Table 1. A summary of the expression status and representative inhibitors of key regulators for cytokinesis as therapeutic targets of HCC.

Protein name Expression status in HCC Representative inhibitors Ref.

CDK1 Up-regulated JNJ-7706621, RO3306 50–57

PRC1 Up-regulated N.A. 58–61

KIF4A Up-regulated N.A. 25, 62,63

KIF4B Up-regulated N.A. 62,64

MKLP1 (KIF23) Up-regulated N.A. 64–66

MKLP2 (KIF20A) Up-regulated Paprotrain, BKS0349 67–71

PLK1 Up-regulated DAP-81, BI 2536, BI 6727, Ro3280, TAK-960, NMS-P937,

Poloxin, Poloxipan, Purpurogallin

72–76

PLK4 LOH occurrs at the PLK4 locus in 50%

HCC; protein level of PLK4 is signifi-

cantly higher in HCC

CFI-400945, Centrinone/centrinone B, YLT-11 77–81

AURKB Up-regulated VE-465, AZD1152-HQPA, AZD115229, MK0457, Deguelin 82–90

Survivin Up-regulated YM155, WM-127, Etoposide 91–99

ECT2 Up-regulated N.A. 100–102

RhoA Up-regulated L07, Y16, Zoledronic acid, CCG-203971, and CCG-1423 103–114

MgcRacGAP Up-regulated MINC1 115–118
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of cytokinesis.120 Therefore, inhibition of CDK1 can nor-
malize both critical processes of mitosis. It has been dem-
onstrated that CDK1 is highly expressed in HCC tissues
compared to normal tissues at both the RNA and protein
levels, which contributes to more active nuclear division
but less active cytokinesis.50–52,121 Significant upregulation
of the CDK1 mRNA level can be observed in very early
HCC tissues, compared to cirrhotic liver tissues, thus
making CDK1 a potential diagnostic marker.53 It belongs
to the serine/threonine kinase family, and therefore con-
tains a catalytic kinase subunit suitable for specific target-
ing with drug-like small molecules.54

CDK1 inhibitors have been tested for HCC treatment
due to the overexpression status of CDK1 in HCC. The
therapeutic effects of these inhibitors are mainly attributed
to the induction of mitosis failure, the suppression of kinase
activity, and the normalization of cytokinesis. JNJ-7706621
is a pan-inhibitor of CDKs and aurora kinases. Danhier et al.
reported that the combination of JNJ-7706621 and paclitaxel
could synergically suppress the growth of transplantable
liver cancer in mice.55 ATP-competitive RO3306 is a specific
inhibitor of CDK1. Wu et al. reported that combining
RO3306 with sorafenib could potently suppress the
growth of patient-derived HCC xenografts by reducing
the stemness of liver cancer stem cells via inhibition of
the CDK1/PDK1/b-Catenin signaling pathway.121 We pre-
viously demonstrated that CDK1 could phosphorylate
B-cell CLL/lymphoma 9 (BCL9) at Thr 172 to promote
mitotic Wnt signaling activity and the growth of HCC
cells.56 Moreover, a CDK1 siRNA interference study dem-
onstrated that the inhibition of cell proliferation resulted in
the apoptosis of HCC cells, suggesting that CDK1 could be
a promising therapeutic target in HCC57,.57,58

PRC1

As previously described, PRC1 plays a vital role in the bun-
dling of MTs during cytokinesis, and its overexpression in
HCC has been documented by several independent
research groups.59–61 Significant upregulation of the PRC1
mRNA level can be observed in very early HCC tissues,
compared to cirrhotic liver tissues, thus making it a poten-
tial diagnostic marker.53 Higher PRC1 expression is signif-
icantly correlated with worse tumor staging and a worse
prognosis.60 HCC cells overexpressing PRC1 exhibit strong
resistance against conventional chemotherapeutic reagents
such as 5-Fu and Taxol.59 In experimental models of HCC,
knockdown of PRC1 by an adenovirus could remarkably
sensitize HCC cells to Taxol.61 Since PRC1 regulates the cell
cycle through protein-protein interactions and not by
kinase activity, its microtubule-binding domain could pro-
vide an ideal target for the development of small-molecule
inhibitors. Currently there is no commercially available
small-molecule drug targeting PRC1, and its inhibition is
generally achieved by experimental genetic tools, such as
shRNA and microRNA.60,122

