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Abstract
Being the second leading cause of death globally, cancer has been a long-standing and

rapidly evolving focus of biomedical research and practice in the world. A tremendous effort

has been made to understand the origin of cancer cells, the formation of cancerous tissues,

and the mechanism by which they spread and relapse, but the disease still remains mys-

terious. Here, wemade an attempt to scrutinize evidences that indicate the role of stem cells

in tumorigenesis and metastasis, and cancer relapse. We also looked into the influence of

cancers on stem cells, which in turn represent a major constituent of tumor microenviron-

ment. Based on current understandings of the properties of (cancer) stem cells and their

relation to cancers, we can foresee that novel therapeutic approaches would become the

next wave of cancer treatment.
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Introduction

Cancer, being considered as “a wound that never heals”, is
characterized by uncontrolled proliferation of abnormal
cells and aberrant recognition of the immune system.
According to a report from The World Health
Organization, cancer is responsible for an estimated 9.6 mil-
lion deaths worldwide in 2018 (https://www.who.int/
news-room/fact-sheets/detail/cancer). Conventional
treatments involving surgery, chemotherapy and radiation
therapy, together with newly developed immunotherapy,
have been applied to eliminate cancer cells or to inhibit
their proliferation. Although the survival time of cancer
patients has been prolonged after these treatments, a
great proportion of patients experience recurrence and are
not able to gain a long-term survival. Thus, it is important
to make an exploitive understanding of cancer from initia-
tion to metastasis and relapse.

Over the last few decades, cancer researchers and
practitioners have gradually shifted their interests from

a focal point of cancer cells to a dual attention to cancer
and stem cells. The merging of the two fast evolving
fields, the existing cancer field and the emerging stem
cells field, would produce unprecedented sparkles in
the development of novel therapies for cancers. Stem
cells are capable of self-renewal, migration without
restriction to tissues, and differentiation into various
mature cells. However, with gene mutations or under cer-
tain circumstances, these processes can be disrupted,
leading to malignant transformation of stem cells. These
cells with plasticity then become increasingly aggressive
and are highly adaptive to harsh conditions, for example,
anticancer treatments. It, however, remains unclear
whether stem cells themselves or any other cells that
acquire stem cell-like phenotypes become drivers of
cancer progression. Here, we present speculations based
on currently existing evidences, and provide our perspec-
tives for further scoping the emerging field of stem cells
and cancer.
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The stem cell origin of cancer

A comprehensive understanding of the origin of cancer
cells is critical for designing effective strategies to treat or
prevent cancer, as well as for guiding the risk assessment of
cancer. Over the past several decades, numerous studies
have come to a conclusion that cancer cells are
“transformed cells”, with a series of genetic and epigenetic
mutations that permit them to self-renew, proliferate, and
form tumors. The resulting behaviors not only depend on
the genotype of the host, but are also affected by many host
factors, for example, excessive calorie/nutrient intake,
infection, smoking, etc., which may promote tumorigenesis
and increase the risk of developing certain types of
cancer.1–3 The defective ability of immune cells in detecting
and destroying newly formed cancer cells also plays a crit-
ical role in tumor growth and spreading.4

For most cancers, the original cells with mutations of
transforming potential are unknown. However, there are
considerable evidences that suggest cancer may arise
from (a) cancer stem cells;5 (b) bacteria’s acquisition and
hybridization of host’s DNAs;6 (c) embryonal rest;7,8 (d)
maturation arrest;9 (e) dedifferentiation of mature cells;10

(f) mutations of stem cells;11,12 and (g) transformation of
progenitor cells11 (Figure 1). It has been well accepted
that gene mutations play a significant role in carcinogene-
sis. It was known that carcinogenesis requires more than
one critical mutation and the required number of mutations
was estimated to be 3–7, in order to overcome DNA repair,
apoptosis, and to gain inordinate functions such as indefi-
nite proliferation.13,14 However, the knowledge of the
acquisition patterns of gene mutations in normal cells is
limited. In a recent study using whole-genome sequencing,

it was found that normal people can carry “driver” muta-
tions during the first decades of life, the burden of which
increases with age.15 There are similarities between stem
(stem-like) cells and cancer cells in gene expression and
biological characteristics.11,16–18 However, the transforma-
tion of stem cells to cancer cells still requires a few muta-
tions.19–22 Once stem (stem-like) cells have undergone the
mutagenesis process, they may become the origin, or the
transmitter, of cancers.11,12

