
Original Research

Exploring effects of DNA methylation and gene expression on

pan-cancer drug response by mathematical models

Wenhua Lv1, Xingda Zhang2, Huili Dong3, Qiong Wu3, Baoqing Sun4 and Yan Zhang4

1College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China; 2Department of Breast Surgery,

Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China; 3School of Life Science and Technology, Computational

Biology Research Center, Harbin Institute of Technology, Harbin 150001, China; 4Guangzhou Institute of Respiratory health, State Key

Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 51000, China

Corresponding authors: Yan Zhang. Email: zhangtyo@hit.edu.cn; Baoqing Sun. Email: sunbaoqing@vip.163.com

Abstract
Since genetic alteration only accounts for 20%–30% in the drug effect-related factors, the

role of epigenetic regulation mechanisms in drug response is gradually being valued.

However, how epigenetic changes and abnormal gene expression affect the chemotherapy

response remains unclear. Therefore, we constructed a variety of mathematical models

based on the integrated DNA methylation, gene expression, and anticancer drug response

data of cancer cell lines from pan-cancer levels to identify genes whose DNA methylation is

associated with drug response and then to assess the impact of epigenetic regulation of

gene expression on the sensitivity of anticancer drugs. The innovation of the mathematical

models lies in: Linear regression model is followed by logistic regression model, which

greatly shortens the calculation time and ensures the reliability of results by considering

the covariates. Second, reconstruction of prediction models based on multiple dataset

partition methods not only evaluates the model stability but also optimizes the drug-gene

pairs. For 368,520 drug-gene pairs with P<0.05 in linear models, 999 candidate pairs with

both AUC� 0.8 and P<0.05 were obtained by logistic regression models between drug

response and DNA methylation. Then 931 drug-gene pairs with 45 drugs and 491 genes

were optimized by model stability assessment. Integrating both DNA methylation and gene

expression markedly increased predictive power for 732 drug-gene pairs where 598 drug-

gene pairs including 44 drugs and 359 genes were prioritized. Several drug target genes

were enriched in the modules of the drug-gene-weighted interaction network. Besides, for cancer driver genes such as EGFR,

MET, and TET2, synergistic effects of DNA methylation and gene expression can predict certain anticancer drugs’ responses.

In summary, we identified potential drug sensitivity-related markers from pan-cancer levels and concluded that synergistic

regulation of DNA methylation and gene expression affect anticancer drug response.
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Introduction

Recently, with the rapid development of next-generation
sequencing and microarray technology, there have been
many systematic studies about epigenetic landscape of

cancer, which focus on transcriptional disorders caused
by DNA methylation, chromatin modification, or remodel-
ing. Abnormal DNAmethylation patterns can be important
markers for early cancer detection or for monitoring cancer
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metastasis.1,2 Strong evidence suggests that epigenetic reg-
ulation plays a key role not only in the early stages of cancer
development, but also in disease progression, treatment
response, and clinical outcomes.3,4 DNA methylation
levels of certain genes could reflect the clinical character-
istics, such as disease subtypes, patient prognosis, and
treatment response to cancer.

Epigenetic regulation of gene expression plays an
important role in maintaining genomic stability, embryonic
development, and tissue differentiation.5 In most cases,
hypermethylation of CpG islands in promoter regions
results in gene silence, while hypomethylation leads to
transcriptional activation. For many solid tumors, tumor
suppressor genes and oncogenes are subjected to hyperme-
thylation and hypomethylation respectively, thus leading
to transcriptional repression of tumor suppressor genes,
transcriptional activation of oncogenes, cell cycle dysregu-
lation, and ultimately leading to cancer initiation and pro-
gression.6,7 For instance, a study performed by Chen found
that the growth- and plasticity-associated protein-43
(GAP43) was downregulated in colorectal cancer which
was associated with the hypermethylation of GAP43.8

Though targeted therapy has brought hope to cancer
patients, the biggest challenge is the consequent drug resis-
tance.9 In addition, new drug development requires long
preclinical research stages and three clinical phases.10

Therefore, investigation of drug resistance mechanisms is
as important as the development of new anticancer drugs,
which helps clinicians select treatment strategies and
increases the efficiency of developing new drugs. The iden-
tification of genetic biomarkers provides valuable informa-
tion for revealing the molecular mechanisms of cancer
resistance, effectively improving the efficacy of drug ther-
apy for some cancer patients. However, only 20%–30% of
inter-individual differences associated with medication
side effects or efficacy can be explained by genetic fac-
tors.11,12 Therefore, the epigenetic regulation of protein-
encoding genes related to drug absorption, distribution,
metabolism, and excretion (ADME) has gradually gained
attention. Epigenetic modifications and other factors in
complex regulatory networks influence the expression of
ADME genes through cis or trans-regulation.13,14 DNA
methylation signatures have been shown to be important
markers of drug sensitivity, and aberrant DNAmethylation
patterns affect the sensitivity of antitumor drugs by regu-
lating the expression levels of genes critical for drug
response.15 Küçük identified 95 silencing genes induced
by promoter hypermethylation and reported that natural
killer (NK) cells with reduced asparagine synthetase
(ASNS) expression were more sensitive to L-asparaginase
compared with cells with normal ASNS expression levels.16

An epigenome-wide DNA methylation study of small cell
lung cancer cell lines performed by Krushkal found multi-
ple significant correlations between DNA methylation and
chemosensitivity. For instance, increased DNAmethylation
and decreased expression of TREX1 were associated
with the sensitivity to Aurora kinase inhibitors.17

Hypomethylation of ADAM12 leads to increased gene
expression of ADAM12 and doxorubicin resistance for
triple-negative breast cancer (TNBC) indicating that

ADAM12 is a potential therapeutic target and its hypome-
thylation could be a poor outcome biomarker in TNBC.18

However, few studies have systematically analyzed the
effects of DNAmethylation and gene expression regulation
on anticancer drug sensitivity. Specifically, the epigenetic
mechanisms of anticancer drugs at the experimental stage
are rarely noticed, and these drugs are likely to bring new
insights into cancer treatments in future. Therefore, here we
constructed mathematical models by integrating DNA
methylation, gene expression, and anticancer drug
response data of cancer cell lines from pan-cancer levels
to identify drug response-related biomarkers and then to
examine the influence of synergistic action of DNA meth-
ylation and gene expression on anticancer drug response.