The kinesin superfamily of proteins

Kinesin superfamily motor proteins facilitate the transport
of mRNAs, protein complexes, and organelles along

microtubules in an ATP-dependent manner.123 Functional
screening studies with esiRNA libraries indicated that at
least four kinesins are involved in cytokinesis, including
KIF4A, KIF4B, MKLP1, and MKLP2.69

Meta-analysis of the Oncomine database suggested that
KIF4A expression was upregulated in HCC, and that a
higher KIF4A level was correlated with poorer overall sur-
vival and disease-free survival. Overexpression of KIF4A
led to faster proliferation of HCC cells, while depletion of
KIF4A resulted in abnormal chromosome segregation fol-
lowed by apoptosis.63 On the other hand, a higher KIF4B
RNA level was also observed in HCC tissues compared to
normal liver tissues but this difference was not significantly
correlated with the prognosis of HCC patients.64

The kinesin-6 family motor protein MKLP1, also known
as KIF23, is a key regulator of cytokinesis.65 RT-PCR anal-
ysis showed that KIF23 was frequently expressed in HCC
tissues but not in normal liver tissues. KIF23 has two splic-
ing isoforms, namely KIF23 V1, which is longer and local-
ized in the nucleus, and KIF23 V2, which is shorter and
distributed in the cytoplasm. Interestingly, KIF23 V1 was
detected in 57.6% of HCC specimens, while KIF23 V2 was
detected in 94.4% of HCC specimens. Prognostic analysis
suggested that elevated KIF23 V1 expression was correlat-
ed with longer five-year survival, while KIF23 V2 was not
significantly associated with three- or five-year survival.66

In a more recent bioinformatic study in which a 14-gene
signature was developed to predict the prognosis of HCC
patients based on data from a cohort in The Cancer Genome
Atlas (TCGA), a higher KIF23 RNA level contributed to a
higher risk score, which was correlated with a poorer prog-
nosis.67 These conflicting observations suggest that detailed
mechanistic analysis is urgently needed to understand the
functions of KIF23 and its two splicing variants.

MKLP2 (also known as KIF20A), which is also a kinesin-
6 family motor protein, mediates the recruitment of
AURKB to the equatorial cortex to promote furrow ingres-
sion during cytokinesis.68 MKLP2mRNA is undetectable in
normal human hepatocytes, but it accumulates in a large
proportion of human HCC cells, with the highest expres-
sion observed in tumors with genomic instability.69 An
analysis performed with the TCGA database suggested
that higher MKLP2 expression was correlated with poorer
overall survival and relapse-free survival for HCC
patients.70

A cell-permeable acrylonitrile compound named
Paprotrain has been developed to inhibit the ATPase activ-
ity of MKLP2. It demonstrated antitumor activity against
ovarian clear cell carcinoma cells.71 More recently, BKS0349,
a 10-fold more potent analog of Paprotrain, was reported to
be able to reduce the number and size of endometriotic
lesions in an experimental mouse model of ovarian endo-
metriosis.124 However, the therapeutic effects of Paprotrain
and BKS0349 on HCC have not been evaluated.

Polo-like kinases

The appropriate spatial-temporal regulation of PLK1 activ-
ity is critical for cytokinesis. Both overexpression and loss
of expression can contribute to malignant transformation,
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depending on stage of disease and the genetic background
of the tissue. For example, Gray et al. reported that most
pancreatic cancer specimens showed increased PLK1
expression, and that PLK1 knockdown induced G2/M cell
cycle arrest and a drastic reduction in proliferation rates in
pancreatic cancer cells.125 Similar observations suggesting
PLK1 as an oncoprotein have been reported for most types
of solid tumors, such as lung cancer, breast cancer, and
colorectal cancer.126–129 On the other hand, PLK1 overex-
pression prevented the development of Kras-induced and
Her2-induced mammary gland tumors via CIN-induced
apoptosis in mouse models, and PLK1 overexpression cor-
related with improved survival in ER-negative and HER2-
positive breast cancer subtypes in a TCGA cohort.130

Moreover, PLK1 inhibition promoted the development of
adenomatous polyps in two independent ApcMin/þ mouse
models, suggesting its tumor-suppressive potential in
APC-truncated colon cancer cells.72

