
Original Research

12 Survival-related differentially expressed genes based on the

TARGET-osteosarcoma database

Emel Rothzerg1,2 , Jiake Xu1, David Wood1 and Sulev K~oks2,3

1School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; 2Perron Institute for Neurological and

Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia; 3Centre for Molecular Medicine and Innovative Therapeutics,

Murdoch University, Murdoch, WA 6150, Australia

Corresponding authors: Emel Rothzerg. Email: emel.rothzerg@research.uwa.edu.au; Sulev Koks. Email: sulev.koks@perron.uwa.edu.au

Abstract
The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) proj-

ect aims to determine molecular changes that drive childhood cancers, including osteo-

sarcoma. The main purpose of the program is to use the open-source database to develop

novel, effective, and less toxic therapies. We downloaded TARGET-OS RNA-Sequencing

data through R studio and merged the mRNA expression of genes with clinical information

(vital status, survival time and gender). Further, we analyzed differential gene expressions

between dead and alive patients based on TARGET-OS project. By this study, we found

5758 differentially expressed genes between deceased and alive patients with a false dis-

covery rate below 0.05; 4469 genes were upregulated in deceased patients compared to alive, whereas 1289 genes were

downregulated. The survival-related genes were obtained using Kaplan–Meier survival analysis and Cox univariate regression

(KM<0.05 and Cox P-value< 0.05). Out of 5758 differentially expressed genes, only 217 have been associated with overall

survival. Eight survival-related downregulated genes (ERCC4, CLUAP1, CTNNBIP1, GCA, RAB40C, SIRPA, USP11, and TCN2)

and four survival-related upregulated genes (MUC1, COL13A1, JAG2 and KAZALD1) were selected for further analysis as poten-

tial independent prognostic candidate genes. This study may help to discover novel prognostic markers and potential therapeutic

targets for osteosarcoma.
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Introduction

Osteosarcoma (OS) is a primary malignant bone tumor
with a high incidence rate in children and adolescents.1

An initial peak has been observed between the ages of 10
and 19 years during the pubertal growth spurt and a sec-
ondary peaks after the age of 65 years associated with
Paget’s disease.2 There is a predilection for the metaphyseal
area of long bones with approximately 75% of all cases
occurring in distal femur (41.6%), proximal tibia (16.9%),
proximal humerus (9.2%), and proximal femur (7.7%).3

Although osteosarcoma has been associated with p53
and retinoblastoma protein dysfunction respectively, our
understanding of the prognostic indicators and the genetic
mechanisms of disease progression are incomplete.4 OS is

an aggressive, invasive sarcoma that frequently metasta-
sizes, most commonly to the lung, with a five-year survival
rate of 70%.5 Multi-agent chemotherapy was introduced in
the 1970s and improved the prognosis from a dismal
15–20% survival to a 60–70% five-year survival rate, but
outcomes have not significantly improved since then.
Currently, neo-adjuvant chemotherapy using doxorubicin,
methotrexate, cisplatin, or ifosfamide to reduce the size of a
tumor and eradicate micro-metastases followed by surgery
and further chemotherapy is the standard of care for OS.6

We appreciate that tumor size, stage at presentation and
response to chemotherapy are significant prognostic
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indicators, but our understanding of the molecular mecha-
nisms of disease progression is poor.7,8

Genome-wide RNA sequencing (RNA-Seq) provides a
quantitative resolution of the transcriptome, can discover
novel transcripts, identify alternative splicing, and detect
gene expression changes between different samples.9,10

This functional analysis of the genome improves our
understanding of the underlying mechanisms of complex
diseases, especially in cancer.11,12 We have used RNA-Seq
data to identify potential novel prognostic markers for OS
using survival prediction methods based on differential
gene expression profiles.

The Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) is an open database provid-
ed by the National Cancer Institute (NIH, https://ocg.
cancer.gov/programs/target). We have analyzed the
molecular changes in OS with respect to clinical outcome
to better understand the gene regulatory networks, mech-
anisms of disease progression, and key survivorship
determinants.