Materials and methods

An overall flow chart about the process of prediction model
construction can be seen in Figure 1. Two main procedures
are included in the flow chart including step 1: Identification
of marker genes in which DNAmethylation levels are relat-
ed to the response to anticancer drugs and step 2: Prediction
of anticancer drug response based on synergistic regulation
of DNA methylation and gene expression.

Acquisition and quality control of drug response data of
cancer cell lines

The drug response data were derived from the Genomics of
Drug Sensitivity in Cancer Project (GDSC).19 The half max-
imal inhibitory concentration (IC50) and binarized drug
response of 265 drugs for 966 cancer cell lines (GSE68379)
were obtained from the GDSC website (http://www.can
cerxgene.org). The information about drug ids and names
are listed in Table S1. The IC50 indicates the concentration of
a drug required to inhibit cell growth by 50%, which is an
important indicator for measuring whether a cell is sensitive
or resistant to the drug. To ensure the analysis accuracy, the
proportion ofmissing values for each drugwas counted, and
only drugs with a ratio of missing values less than 50% were
retained, thus a total of 224 drugs passed quality control.

Infinium HumanMethylation450K data of cancer
cell lines and quantification of DNA methylation
levels of genes

Infinium HumanMethylation450K data (GSE68379) of 1001
human cancer cell lines was obtained from the gene expres-
sion omnibus (GEO) database. To be consistent with gene
expression data, 619 cell lines with matching gene expres-
sion data were kept. First, the DNA methylation data at
level 1 was converted to the level 3, and the quality control
and normalization of DNA methylation data were per-
formed. (1) CG sites with P> 0.01 in one or more samples
were removed. (2) CG sites with bead count <3 in more
than 5% samples were removed. (3) CG sites containing
SNPs were removed. (4) CG sites mapped to multiple loca-
tions were removed. (5) CG sites on the X and Y chromo-
somes were removed. (6) Cell lines with a ratio of
low-quality probes greater than 5% were removed;
356,276 CpG sites in 619 cell lines passed the quality
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Figure 1. The overall flow chart about the process of prediction model construction. Step 1: Identification of marker genes which DNAmethylation levels are related to

the response to anticancer drugs. (1) Identification of significant drug-gene pairs based on linear regression models between logarithmic IC50 values and DNA

methylation levels and covariates. (2) Construction of logistic regression models between drug response and DNA methylation. (3) For the candidate drug-genes pairs

with P< 0.05 and AUC� 0.8, three different dataset partition methods, permutation of drug response labels, and model reconstruction were used to evaluate the

prediction models and to optimize candidate drug-gene pairs. Step 2: Prediction of anticancer drug response based on synergistic regulation of DNA methylation and

gene expression. (1) Identification of significant drug-gene pairs based on linear regression models between logarithmic IC50 values and DNA methylation levels and

covariates. (2) Selection of genes with negative regulation by calculating Pearson correlation coefficients between DNA methylation and gene expression for each

gene. (3) Construction of linear regression models M1 and M2 and identification of drug-gene pairs whose log-likelihood ratio of model M2 is significantly greater than

that of model M1. (4) Construction and comparison of logistic regression models M3 (between drug response and DNA methylation), M4 (between drug response and

gene expression), and M5 (between drug response and DNA methylation, gene expression). (5) Priorization of drug-gene pairs with multiple data partition and model

reconstruction methods. (A color version of this figure is available in the online journal.)
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control. The data were normalized based on the BMIQ
method 20to correct the type 2 deviation. The quality control
and normalization process was done by the ChAMP pack-
age,21 and all thresholds were selected with reference to the
default settings of the function.

The annotation information of the GPL13534 platform
was obtained from the GEO database, and 147,017 CpG
sites located on gene promoter regions were selected. The
promoter region is defined as 200 bp upstream of the tran-
scription start site (TSS200), 1500 bp upstream of the tran-
scription start site (TSS1500), 50 untranslated region (50

UTR), and the first exon (1stExon).19 The DNAmethylation
level of a certain gene is defined as the average DNAmeth-
ylation level of CpG sites mapped to this gene.

Gene expression data of cancer cell lines and
quantification of gene expression level

Raw gene expression data (E-MTAB-3610) of 619 cancer cell
lines corresponding to DNA methylation samples were
downloaded from the Bioinformatics Research Center of
the European Molecular Biology Laboratory. The original
gene expression data were read by the ReadAffy() function
of the Bioconductor package affy, and the expression level
was corrected and normalized by a robust multi-array aver-
age (RMA) algorithm and quantile normalization
method.22,23 Based on the annotation data of GPL13667
platform, the probes were aligned to transcripts and the
expression value of a transcript is defined as the mean
expression value of the probes mapped to the transcript.
In order to quantify the expression level of protein coding
genes, 29,751 mRNA transcripts were mapped to 19,198
genes. To analyze the regulatory relationship between
gene expression and DNA methylation, we got the over-
lapped genes between expression and methylation data.
Finally, the expression profile of 16,348 protein coding
genes in 619 cancer cell lines was kept.