PLK1 has been reported to be significantly overex-
pressed in HCC tissues compared to corresponding
normal liver tissues in a number of different cohorts and
could be used as an independent marker for predicting
prognosis.73–75 Many natural and synthetic compounds
have been identified to inhibit the kinase activity of
PLK1, including ATP competitors, such as DAP-81, BI
2536, BI 6727(volasertib), Ro3280, TAK-960 and NMS-
P937, as well as inhibitors of POLO-Box Domain, such as
Poloxin, Poloxipan, and Purpurogallin, and these com-
pounds exert a good antitumor effect by inducing apopto-
sis in vitro.76 In a randomized phase 2 trial (NCT00804856),
the combination of BI 6727 and low-dose cytarabine
(LDAC) significantly improved the response rate of acute
myelocytic leukemia patients unsuitable for intensive
induction chemotherapy compared to LDAC alone.131

However, the effect of PLK1 inhibitors has not been system-
atically evaluated in HCC.

Polo-like kinase 4 (PLK4) is another serine/threonine
kinase mainly localized at the centriole, spindle midzone,
and midbody, and it is critical for centriole duplication and
the ECT2 mediated activation of RhoA during cytokine-
sis.132 A genetic study showed that mice with PLK4 hap-
loinsufficiency exhibited a significantly increased incidence
of spontaneous liver and lung cancers.77 A later analysis of
clinical specimens demonstrated that loss of heterozygosity
(LOH) occurred at the PLK4 locus in 50% of HCC cases,
resulting in reduced PLK4 mRNA expression.78 These
studies suggest that PLK4 protects hepatoma from malig-
nant transformation. Paradoxically, a more recent study
showed that the protein level of PLK4 was significantly
higher in HCC tissues than in healthy liver tissues, and
that knockdown of PLK4 remarkably reduced the growth
of HCC cells in vitro and in vivo.79 In another study analyz-
ing SNPs of the PLK4 gene locus, the functional SNP
rs3811741 (G/A) was associated with a higher risk of
HCC. This SNP, located on the enhancer of PLK4, was
strongly modified by histone H3K4Me1 and H3K27Ac.
This SNP positively regulates PLK4 transcription, thus pro-
moting centrosome amplification and cell proliferation.80

These studies indicate that PLK4 is an oncoprotein. Such
contradictions in the data on the roles of PLK4 in HCC

among studies might be caused by the different observation
indexes utilized in different studies. Since the degradation
of PLK4 is promoted by autophosphorylation, the protein
level of PLK4 might not be linearly dependent on the copy
number of the gene locus or mRNA transcript.81

Nevertheless, a comprehensive analysis to understand the
role of PLK4 in the development and treatment of HCC is
still pending.

Several PLK4 inhibitors have been developed as poten-
tial therapeutic agents for cancer, such as CFI-400945,
centrinone/centrinone B and YLT-11.133 In vitro drug sensi-
tivity tests showed that HCC cell lines with higher PLK4
expression, such as Huh7 and BEL-7402, were more sensi-
tive to CFI-400945 than cell lines with lower PLK expres-
sion, such as MHCC-97L and MHCC-97H.96 However,
considering that both a decrease and an increase in PLK4
activity might contribute to the development of HCC, the
therapeutic effects and safety profiles of PLK4 inhibitors
need careful evaluation in vivo.

The CPC (AURKB and survivin)

The CPC plays important roles during both nuclear divi-
sion and cytoplasmic division, including the regulation of
the mitotic checkpoint, the assembly of spindle MTs, and
the recruitment and activation of key proteins involved in
cytokinesis.25 Perturbation of the CPC leads to chromo-
some segregation errors and cytokinesis failure.134 Hence,
analysis of CPC components could provide further insights
into the role of cytokinesis dysregulation in HCC.

The kinase module of CPC is the serine/threonine
kinase AURKB, which is localized in the centromeres
during early mitosis and then at the spindle midzone
after anaphase.82,135 Several studies have shown that
AURKB expression is significantly higher in HCC tissues
than in noncancerous tissues, and that its expression level is
associated with the tumor grade and prognosis of cancer
patients, indicating that AURKB could be an independent
prognostic marker for HCC.83–86

Many selective inhibitors have been developed targeting
AURKB, such as VE-465, AZD1152-HQPA, AZD115229,
MK0457, and Deguelin.87–90 Lin et al. showed that
AZD1152-HQPA induced proliferation blockade, histone
H3 dephosphorylation, cell cycle disturbance, and apopto-
sis in HCC cell lines in vitro.84 Benten et al. also reported
that PHA-739358, an aurora A/B/C kinase inhibitor (cur-
rently undergoing phase II clinical trials), suppressed the
growth of HCC cells.136 These preclinical studies strongly
suggest that AURKB inhibitors can act as promising thera-
peutic agents for HCC.