Materials and methods

Data information

The results presented here are based upon data generated
by the TARGET-OS and the data used for the analysis are
available at https://portal.gdc.cancer.gov/projects.

TARGET-OS RNA-Seq data were downloaded by
R studio (https://www.r-project.org/) through
Bioconductor packages of BiocManager, TCGAbiolinks,
TCGAWorkflowData, DT, genomic data commons (GDC),
and summarized experiment (Bioconductor version of 3.12,
https://www.bioconductor.org/). The data category, data
type, andworkflow type were determined as transcriptome
profiling, gene expression quantification, and HTSeq-
counts respectively through the TCGAbiolinks package.
The RNA-Seq data were merged with clinical information
of the patients’ such as vital status, survival time, and
gender. Samples without vital status, survival time, and
gender were excluded from the data.

Differential gene expression analysis

The genes with missing expression values were removed
from the data. Statistical data and differential expression of
digital gene expression analyses were performed through
edgeR (Empirical Analysis of Digital Gene Expression Data
in R) package for R.13,14 Differential gene expression levels
between dead and alive patients’ were obtained by the
package through investigating the log-2-change of the
genes (logFC, the cut-off value of 0.5). The edgeR package
also provides the Benjamini–Hochberg method to control
the false discovery rate (FDR, the cut-off value of 0.05).15

The gene expression levels between dead and alive patients
were compared with t-test and visualized using R and
GraphPad Prism software version 8 (GraphPad software,
San Diego, CA, USA). The significant level was set at both
FDR< 0.05 and P< 0.05.

Survival analysis

Patients’ survival time and vital status were merged with
differentially expressed genes. R’s survival packages; sur-
vival, survminer, and survdiff were used for survival anal-
ysis. Further, Kaplan–Meier (K–M) survival plots were
generated and combined with the Xena Functional
Genomics Explorer-GDC TARGET-OS.16 The cut-off crite-
rion was set to K–M< 0.05 and Cox P-value< 0.05 for
screening of the survival-related gene at overall survival.

Pathway enrichment analysis and gene–gene
functional interactions

The biological process and pathway enrichment analyses
were performed through The gene ontology (GO)17,18 and
The NCATS BioPlanet19 datasets, respectively. Further,
gene–gene functional interactions of differentially
expressed genes were performed using the Cytoscape soft-
ware (version of 3.8.2) and GeneMANIA20 datasets.

Results

Sample characteristics

The RNA-Seq data were downloaded from TARGET-OS
project and the data were merged with vital status, survival
time, and gender. After removing the samples without vital
status, survival time, and gender information, the patient
sample number was 86. Age ranged from 3 to 34 years
(mean 15 years) and there were 37 (43%) females and 49
(57%) males. Patient demography and tumor characteris-
tics are presented in Tables 1 and 2.

Differential expression analysis between dead and
alive patients

Differential gene expression between dead and alive
patients was compared with the edgeR package using R
studio. By this analysis, 5758 genes were differentially
expressed between dead and alive patients (both P-value
and FDR<0.05) and 50,690 genes were not significant (both
P-value and FDR>0.05). Of the 5758 genes, 4469 were upre-
gulated, whereas 1289 genes were downregulated in dead
versus living patients.

The survival-related genes in OS patients

Genes associated with survival were identified using Cox
regression. Out of 5758 differentially expressed genes, 217
were found to be associated with overall survival (P< 0.05).
Further, the survival-related genes were selected depend-
ing on their P-values (preferably lowest). The overall
survival-related genes of dead and alive patients were val-
idated and visualized using violin plots (Figures 1 and 2).

Table 1. The characteristics of the patients.

Vital status Female (n5 37) Male (n549) Total

Alive 23 34 57

Dead 14 15 29

86

Rothzerg et al. Survival-related genes based on the TARGET database 2073
...............................................................................................................................................................