Construction of linear regression model between
logarithmic IC50 and DNA methylation

For anticancer drugs and genes passing the control quality,
we constructed linear regression models between logarith-
mic IC50 values and DNAmethylation. Tissue types, micro-
satellite instability, medium of cell line, and growth property
were treated as covariateswhich have been reported to affect
drug response in previous studies.19 The linear regression
model is shown in equation (1) where logIC50 is an index for
measuring drug response, XMETHY and XCOV refer to DNA
methylation level and the covariates, u is the error term,
bMETHY and bCOV represent coefficients of DNA methylation
and covariates, respectively. The type 2 analysis of variance
(ANOVA) was used to assess whether the DNAmethylation
level of a gene was significantly correlated with the drug
response, where P< 0.05 indicated a significant association.
The FDRmethodwas used to adjust the P-values of ANOVA
by selecting FDR< 0.05 as the threshold.

logIC50 ¼ bMETHY�XMETHY þ bCOV�XCOV þ u (1)

Construction of logistic regression model between
binarized drug response and DNA methylation

For each drug-gene pair with P< 0.05 in the linear regres-
sion model, the glm()function in R was used to construct
the logistic regression model between binarized drug
response and DNA methylation. The prediction() and per-
formance() functions of the ROCR package were used to
predict the results of logistic regression models and to com-
pare the predicted values and observations. Then the area
under curve (AUC) of receiver operating characteristic
(ROC) analysis and the P value were used to estimate the
prediction accuracy. The drug-gene pairs with AUC� 0.8
and P< 0.05 were identified as candidates for subsequent
analysis. Three groups of drug-gene pairs are defined
according to predictive capacity for drug response: (1) the
high AUC group with AUC� 0.8; (2) the low AUC group
with AUC< 0.7; (3) the moderate AUC group with
0.7�AUC< 0.8. For each of the candidate drug-gene
pairs with AUC� 0.8 and P< 0.05, DNA methylation mea-
surement b was divided into 10,000 aliquots, each time
adding 0.0001 as a critical value, and the sensitivity and
specificity corresponding to the critical value were calculat-
ed. The best classification cut-off was defined as the b value
corresponding to the maximum Youden index.24

Evaluation of the stability of logistic regression
prediction models based on multiple dataset
partition methods and stochastic models

Since the number of sensitive cell lines for most drugs is
generally greatly less than that of drug-resistant cell lines,
three data partition methods were used to reconstruct the
logistic regression prediction model to reduce the deviation
possibly caused by the cell line number difference. Then the
real logistic regression models based on different partition
methods were compared with the random ones to verify
the stability of prediction models and to prioritize impor-
tant drug-gene pairs.

First, for each drug-gene pair, 50% of drug response and
DNA methylation data were randomly treated as the train-
ing set to construct a logistic regression model, and the
remaining 50% was used as a test set to calculate the
AUC value. The processes of data set partition and model
construction were repeated 1000 times, and the average
AUC value was calculated as a comprehensive evaluation
index. For each anticancer drug, the response label (sensi-
tive or resistant) was randomly perturbed. Then n cell lines
were selected as sensitive cell lines and the remaining cell
lines were labeled as resistant cell lines where n is the
number of sensitive cell lines in real cases. Similar to the
above methods, the processes of data set partition and
random model construction were repeated 1000 times.

Second, for each drug-gene pair, 70% of data was ran-
domly selected as training sets to construct a logistic regres-
sion model, and the remaining 30% of the data was used as
a test set. The rest of the calculation process is the same as
the first data partition method. The random model was
constructed similarly to that described previously, while
the difference is that 70% of data was randomly selected
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as the training set to construct a logistic regression model,
and the remaining 30% of data was used as a test set for
model prediction.

Third, for each drug-gene pair, the same number of
drug-resistant cell lines and sensitive cell lines was ran-
domly selected to construct a logistic regression model.
This process was also repeated 1000 times. For each anti-
cancer drug, the response label was randomly perturbed,
and then n cell lines were randomly labeled as sensitive cell
lines, and the remaining ones were labeled as resistant cell
lines where n was the number of sensitive cell lines in real
cases. The process of data permutation and random model
construction was repeated for 1000 times.

We counted the number of AUC values in the random
models greater than the average real AUC value, and
defined a P value by dividing this number by 1000. A real
prediction model is considered to be significant if P< 0.05
and the average AUC of the real model� 0.8.

In this research, the linear regression model was used
followed by the logistic regression model with the follow-
ing reasons. First, studies have shown that tissue type, cell
line culture medium, growth property, and microsatellite
instability are the main factors affecting drug response.
Therefore, to explore the relationship between DNA meth-
ylation and drug response, these four factors were used as
covariates to correct the linear regression model and to
ensure the reliability of the screened significant drug-gene
pairs. Second, as is known, for all of the 224 drugs and
18,215 genes, there are 4,080,160 drug-gene pairs, which is
a very time-consuming process to directly construct logistic
regression models and to reconstruct both real prediction
models and stochastic models by using three data set par-
tition methods for 1000 times. Therefore, before construct-
ing and evaluating the logistic predictionmodels, screening
the drug gene pairs based on the linear models can effec-
tively shorten the calculation time and improve the calcu-
lation efficiency.

Identification of the negative regulation between
DNA methylation and gene expression in the
promoter region

For each of the genes that DNAmethylation is significantly
related to anticancer drug response in linear regression
models (P< 0.05), the Pearson correlation test between
gene expression and DNA methylation in the promoter
regions was performed. A gene with correlation coef-
ficient< 0 and P< 0.05 was considered to have a negative
regulatory relationship between DNA methylation and
gene expression.

Determination of the effect of gene expression on
anticancer drug response based on likelihood ratio test

For the drug-gene pairs where DNA methylation is signif-
icantly associated with drug response in the linear regres-
sion models and DNA methylation is negatively related
with gene expression, two linear regression models M1
and M2 were constructed. M1 is a model between logarith-
mic IC50 and DNA methylation and covariates (equation

(2)) and M2 is a model by adding gene expression informa-
tion to M1 model (equation (3)). XMETHY and XEXP represent
DNA methylation and gene expression, bMETHY and bEXP
represent coefficients of DNA methylation and gene
expression in a linear regression model, XCOV and bCOV

represent the covariates and their regression coefficients.
The covariates included tissue type, microsatellite instabil-
ity, medium, and growth characteristics. The likelihood
ratio test (LRT) was used to screen drug-gene pairs that
the log likelihood value of M2 model was significantly
greater than M1 model. As shown in equation (4), L2 and
L1 are the maximum likelihood values of M2 and M1,
respectively. LR approximately obeys Chi-square
distribution.