In CPC, Survivin is an important mediator of the centro-
mere and midbody docking of AURKB.137 In addition to its
role in mitosis, Survivin plays multiple regulatory roles in
critical biological processes involved in malignant transfor-
mation, such as apoptosis, autophagy, epithelial-to-
mesenchymal transition, and angiogenesis.91,138–140

Normal hepatocytes express very low levels of Survivin,
while Survivin mRNA and protein are frequently detected
in HCC specimens.92 Overexpression of Survivin promotes
cell proliferation and drug resistance in HCC.92,93
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In contrast, a microRNA miR-203 can suppress the expres-
sion of Survivin, thus leading to reduced proliferation of
HCC cells.94 These observations suggest that Survivin is a
promising therapeutic target in HCC.

The best-studied Survivin suppressor is YM155. Instead
of directly binding with Survivin, YM155 disrupts the
ILF3/p54 complex, which is necessary for the transcription
of Survivin.95 The safety profile of YM155 has been evalu-
ated in a phase I safety and pharmacokinetic study in
patients with EGFR TKI-refractory advanced non-small
cell lung cancer (NSCLC).96 Xia et al. reported that YM155
exerted significantly better therapeutic effect than sorafenib
in an orthotopic mouse model established with HCC cells
exhibiting elevated Survivin and p-Survivin expression.93

YM155 has been shown to sensitize HCC cells to the BCL2
family inhibitor ABT-263.97 In addition to YM155, WM-127
(a matrine derivative) was identified to suppress the
expression of Survivin in a Survivin-targeted drug screen-
ing platform, and it inhibited the growth of HCC cells both
in vitro and in vivo.98 Moreover, etoposide was identified as
a compound blocking the Survivin-Borealin interaction in a
high-throughput screen based on bimolecular fluorescence
complementation (BiFC) technology.99 Etoposide has been
widely used as a chemotherapeutic agent to inhibit topo-
isomerase II activity, and it is appealing to explore new
applications for this drug related to regulating
cytokinesis.100

ECT2

ECT2 is one of the most important guanine nucleotide
exchange factors involved in cytokinesis. ECT2 is signifi-
cantly overexpressed in HCC and correlated with early
recurrence of HCC125. Knockdown of ECT2 results in
reduced HCC cell division and migration in vitro, and
reduced xenograft growth in vivo.101 ECT2 can be negative-
ly regulated by miR-490-5p in HCC cells.102 Specific inhib-
itors targeting pleckstrin homology (PH) domain of ECT2
have been developed and preliminarily tested in non-small
cell lung cancer for their anticancer activity, as reported by
a conference abstract.141 However, neither intensive evalu-
ation nor mechanistic study has been conducted for these
compounds yet. There remains an urgent need for specific
inhibitors of ECT2.

RhoA

RhoA is a small GTPase protein that shuttles between an
inactive GDP-bound state and an active GTP-bound state
and exhibits intrinsic GTPase activities.142 RhoA-GTP acti-
vates its effector proteins, such as ROCKs and Formins, by
displacing their autoinhibitory domains, thus leading to the
phosphorylation of their substrates.143 Therefore, RhoA
plays indispensable roles in actin organization, myosin
contractility, cell cycle maintenance, and cellular morpho-
logical polarization.103 Malignant HCC tissues frequently
express high RhoA mRNA and protein levels, whereas
benign liver tissues have a minimal level, and a high level
of RhoA is significantly associated with a poor progno-
sis.104–107 Knockdown of RhoA can sensitize HCC cells to
TNF-a-induced apoptosis.108

Several small-molecule compounds have been devel-
oped to inhibit RhoA activity, such as HL07, Y16, zole-
dronic acid, CCG-203971, and CCG-1423.109–112

Zoledronic acid was shown to delay disease progression
of HCC bone metastases in a small-scale clinical
trial.113,114 It was also reported that an advanced HCC
patient with bone metastasis showed a complete response
after sorafenib therapy plus zoledronic acid in a case
report.115 The applications of RhoA inhibitors for the treat-
ment of HCC remain to be further explored.