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://portal.gdc.cancer.gov/projects
https://www.r-project.org/
https://www.bioconductor.org/


The survival-related genes that were significantly down-
regulated in the dead compared with living patients
include; ERCC excision repair 4 (ERCC4), Clusterin-
associated protein 1 (CLUAP1), catenin beta interacting
protein 1 (CTNNBIP1), grancalcin (GCA), member RAS
oncogene family (RAB40C), signal regulatory protein
alpha (SIRPA), ubiquitin-specific peptidase 11 (USP11),
and transcobalamin 2 (TCN2) (Table 3). K–M plots of the
downregulated genes showed the association between
downregulated genes and poor survival outcome of the
patients with the significant value of P< 0.05 (Figure 3).

Significantly upregulated genes in the dead patients
include; mucin 1-cell surface associated (MUC1), collagen

type XIII alpha 1 chain (COL13A1), jagged canonical notch
ligand 2 (JAG2), and Kazal type serine peptidase inhibitor
domain 1 (KAZALD1) (Table 4). K–M plots highlighted
upregulation of these genes and the positive correlation
with poor patient survival (Figure 4).

GO and BioPlanet pathway enrichment analyses
and gene–gene functional interactions of the
survival-related genes

To examine the characteristics of the survival-related genes,
functional classification and pathway enrichment analyses
of downregulated and upregulated genes were performed
using the GO tool and BioPlanet, respectively.

Table 2. The characteristics of the tumors.

Site of tumor Number Disease at diagnosis and metastasis site

Femur 39 25 non-metastatic and 14 metastatic (8 lung only, 5 lung and bone, 1 bone only)

Tibia 21 17 non-metastatic and 4 metastatic (3 lung only, 1 bone and lung)

Fibula 8 7 non-metastatic and 1 metastatic (lung only)

Humerus 4 3 non-metastatic and 1 metastatic (lung only)

Pelvis 2 1 non-metastatic and 1 metastatic (lung only)

Pelvis–ilium 1 1 non-metastatic

Pelvis/sacrum 1 1 non-metastatic

Leg NOSa 6 5 non-metastatic and 1 metastatic (lung only)

Foot NOSa 1 1 non-metastatic

Radius 1 1 non-metastatic

Ilium 1 1 metastatic (lung only)

Arm NOSa 1 1 non-metastatic

Total 86 63 non-metastatic and 23 metastatic (16 lung only, 6 lung and bone, 1 bone only)

Summary 15 dead metastatic and 15 dead non-metastatic

8 alive metastatic and 48 alive non-metastatic

aNot otherwise specified.

Figure 1. Violin plots displaying the downregulated survival-related genes expression levels; (a) ERCC4, (b) CLUAP1, (c) CTNNBIP1, (d) GCA, (e) RAB40C, (f) SIRPA, (g)

USP11, and (h) TCN2. The violin plots are filled in blue (left) and red (right) represent alive and dead patients, respectively. The y-axis highlights the raw expression of the

genes, whereas x-axis vital status of the patients. A dashed line in the violin plots represent themedian value of the gene expression.P-valuewas calculated using Student’s

t-test, P <0.05 considered statistically significant (*P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.00001). (A color version of this figure is available in the online journal.)
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Figure 5(a) highlights the most significantly overrepre-
sented GO terms of biological process of downregulated
genes in dead patients. The top six biological process of
GO terms are; negative regulation of meiotic nuclear divi-
sion (GO: 0045835, P-value¼ 0.002398), negative regulation
of chromosome organization (GO: 2001251, P-val-
ue¼ 0.002398), negative regulation of telomere capping
(GO: 1904354, P-value¼ 0.0028), positive regulation of
monocyte differentiation (GO: 0045657, P-value¼ 0.0032),
telomere maintenance via recombination (GO: 0000722, P-
value¼ 0.003993), and regulation of mesenchymal cell pro-
liferation (GO: 0010464, P-value¼ 0.004790). Further,
Figure 5(b) shows the pathway enrichment analysis of the

downregulated genes, including, signal regulatory protein
(SIRP) family interactions (P-value¼ 0.0051), dual incision
reaction in GG-NER (P-value¼ 0.0079), dual incision reac-
tion in TC-NER (P-value¼ 0.011), and association of TriC/
CCT with target proteins during biosynthesis (P-val-
ue¼ 0.0115). In Figure 5(c), gene–gene interaction of the
downregulated genes was shown.