M1 : logIC50 ¼ bMETHY�XMETHY þ bCOV�XCOV þ u (2)

M2 : logIC50
¼ bMETHY�XMETHY þ bEXP�XEXP þ bCOV�XCOV þ u

(3)

LR ¼ 2�ðlnL2� lnL1Þ (4)

Construction of logistic regression model
between drug response and DNA methylation
and gene expression

Three logistic regression models M3, M4, M5 were con-
structed for each of the significant drug-gene pairs obtained
in LRTs. The dependent variables of the three types of
models were binarized drug response, and independent
variables of M3, M4, and M5 were DNA methylation,
gene expression, and both of the two variables, respectively.
The drug-gene pairs with AUC� 0.8 and P< 0.05 in logistic
regression models were identified as candidates.

Prioritization of drug-genes pairs that synergistic
regulation of DNA methylation and gene expression
has effect on drug response

For candidate drug-gene pairs obtained from M5, three
data partition methods described previously were utilized
to re-construct logistic regression models for 1000 times
and to calculate the average AUC values. Then the antican-
cer drug response labels were randomly perturbed and the
random model construction was repeated for 1000 times.
We then compared the average AUC values of real models
with those of random models and defined the P value by
dividing the number of random AUC values greater than
the real average AUC by 1000. A drug-gene pair was opti-
mized if the real average AUC� 0.8 and P< 0.05 for all
three data partition methods.

Construction of drug-gene-weighted interaction
network

A drug-gene-weighted interaction (DGWI) network was
constructed using Cytoscape software for optimized
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drug-gene pairs. Nodes in the DGWI network are drugs
and genes associated with drug response. Relations
between drugs and genes were connected with solid
lines, while genes sharing common drugs and drugs shar-
ing common genes were connected with dashed lines. The
number of common genes or common drugs was treated as
edge weight. The modules of DGWI network were mined
by plugin MCODE of Cytoscape by setting these following
thresholds: (1) the degree threshold was set to 5, (2) haircut
was used as the clustering method, (3) the node score
threshold was set to 0.2, (4) the K-Core was set to 5, and
(5) the maximum depth was set to 100.

Results

DNA methylation turns to be closely related to
drug response across pan-cancers by linear
regression models

A total of 4,080,160 linear regression models were generat-
ed for 224 anticancer drugs and 18,215 genes. DNA meth-
ylation is significantly related to drug response in 368,519
drug-gene pairs (P< 0.05). The number of remarkable
drug-gene pairs reduced to 13,403 if FDR< 0.05 including
6013 negative pairs with bMETHY< 0 and 7390 positive pairs
with bMETHY> 0. The negative relation suggests that cell
lines with higher methylation level for a specified gene
are prone to be more sensitive to the anticancer drug,
while the positive relation has the opposite trend. The
13,403 drug-gene pairs include 113 drugs and 6958 genes
where each drug has 1–1585 important genes (median: 10
and mean: 119). For NVP-BEZ235, AZD8055, AKT inhibitor
VIII, RDEA119, AZD6244, BX-795, KU-55933, DNA meth-
ylation levels of most genes were positively correlated with
the drug response, while for Elesclomol, EHT-1864,
Bleomycin, SN-38, Nutlin-3a, PI-103, and QL-X-138, DNA
methylation levels of most genes are negatively correlated
with the drug response (Figure S1).

The number and percent of cell lines with hypermethy-
lation, hypomethylation and moderate methylation levels
were counted for 16 genes involved in the top 20 drug-gene
pairs ordered by descending FDR (Figure 2(a)). For a cer-
tain gene, hypermethylated cell lines were defined as cell
lines with b � 0.75, hypomethylated cell lines were defined
as cell lines with b� 0.25, and other cell lines are defined as
moderately methylated cell lines. Hierarchical clustering
was performed based on the DNA methylation level of 16
genes across cancer cell lines (Figure 2(b)). For six of the top
20 drug-gene pairs with high proportion of both hyperme-
thylated and hypomethylated cell lines, hypermethylated
cell lines had higher IC50 than hypomethylated ones
(Figure 2(c)) indicating that high methylation levels for
these genes might be drug resistance factors.

Candidate drug-gene pairs were identified by con-
structing DNA methylation-based logistic regression
model

A total of 363,034 significant drug-gene pairs in linear
regression models were kept after removing drugs includ-
ing JQ1, FK866, and Bicalutamide due to the small number

of sensitive cell lines. Then we constructed logistic regres-
sion models between DNAmethylation and binarized drug
response. Drug-gene pairs in low AUC group, moderate
AUC group, and high AUC group account for 96.7%
(350,213), 3.26% (11,822), and 0.28% (999), respectively
(Figure 3). Nine hundred and ninety-nine drug-gene pairs
(with AUC� 0.8 and P< 0.05) containing 46 anticancer
drugs and 514 genes were selected as candidate pairs indi-
cating DNA methylation might have potential effect on
anticancer drug response (Table S2).

There are 23 drug-gene pairs with AUC� 0.9, including
5 drugs and 23 genes (Table S3). The AUC of SNX-2112
and FERMT3 is 0.945 ranking first at the list. For the drug-
gene pair SNX-2112 and FERMT3, the optimal threshold of
DNA methylation is 0.706 and the sensitivity and specific-
ity are 1 and 0.826, respectively (Figure 4(a)). The DNA
methylation level of FERMT3 in cell lines sensitive to SNX-
2112 is significantly less than that of drug-resistant cell
lines (Figure 4(b)). DNA methylation of LOC100130776
well predicts SNX-2112’s response with AUC of 0.924.
The optimal methylation cut-off, sensitivity, and specificity
are 0.667, 0.941, and 0.852, respectively (Figure 4(c)). Cell
lines sensitive to SNX-2112 have higher DNA methylation
levels of LOC100130776 than drug-resistant cell lines
(Figure 4(d)).