MgcRacGAP

As the critical component of centralspindlin, MgcRacGAP
is highly expressed in HCC tissues compared to healthy
liver tissues, and its expression level correlates with early
recurrence in HCC patients.116 Silencing MgcRacGAP
inhibits cell migration, invasion, and proliferation.116,117

MiR-15-5p suppresses the expression of MgcRacGAP.118

In a high-throughput screen of 342,046 compounds,
MINC1 was identified as a selective inhibitor of
MgcRacGAP, and cell experiments showed that MINC1
treatment caused cytokinesis failure and multinuclea-
tion.144 The antitumor effects and safety profile of MINC1
await further comprehensive evaluations.

Conclusions and perspective

Cytokinesis is critical for cell division and requires precise
spatiotemporal regulation. Although some studies have
verified the new roles of cytokinesis regulators in signaling
regulation, the complete picture of the functions of cytoki-
nesis regulators in every unique cell cycle stage has still not
been elucidated. More precise cellular andmolecular mech-
anistic studies should be performed to dissect several key
points:

1. What are the novel roles of cytokinesis regulators in
cellular signaling regulation during interphase in
HCC cells? For example, it is known that Survivin
plays a vital role in the suppression of apoptotic sig-
naling,145 and that PRC1 reinforces Wnt signalling.60

The fact that these molecules have critical functions
in both resting cells and proliferating cells increases
the success rate of targeting them for HCC therapy.

2. What is the potential regulatory mechanism of the
redistribution of cytokinesis regulators from key
mitotic machines to the nucleus during the cytokine-
sis process? Protein functions are closely related to
subcellular localization. It is fascinating how cytoki-
nesis regulators translocate to different compart-
ments during the progression of the cell cycle. More
studies in this field could lead us to a deeper under-
standing of the precise regulatory network during
mitosis and cytokinesis.

3. Are there any factors with nonclassic cancer-specific
roles in cytokinesis regulation? Such an Achilles’ heel
might be the ideal therapeutic target for precise tar-
geting of HCC cells.
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4. Do the expression level and kinase activity of cytoki-
nesis regulators change after conventional HCC ther-
apies? Are these changes related to resistance to
conventional therapies? For example, in vitro empir-
ical evidence has demonstrated that PRC1, Survivin,
and ECT2 contribute to the development of chemo-
resistance, even though mechanistic studies have
indicated signaling pathways other than cytokinesis
dysregulation.59,92,93,146 One possible explanation
may be that the drug treatment schemes and dura-
tions used in such in vitro experiments using HCC
cell lines are obviously different from the real clinical
condition. Therefore, these short-term in vitro studies
are suitable for the evaluation of direct cytotoxicity
but impropriate for analyzing the development of
drug resistance which involves changes in genetic
materials due to cytokinesis dysregulation and the
selection of clones with a survival advantage.
Systematic comparisons performed with clinical
HCC specimens or animal models are still urgently
needed to validate the roles of these cytokinesis reg-
ulators in chemoresistance

5. What are the potential risks of targeting cytokinesis
regulators for HCC therapy? Most of the key cytoki-
nesis regulators are highly expressed and associated
with a poor prognosis, as proven by a retrospective
study of pathological samples of HCC. Although
inhibition of cytokinesis regulators suppresses the
proliferation of HCC cells in preclinical models, till
now none of these specific inhibitors targeting cyto-
kinesis regulators have been approved for HCC treat-
ment. The clinical benefits and potential risks
associated with long-term inhibition of these thera-
peutic targets have not been systematically evaluated
in HCC patients. Recently, SP600125 (a c-Jun N-ter-
minal kinase (JNK) inhibitor) was reported to sup-
press CDK1 activity, but it led to endoreplication in
cells in the G2 phase in a CDK2-dependent manner,
suggesting the potential risk of increasing polyploi-
dy.147 Compared to other organs, the liver has a
higher tolerance for tetraploidy, so caution must be
taken when applying information obtained from
other organs to HCC.

Overall, numerous preclinical studies have demonstrat-
ed cytokinesis regulators to be promising prognostic bio-
markers and therapeutic targets in HCC, but much more
effort must be dedicated to this field to comprehensively
understand the altered signaling network and identify the
Achilles’ heel during cytokinesis for the treatment of HCC.
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