Figure 6(a) highlights the most significantly overrepre-
sented GO terms of biological process of upregulated genes
in dead patients such as positive regulation of histone H4
acetylation (GO: 0090240, P-value¼ 0.0014), negative regu-
lation of cell adhesion mediated by integrin (GO: 0033629,
P-value¼ 0.0014), auditory receptor cell differentiation
(GO: 0042491, P-value¼ 0.0014), regulation of histone H4
acetylation (GO:0090239, P-value¼ 0.0016), endochondral
ossification (GO: 0001958, P-value¼ 0.0016), and negative
regulation of transcription by competitive promoter bind-
ing (GO: 0010944, P-value¼ 0.0018). Figure 6(b) performs
the pathway enrichment analysis of the upregulated genes,
including, signalling by NOTCH2 (P-value¼ 0.0027), initi-
ation of the second proteolytic cleavage of Notch receptor
by receptor-ligand binding (P-value¼ 0.0028), interleukin-
11 pathway (P-value¼ 0.0045), termination of O-glycan
biosynthesis (P-value¼ 0.0051), and activated NOTCH1
signalling in the nucleus (P-value¼ 0.0061). Lastly,
Figure 6(c) highlights the gene–gene interaction of the upre-
gulated genes.

Discussion

Our limited understanding of the genetic regulation and
molecular mechanisms of disease progression in osteosar-
coma is a barrier to the development of novel precision
therapies. Transcriptome analysis is central to the discovery
and understanding of prognostic biomarkers, a research
priority in OS.

In this study, we analyzed differential gene expression
by survival based on 86 TARGET-OS project patients. Of
the 5758 differentially expressed genes, 217 were associated
with survival (FDR <0.05 and P< 0.05). Based on P values,
we selected eight downregulated genes (ERCC4, CLUAP1,
CTNNBIP1, GCA, RAB40C, SIRPA, USP11, and TCN2) and
four upregulated genes (MUC1, COL13A1, JAG2, and
KAZALD1) in patients who died of their disease for further
analysis (Tables 3 and 4).

The associations between differentially regulated (both
upregulated and downregulated) genes and OS have
already been analyzed (except RAB40C, USP11,

Figure 2. Violin plots displaying the upregulated survival-related genes

expression levels; (a)MUC1, (b)COL13A1, (c) JAG2, and (d) KAZALD1. The violin

plots are filled in blue (left) and red (right) represent alive and dead patients,

respectively. The y-axis highlights the raw expression of the genes, whereas

x-axis vital status of the patients. A dashed line in the violin plots represent the

median value of the gene expression. P-value was calculated using Student’s

t-test, P <0.05 considered statistically significant (*P< 0.05, **P< 0.01,

***P<0.001, ****P< 0.00001). (A color version of this figure is available in the

online journal.)

Table 3. Survival-related downregulated genes in dead patients.