Multiple data partition and evaluation methods prove
that DNA methylation steadily predicts the response to
anticancer drugs

For 999 candidate pairs identified by logistic regression
models, the percentage of drug-gene pairs with
AUC� 0.8 and P< 0.05 calculated by three data partition
methods are 96.6% (965/999), 94.9% (948/999), and 98.7%
(986/999), respectively (Tables S4 to S6). The overlapped
drug-gene pairs among three different data partition meth-
ods account for 93.2% (931/999) of candidates indicating
that DNA methylation-based logistic regression model is
robust (Figure 5(a)). The 931 drug-gene pairs contain 45
drugs and 491 genes and each drug has 21 significant
genes on average.

To evaluate the reliability of prediction models, we com-
pared the performance between real and random logistic
regression models constructed by three different data par-
tition methods (Figure 5(b) to (d)). The AUC values of
random models range from 0.5 to 0.6 which are significant-
ly less than those of real models (P¼ 4.85E-165 by the
Wilcoxon signed rank test). These results suggest that the
relation between DNA methylation and drug sensitivity
across pan-cancer levels identified in this study is not a
random association.

DNA methylation-mediated anticancer drug
response-related genes are involved in cancer
development and enriched with drug targets

In order to explain the effect of DNA methylation on anti-
cancer drug response from functional levels, we performed
an enrichment analysis for 491 genes contained in the 931
optimized drug-gene pairs by enrichR.25 These genes are
significantly annotated to multiple biological pathways
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directly or indirectly related to cancer, such as the proteo-
glycans in cancer, pathways in cancer, PI3K-Akt signaling
pathway, and Rap1 signaling pathway (Figure 6(a)). It is
worth noting that four drugs namely BX912, OSI-027,
PI-103, and PIK-93 target PI3K/MTOR signaling pathways
which may explain the reason why DNA methylation of
certain genes can predict the response to anticancer
drugs. The significantly annotated biological processes,
molecular functions, and cellular components are dis-
played in Figures S2 to S4, respectively. Then

enrichmentMap, a plug-in of Cytoscape 26 was used to
construct a network for the enriched pathways, biological
processes, molecular functions, and cellular components
based on enrichment degree and the number of genes
shared by these biological terms. Some biological pathways
and GO terms are closely related, such as hematopoietic
lineage pathways and focal adhesion pathways, while
other biological pathways are relatively independent,
such as RAP1 signaling pathway and proteoglycans in
cancer (Figure 6(b)).

Figure 2. DNA methylation pattern of significant genes in top 20 drug-gene pairs and its influence on drug response. (a) The percent of hypermethylated, moderate,

and hypomethylated cell lines; (b) Hierarchical clustering of 619 cancer cell lines and genes based on DNAmethylation level of 16 genes; (c) Comparison of logarithmic

IC50 values between hypermethylated and hypomethylated cell lines for a certain drug and gene pair. (A color version of this figure is available in the online journal.)
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Figure 3. Distribution of AUC values of drug-gene pairs in the first logistic regression models. (a) The number and percentage of drug-gene pairs with different

prediction performance; (b) Volcano plot of drug-gene pairs in logistic models showing the relationship between AUC and P value. Drug-gene pairs with low AUC

(<0.7), moderate AUC (0.7–0.8), and high AUC (�0.8) are represented by light cyan, green and red boxes. (A color version of this figure is available in the online journal.)

Figure 4. Evaluation of performance of DNA methylation for predicting drug response. (a) The ROC plot to show the performance for predicting SNX-2112’s drug

response based on FERMT3’s DNAmethylation values; (b) Density plot for comparing the DNAmethylation distribution of FERMT3 between cell lines that are sensitive

to SNX-2112 and those resistant ones; (c) The ROC plot to show the performance for predicting SNX-2112’s drug response based on AGAP2-AS1’s DNA methylation

values; (d) Density plot for comparing the DNA methylation distribution of AGAP2-AS1 between cell lines that are sensitive to SNX-2112 and those resistant ones.

(A color version of this figure is available in the online journal.)
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To explain the potential mechanisms by which the pre-
ferred 931 drug-gene pairs influence drug response, 491
genes identified in this study were compared with 2242
FDA-approved human drug targets obtained from the
DrugBank database. Forty-nine of the 491 genes related
with response to anticancer drugs are FDA-approved
drug targets, three of which are known oncogenes,
namely EGFR, ERBB2, and MET.27 The drug response to
WZ3105 and SNX-2112 was predicted by DNAmethylation
of EGFR with an average AUC of 0.81 (Figure 7(a)).
Although there is no direct evidence suggesting a relation-
ship between DNA methylation of EGFR and these two
anticancer drugs, based on the role of EGFR in cancer and
the relationship between DNA methylation of EGFR and
colorectal cancer resistance reported in the literature, we
speculate EGFR is likely to be a potential predictor of
drug response to WZ3105 and SNX-2112. The DNA meth-
ylation of ERBB2 is significantly correlated with the drug
response to PI-103 and Tivozanib with average AUC values
of 0.84 and 0.81, respectively (Figure 7(b)). Cancer cell lines
with higher DNA methylation levels of ERBB2 tend to be
more sensitive to the anticancer drug, suggesting that

ERBB2may be a sensitive marker of Tivozanib. DNAmeth-
ylation of MET can well predict the response to a variety of
anticancer drugs, such as BIX02189 targeting the ERK
MAPK signaling pathway, PIK-93 targeting the PI3K/
MTOR signaling pathway, THZ-2–101-1 and NPK76-II-
72–1 targeting the cell cycle pathway, and TL-1–85 targeting
other kinase pathways (Figure 7(c)).

Synergistic regulation of DNA methylation and gene
expression affects sensitivity of anticancer drugs

DNA methylation of the promoter regions of 8909 genes
was negatively related with gene expression with the aver-
age Pearson correlation coefficient of �0.28 (Figure S5).
Eight thousand nine hundred and nine genes are contained
in 180,073 drug-genes pairs where DNAmethylation is sig-
nificantly related to the response to anticancer drugs. The
expression levels of 6937 genes contained in 27,161 drug-
gene pairs can improve the predictive power of the M1
model based on the likelihood ratio tests.