Symbol Description logFC logCPM F P-Value FDR

ERCC4 ERCC excision repair 4 �0.604331065 3.6044199 21.15321871 1.35E�05 0.000711

CLUAP1 Clusterin associated protein 1 �0.506755578 3.835841364 15.51321235 0.000159425 0.004417889

CTNNBIP1 Catenin beta interacting protein 1 �0.535497627 5.404612024 12.20243352 0.000736136 0.01311661

GCA Grancalcin �0.977336188 2.918813582 13.50950687 0.000399133 0.008618337

RAB40C Member RAS oncogene family �0.526285629 4.284398674 14.18739992 0.000291816 0.006857791

SIRPA Signal regulatory protein alpha �0.695679783 5.630441654 10.89208674 0.001375861 0.020650984

USP11 Ubiquitin-specific peptidase 11 �0.526261302 7.42223499 14.5888379 0.000242739 0.005965627

TCN2 Transcobalamin 2 �0.745119819 4.055907039 9.088352903 0.003325462 0.037655142
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Figure 3. Kaplan–Meier survival analysis of (a) ERCC4, (b) CLUAP1, (c) CTNNBIP1, (d) GCA, (e) RAB40C, (f) SIRPA, (g) USP11 and (h) TCN2. Blue color represents

genes with low expression, whereas red, genes with high expression. P-value was computed by log-rank test, P <0.05 considered statistically significant. (A color

version of this figure is available in the online journal.)
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CTNNBIP1, TNC2, GCA, JAG2, and KAZALD1).21–26

However, in these studies, the prognostic values of the
genes have not been investigated.

ERCC4, also known as XPF, gene encodes proteins that
can play an important role in DNA repair and chromosome
stability.27 The gene also has been involved in fanconi
anemia (FA) which leads to bone marrow failure, congen-
ital malformations, chromosome fragility, and cancer sus-
ceptibility including OS.28,29 According to several studies,
patients with low expression of ERCC4 were associated
with worse overall survival in hepatocellular carcinoma.30

Our study also highlighted that OS patients with low
expression of ERCC4 have displayed worse survival out-
come of the patients (Figure 3(a)).

There is an increased expression of CLUAP1 in cell
growth and the S phase of cell-cycle progression.31

Further, over expression of the gene was observed in OS
tissue samples and cell lines, including HuO3N1, OS2000,
Saos-2, HuO9N2, HOS, and MG63. Noteworthy, over-
expression of CLUAP1 has also been observed in ovarian,
colon, and lung cancers.22

This is the first report of an association between
CTNNBIP1 and survival in OS, but the gene is known to
be a prognostic indicator in lung adenocarcinomas.32

According to the same study, CTNNBIP1 expression corre-
lated with longer overall survival in lung adenocarcinomas
patients.32

GCA is a protein that has been identified in human neu-
trophils and the monocytes/macrophage lineage.33 The func-
tion of this protein is not completely understood, but the gene
was downregulated in metastatic OS in in vitro studies.34

Breast cancer patients with high expression CD47
expression (cluster of differentiation 47) and active CD47/
SIRPA (SIRPa) pathway have a poor prognosis.35

Furthermore, one study determined that the CD47/SIRPA
pathway is activated in OS. CD47 is known as a “do not eat
me” signal that binds to SIRPA in the surface of macro-
phages which leads to escape from phagocytosis and cell
death.36 Notably, knockout of SIRPA in macrophages
enhances phagocytosis of OS cells.25

Unfortunately, there are no established studies to high-
light the direct association between USP11 and OS.

Table 4. Survival-related upregulated genes in dead patients.

Symbol Description logFC logCPM F P-Value FDR

MUC1 Mucin 1, cell surface associated 1.351910472 3.516411994 18.43384428 4.36E-05 0.001702678

COL13A1 Collagen type XIII alpha 1 chain 1.1977585 5.747573231 14.90975716 0.000209656 0.00541287

JAG2 Jagged canonical Notch ligand 2 0.955088787 6.021108153 16.09517412 0.000122657 0.003634496

KAZALD1 Kazal type serine peptidase inhibitor domain 1 1.002413796 6.419848871 12.11332211 0.000767825 0.013540203

Figure 4. Kaplan–Meier survival analysis of (a)MUC1, (b)COL12A1, (c) JAG2, and (d) KAZALD1. Blue color represents genes with low expression, whereas red, genes

with high expression. P-value was computed by log-rank test, P<0.05 considered statistically significant. (A color version of this figure is available in the online journal.)
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Figure 5. Enrichment analysis of eight survival-related downregulated genes; functional gene ontology analysis of biological process (a), pathway enrichment analysis

(b) and gene–gene interaction network analysis (c). P-values less than 0.05 were considered statistically significant, *P< 0.05, **P< 0.01. (A color version of this figure

is available in the online journal.)