The number of drug-gene pairs with AUC� 0.8 and
P< 0.05 in DNA methylation-based M3 model, gene
expression-based M4 model, and M5 model combining

Figure 5. Priorization of drug-gene pairs by prediction models based on three data partition methods. (a) Venn plot of significant drug-gene pairs obtained by three

different data partition methods; (b) (c) (d) Comparison of prediction performance between real and random Logistic regression models based on three data partition

methods. Partition1 and Partiton2 represent the partition methods using 50% and 70% data as training set, respectively, while randomChoose means the partition

method randomly selecting the same number of resistant and sensitive cell lines. (A color version of this figure is available in the online journal.)
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DNA methylation and gene expression is 372, 1299, and
732, respectively (Tables S7 to S9). M3 model shares 148
and 156 drug-gene pairs with M4 and M5, respectively.
M4 model shares 367 drug-gene pairs with M5, and the
three models have 88 overlapped drug-gene pairs in
common (Figure 8(a)). For 68 drug-gene pairs in M5
model, DNA methylation makes more contribution to pre-
dicting drug response than gene expression, and for 279
drug-gene pairs, gene expression makes more contribution
to predicting drug response than DNA methylation. In
addition, for 297 drug-gene pairs (Table S10), integration
of DNA methylation and gene expression observably
improve the performance of prediction compared with
DNA methylation-based M3 models or gene expression-
based M4 models. It is worth noting that 7 of the 297
drug-gene pairs have AUC greater than 0.8 in M5 models,
while AUC values are less than 0.7 in both M3 and M4
models indicating the important influence of negative

regulation between DNA methylation and gene expression
on the response to anticancer drugs (Figure 8(b) to (i)).

There are 81.7% (598/732) drug-gene pairs with an aver-
age AUC� 0.8 in all of the three data partition methods
(Table S11). And the predictive power of the real model is
significantly greater than the random model (P< 0.05). As
shown in Figure 9(a), Partition1 and Partition2 represent
the methods using 50% and 70% data as training set respec-
tively, and randomChoose represents the method selecting
the same number of sensitive and resistant cell lines.
The real prediction models have higher AUC values than
random models for three different data partitioning meth-
ods (Figure 9(b) to (d)).

DNAmethylation and gene expression regulation affect
drug response revealed by DGWI network

A DGWI network was constructed for the 598 optimized
drug-gene pairs. The DGWI network contains 403 nodes

Figure 6. Enrichment analysis result of 491 genes in 931 drug-gene pairs. (a) Significant biological pathways to which 491 genes in 931 drug-gene pairs are enriched.

X-axis and y-axis represent the negative logarithmic P value of enrichment analysis and significant pathways. The redder a node is, the higher degree of enrichment the

pathway has. The node size is in proportion to the number of overlapped genes between interesting genes and those in a certain pathway. (b) The network of

significantly enriched biological pathways and GO terms. A pathway or a GO term is represented by a node. A line connecting two nodes means there are common

genes between significant terms. The width of a line is proportion to the size of common genes. (A color version of this figure is available in the online journal.)
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including 44 anticancer drugs, 359 drug response-related
genes and 10,003 edges including 598 edges between
drugs and genes, 269 edges among drugs and 9136 edges
among genes. The network has a clustering coefficient of
0.823, a network diameter of 4, and an average of 49.6
neighbor nodes for each node. Seven clusters (Table S12)
were obtained by network module analysis with scores
ranging from 6.0 to 66.6, number of nodes ranging from 6
to 117, and number of edges ranging from 15 to 3870.

Module 1 contains 2 drugs namely AT-751 and NPK76-
II-72–1, targeting cell cycle, and 115 genes including 16
approved drug targets and 3 known cancer driver genes
namely EGFR, MET, and ARID2 (Figure 10(a)). Protein
coding products of MCM6 and CDC7 are involved in the
cell cycle pathway 28,29affecting DNA synthesis. Our study

showed that DNA methylation and gene expression levels
of these two genes could well predict the drug response to
NPK76-II-72–1 with average AUC values of 0.87 and 0.8,
respectively, suggesting that these two genes may be poten-
tial drug targets. In addition, the cancer driver genes EGFR
and MET play a central role in the cytokine receptor inter-
action process of the cancer pathway (hsa05200), and
RASSF5 and RAC2 are involved in the downstream
MAPK signaling pathway which affects cancer develop-
ment (Figure 10(b)). EGFR, MET, and RAC2 are drug
target genes in which EGFR and MET predict the drug
response to NPK76-II-72–1 with an average AUC� 0.85;
RASSF5 and RAC2 predict the drug response to AT-7519
with an average AUC� 0.85. In summary, multiple genes in
Module 1 are closely related to cancer, and synergy of DNA

Figure 7. The performance for prediction of anticancer drug response based on DNA methylation levels of three driver genes. (a) ROC curves for drug response

prediction based on DNA methylation of EGFR; (b) ROC curves for drug response prediction based on DNA methylation of ERBB2; (c) ROC curves for drug response

prediction based on DNA methylation of MET. X-axis and y-axis refer to specificity and sensitivity, respectively. (A color version of this figure is available in the online

journal.)
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methylation and expression of these genes affects drug
response, indicating that these genes may be a hot spot
for anticancer drug researches in future.

Module 2 contains five drugs and 133 genes, of which
SNX-2112 is a drug targeting protein stability and

degradation pathways. Heat shock protein 90 (HSP90) is
the main target of SNX-2112. Nineteen drug target genes
and one cancer-driver gene namely TET2 are included in
Module 2 (Figure 10(c)). SNX-2112, a HSP90 inhibitor, has
been reported to induce differentiation and apoptosis of