Figure 6. Enrichment analysis of four survival-related upregulated genes; functional gene ontology analysis of biological process (a), pathway enrichment analysis (b)

and gene–gene interaction network analysis (c). P-values less than 0.05 were considered statistically significant, *P< 0.05, **P< 0.01. (A color version of this figure is

available in the online journal.)
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However, low expression of USP11 was correlated with
better survival outcome in breast cancer patients.37

Interestingly, a study suggested that over-expression of
USP11 promotes growth and metastasis of colorectal
cancer.38

No clear association that has been found yet between
TCN2 gene and any cancer type, including OS.
Intriguingly, mutation (loss of function) of this gene result
in transcobalamin deficiency that leads to an abnormal
immunity in the individuals.39 Our result showed that
down regulation of TCN2 is associated with worse survival
outcome (Figure 3(h)).

MUC1 has been associated with metastatic progression
both in vivo and in vitro in several cancer types through O-
glycosylated serine/threonine repeat region (MUC1-ECD),
as well as through activities of its intracellular domain
(MUC1-CD).40 It is already established that over-
expression of MUC1 predicts poor prognosis in breast
cancer patients.41 Interestingly, high expression level of
MUC1 in sarcoma metastasis was correlated with worse
overall survival in sarcoma.26 Our result also correlated a
high expression of MUC1 with low survival of OS patients
(Figure 4(a)).

Although, no associations have been found regarding to
COL13A1 and OS, the gene strongly correlated with poor
clinical outcome in bladder cancer.42 Another study men-
tioned that over expression of COL13A1 is associated with
high risk of disease progression and aggressive invasion in
urothelial carcinoma of the bladder.43 We also found that
COL13A1 was upregulated in dead OS patients
compared to alive, further high expression of the gene is
associated with poor survival outcome (Figure 4(b)).
Nevertheless, the functional role of COL13A1 in cancer
especially in OS needs to be extensively studied.

Over-expression of JAG2 has been associated with poor
survival outcome in oral squamous cell carcinoma.44

Another study also highlighted that high expression level
of JAG2 increases chemo-resistance of colorectal cancer
cells.45 Interestingly, the positive correlation of MYC
(MYC proto-oncogene, bHLH transcription factor)
and JAG2 are critical pro-survival factors in childhood
medulloblastoma.46,47 There are no published studies to
highlight the relationship between JAG2 and OS.
However, one study suggested that JAG2 may be involved
in OS progression and initiation because the gene interacts
with both p53 signalling and Notch signalling pathways,
which play an essential role in development of bone
tumors.48,49

There is no published clear association between
KAZALD1 gene and OS. According to one study, high
expression of KAZALD1 promotes glioma malignant pro-
gression by invasion and high proliferation of tumor cells.
The authors also suggested that low expression of
KAZALD1 confers better overall survival.50 Our result
also showed that high expression of KAZALD1 is correlated
with worse overall survival in OS patients (Figure 4(d)).

In conclusion, in the present study we have identified
5758 differentially expressed genes between dead and alive
patients in which 217 of genes showed an association with
overall survival. Out of 217 genes, 8 survival-related down-
regulated (ERCC4, CLUAP1, CTNNBIP1, GCA, RAB40C,
SIRPA, USP11, and TCN2) and 4 survival-related upregu-
lated genes (MUC1, COL13A1, JAG2, and KAZALD1) were
selected. These genes have not been adequately studied in
cancer, especially in OS. Consequently, further research
with the candidate genes is required to characterize their
roles in OS progression, invasion, andmetastasis to provide
specific and successful prognostic markers for the disease.
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