Figure 8. Synergistic effects of DNA methylation and gene expression enhance predictive performance of anticancer drugs’ response. (a) Significant drug-gene pairs

with both AUC� 0.8 and P< 0.05 in logistic regression models M3, M4, and M5. Results of three models are marked with blue, green, and red. (b) Comparison of AUC

values of three models for seven drug-gene pairs; (c) Drug response to Camptothecin predicted by FAM98B; (d) Drug response to IPA-3 predicted by TSPAN1; (e) Drug

response to SB-715992 predicted by GALNT5; (f) Drug response to SB-71599 predicted by ZNF643; (g) Drug response to SNX-2112 predicted by CLDN4; (h) Drug

response to UNC0638 predicted by CDK5R1; (i) Drug response to YM201636 predicted by CTSZ. (A color version of this figure is available in the online journal.)
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human acute myeloid leukemia cells by regulating Akt/
NF-kB signaling pathway, and thus may be a drug for treat-
ment of acute myeloid leukemia and other malignant blood
diseases.30,31 Protein coding products of some genes play
an important role in the upstream of PI3K-AKT signaling
pathway, and HSP90, a target of SNX-2112, is also involved
in this pathway (Figure 10(d)). Therefore, the effect of DNA
methylation mediated gene expression regulation of these
genes on the drug response to SNX-2112 can be explained
to some extent. TET2 is a known tumor suppressor gene
oxidizing 5mC to 5hmC, which promotes DNA demethyl-
ation, participates in chromatin-modifying pathways, and
determines cell fate.32 TET2 is closely related to the occur-
rence, chemotherapy resistance, and poor prognosis of
acute myeloid leukemia.33 Besides, decreased expression
of TET2 and increased levels of 5hmC have become impor-
tant markers for a variety of solid tumors and increased
expression of TET2 inhibits cancer cell proliferation and
metastasis.34 In our research, the regulation between
DNA methylation and gene expression of TET2 well pre-
dicts the drug response to SNX-2112 with an average AUC
of 0.93 indicating that TET2 is not only a tumor suppressor
gene, but also has the potential to be an important marker
for anticancer drugs.

Discussion

The drug response to NVP-BEZ235 was correlated with the
DNA methylation levels of 1585 genes based on linear
regression models. NVP-BEZ235 is a dual inhibitor of phos-
phatidylinositol kinase (PI3K) and mammalian target of
rapamycin (TOR) that inhibits both mTOR1 and mTOR2.
A number of clinical studies have evaluated the NVP-
BEZ235’s therapeutic effect on advanced solid tumors, met-
astatic breast cancer, and various types of leukemia.
Although there is no direct evidence demonstrating the
relationship between DNA methylation and NVP-
BEZ235, NVP-BEZ235 is a drug targeting PI3K-AKTsignal-
ing pathway. PI3K-AKTsignaling pathway regulates breast
cancer genome by controlling H3K4 methylation, and the
subcellular localization of KDM5A, a H3K4 demethylase,
may be a pharmacodynamic marker of PI3K-AKT inhibi-
tor.35 The protein-coding products of some genes related
with NVP-BEZ235’s response are involved in the PI3K-
AKT signaling pathway (Figure S6), suggesting that DNA
methylation patterns of these genes are likely to be related
to the PI3K-AKT signaling pathway, and then affect drug
response. In addition, these genes are also annotated into
multiple cancer-associated or drug-related signaling

Figure 9. Comparison of prediction results of logistic regression models based on three different data partition methods. (a) Overlap of significant drug-gene pairs

obtained by three different data partition methods; (b) Comparison of real and random AUC values based on the first data partition method; (c) Comparison of real and

random AUC values based on the second data partition method; (d) Comparison of real and random AUC values based on the third data partition method. Partition1

and Partition2 represent the methods using 50% and 70% data as training set, respectively, while randomChoose represents the method using the same number of

sensitive and resistant cell lines. (A color version of this figure is available in the online journal.)
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pathways, such as the cancer signaling pathway, the MAPK
signaling pathway, and the drug metabolism cytochrome
P450 pathway (Figures S7 to S9), reflecting the effect of
DNA methylation on cancer and drug response.

For the top-ranked drug-gene pairs sorted by FDR
values of linear regression models in descending order,
DNA methylation is generally positively correlated with
IC50 of drugs. For instance, for the top 10 drug-gene
pairs, there is only one negative correlation pair (Figure
S10), for the top 100 drug-gene pairs, positive correlation
pairs account for 90%, and for the top 200 drug-gene pairs,
the number of negative correlation pairs is only 27. It is
worth noting that the regression coefficient of DNA meth-
ylation is �0.64 if the linear regression model between log-
arithmic IC50 of ABT-869 and DNA methylation of
LOC100302401 is directly constructed. However, DNA
methylation of LOC100302401 turns to be positively

correlated with logarithmic IC50 of ABT-869 with regres-
sion coefficient of 2.5 once the tissue type, microsatelite
instability, media, growth characteristics are added as cova-
riates to the linear regression model. The introduction of
covariates increases the coefficient R2 and improves the
linear fit suggesting the necessity of adding covariates
when building linear regression models.

We identified 999 candidate drug-gene pairs by con-
structing logistic regression models between the binarized
drug response and DNA methylation. Among the top 20
drugs with the most candidate genes, SNX-2112, a selective
inhibitor of HSP90, inhibits tumor cell proliferation and
angiogenesis by inhibiting cytokine-induced Akt and extra-
cellular signal-related kinase activity in a variety of myelo-
ma and hematological tumors.31 Treatment of cancer cell
lines with HSP90 inhibitors results in decreased mRNA
and protein expression levels of DNA methyltransferases

Figure 10. Target genes in modules of DGWI network are involved in cancer pathways and PI3K-AKT signaling pathway. (a) Drug targets and cancer driver genes in

cluster 1; (b) Genes in cluster 1 are involved in human cancer pathway. (c) Drug targets and cancer driver genes in cluster 2; (d) Genes in cluster 2 are involved in PI3K-

AKT signaling pathway. Drugs and gene are marked with diamonds and circles, orange circles represent drug targets. Cancer driver genes are marked by rectangles.

Protein coding products of genes in clusters are marked by pink rectangles in pathways. (A color version of this figure is available in the online journal.)
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DNMT1, DNMT3A, and DNMT3B, which thereby inhibits
tumor cell growth and induces tumor cell apoptosis.36

UNC0638 is an inhibitor of histone methyltransferase
G9A, which is selective for a variety of epigenetic targets
and selectively target genes with H3K9me2 modification.
Genes regulated by UNC0638 usually have higher DNA
methylation levels.37 For the human breast cancer cell line
MDA-MB-231, UNC0638 decreased the H3K9me2 levels in
a concentration-dependent manner, and significantly inhib-
ited the cloning of the human breast cancer cell line MCF7
by reducing the H3K9me2 abundance of the G9A-regulated
endogenous gene promoter. Combined with the results of
our research and the support of previous studies, it may
help to develop and select future epigenetic treatment strat-
egies for cancer.

FERMT3 is involved in protein interaction during integ-
rin activation and plays an important role in cell adhesion,
migration, differentiation, and proliferation. Early studies
mainly focus on gene mutations of FERMT3, which may
lead to autosomal recessive adhesion defect syndrome.38

Recent researches have shown that FERMT3 is involved
in cancer occurrence and progression. For instance, Lu
reported that FERMT3 could promote cell proliferation of
high-grade glioma and become resistant to temozolomide
by activating integrin-mediated Wnt signaling pathway.39

FERMT3 interacts with ribosomes to regulate c-Myc protein
expression, thereby promoting cell proliferation of chronic
myeloid leukemia.40 However, few studies concentrate on
the relationship between FERMT3 and DNA methylation.
DNA methylation level of FERMT3 well distinguishes
SNX-212 sensitive and resistant cell lines in our study.
LOC100130776 with official gene name AGAP2-AS1 is an
lncRNA located on chromosome 12. Previous studies
have confirmed that AGAP2-AS1 is closely related to the
development of various cancers and has recently been iden-
tified as an oncogenic lncRNA. AGAP2-AS1 is highly
expressed in gastric cancer tissues and cell lines, and gastric
cancer patients with high expression levels of AGAP2-AS1
have a worse prognosis and a shorter overall survival com-
pared to patients with low expression levels ofAGAP2-AS1.
The transcription factor SP1 activates AGAP2-AS1 and
thereby promotes the growth and invasion of gastric
cancer cells, indicating that AGAP2-AS1 is a potential
target for the diagnosis and treatment of gastric cancer.41

Up-regulated AGAP2-AS1 inhibits tumor suppressor gene
LAST2 and KLF2 transcription by interacting with EZH2
and LSD1, and plays an oncogenic role in non-small cell
lung cancer.42 Combined with the role of AGAP2-AS1 in
cancer development and drug resistance of various cancers
reported in previous studies, we infer thatAGAP2-AS1may
be a potential signature for cancer prognosis and a target
for pharmacotherapy.

To explore the effect of gene expression on the response
to anticancer drugs, the most significant 20 drug-gene pairs
obtained by likelihood ratio tests are listed in Table S13, of
which Afatinib, a tyrosine kinase inhibitor, is included in 10
drug-gene pairs. Afatinib irreversibly inhibits ERBB2 and
EGFR kinase and is commonly used to treat EGFR mutant
non-small cell lung cancer.43 Due to the inhibition of ERBB2
activity, Afatinib has a therapeutic effect on certain breast

cancer subtypes and other cancers driven by EGFR and
ERBB2.44 The expression of ERBB2, GRB7, LAD1 and
SSH3 is significantly related to the response to Afatinib in
two screening data sets. Expression levels of ERBB2 signif-
icantly improve the performance of linear model by
increasing the log likelihood from �1100.81 to �1045.59
(P¼ 7.85E-26). Sanchez-Vega45 reported that for esophageal
cancer and gastric cancer patients who were resistant to
Trastuzumab, the sensitivity of Afatinib was related to
copy number amplification of EGFR and ERBB2, offering
support for the relationship between expression levels of
ERBB2 and the response to Afatinib identified in our
research. Despite no direct evidence demonstrating the
relationship between GRB7 and Afatinib, the high expres-
sion of GRB7 is strongly associated with poor survival in
patients with primary breast cancer, indicating GRB7 is
likely to be a prognostic marker and drug target.46 The
expression of GRB7 is associated with the risk of recurrence
in triple-negative breast cancer patients receiving chemo-
therapy, suggesting that GRB7 and related signaling path-
way may be a potential biological target for cancer
therapy.47 A study has reported that DNA methylation in
the promoter region of LAD1 is significantly associated
with poor survival of renal clear cell carcinoma, and can
predict the prognosis of patients.48 In our research, there is
a strong negative correlation between DNA methylation
and expression of LAD1 (Pearson correlation coef-
ficient¼�0.71). Therefore, it is speculated that the negative
regulation may have an impact on the growth and metas-
tasis of cancer cells and the prognosis of cancer patients,
and thus LAD1 may be a potential target for cancer drug
treatment.

The AUC values of M5 models are greater than DNA
methylation-based M3 models and gene expression-based
M4 models (Figure S11(a)). Then the comparison was per-
formed respectively in three groups to further investigate
the effect of gene expression regulation on the response to
anticancer drugs (Figure S11(b) to (d)). For some drug-gene
pairs, the introduction of gene expression significantly opti-
mizes the original model. In the first comparison group, M3
model has higher AUC values than M4 model indicating
that DNA methylation plays a leading role in predicting
drug response for these drug-gene pairs. In the second
and third comparison groups, M4 model has higher AUC
values than M3 model indicating that gene expression
plays a leading role in predicting drug response for these
drug-gene pairs.

In conclusion, our study systematically identifies the
molecular characteristics of anticancer drug responses at
pan-cancer levels by integrating DNA methylation data,
gene expression data, and drug response data from large-
scale cancer cell lines, and explores the effect of epigenetic
regulation on drug resistance. Although we have got some
meaningful results, this study still has some limitations.
First, these results are obtained based on cancer cell line
models, and it still requires further validation by in vivo
studies. Second, due to the limited amount of data, we
conducted drug sensitivity studies on pan-cancer levels.
In the future, as cell lines and clinical data increase,

1640 Experimental Biology and Medicine Volume 246 July 2021
...............................................................................................................................................................



cancer type specific analysis will be performed to further
explore the molecular mechanism of drug resistance.
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