Stem cell mutations

Stem cells, generally defined as clonogenic cells that are
capable of both self-renewal and multi-lineage differentia-
tion, are units of biological organization responsible for the
development and regeneration of tissues and organ sys-
tems.23 Since cancer is a disease of unregulated self-
renewal, the similarities in the mechanism that regulate
self-renewal of cancer cells to that of stem cells were
noticed. Signal transduction pathways of Wnt, Shh, and
Notch, contributing to the self-renewal of stem cells or pro-
genitors, are also functional in a number of human
tumors.11 Moreover, a stem-cell like gene expression signa-
ture was found in various human tumor types, including
breast cancer, glioblastomas, and bladder carcinomas.18

There are evidences that implicate tissue-specific stem
cells are the cells of origin for many types of cancer.11 One
example is that a subset of cells with a CD34þ and CD38–

phenotype that are similar to normal hematopoietic stem
cells (HSCs) were found to be capable of initiating human
acute myeloid leukemia (AML), suggesting normal HSCs
are the target of leukemic transformation.24 Moreover,
other studies have provided evidences that stem cells are
a common target of pre-leukemic events or leukemic trans-
formation because some mutations in leukemic cells were
found in normal HSCs.25–27

The idea of stem cell origin of cancer is also supported
by studies on genemanipulation in stem cells. It was shown
that loss of tumor suppressor gene Apc in Lgr5þ intestinal
stem cells (ISCs) resulted in a progressive growth of neo-
plasia.19 However, the growth of microadenomas occurring
in short-lived transit-amplifying cells was rapidly stalled
when Apc was deleted in these cells.19 This study thus sug-
gests that stem-cell-specific loss of Apc results in a progres-
sively growing neoplasia. Similar results were observed in
Lrig1þ colonic stem cells, in which the loss of Apc led to
intestinal adenomas.20

A number of studies demonstrated that post-natal stem
cells can be transformed to malignant cells under standard
culture conditions without any genetic manipulation. For
instance, human mesenchymal stem cells (MSCs) pro-
ceeded to a malignant transformation state after a long-
term in vitro culture, resulting in tumor formation in
vivo.21,22,28,29 The accumulation of chromosomal abnormal-
ities, amplified c-Myc expression, elevated telomerase
activity, and p53 mutation are proposed to be responsible
for the spontaneous malignant transformation.21,22

Therefore, these studies suggest that stem cells with
accumulation of mutations may become the origin of
carcinogenesis.

Figure 1. Possible cell origins of cancer. (a) In a clonal evolution concept,

stepwise acquisition of mutations may transform cells to be CSCs, which have

tumor initiating potential; (b) The intracellular bacteria may take up the host’s

DNAs and then develop into cancer cells by hybridizing the acquired DNAs with

their own ones and expressing the hybrid genomes; (c) Cancer in adults may

develop from embryonal rudiments that are produced in excess and that remain

in the tissues of the fully mature organs; (d) Cancer may arise in a cell that has the

potential to divide and not be lost during normal tissue turnover; (e) Factors such

as chemicals or viruses may induce dedifferentiation of mature adult cells

to cause cancer; (f) Stem cells with gene mutations may acquire malignant

phenotype and lead to cancer; (g) Progenitor cells may undergo transformation

and become cancer cells. (A color version of this figure is available in the online

journal.)
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Progenitor cell transformation

Progenitor cells are also susceptible to transformation.
Expression of Wnt-1 protooncogene in mammary glands
of transgenic mice resulted in an expansion of a population
of epithelial cells expressing progenitor cell markers (kera-
tin 6 and Sca-1).30 The expression of these markers was also
observed in the subsequent tumors, which contained lumi-
nal epithelial and myoepithelial tumor cells that shared a
secondary mutation, loss of Pten, implying that they arose
from a common progenitor cell.30 In another study, a new
prognostic subtype of hepatocellular carcinoma (HCC) that
shares the patterns of gene expression with that of fetal
hepatoblasts was identified, suggesting that HCC of this
subtype may arise from hepatic progenitor cells.31 There
was a study showing that a transgenic mouse model of
myeloid leukemia was generated by targeting the expres-
sion of transgenes specifically to myeloid progenitors using
an hMRP-8 promoter,32 although it was shown that addi-
tional mutations like Fas-deficient were needed to make
these mice develop acute malignancies.33

The transformation of progenitor cells may be another
origin of carcinogenesis, but it is possible that the mutations
are accumulated in stem cells while the effects are
expressed in progenitor cells. It was shown that primary
bone marrow–derived mesenchymal progenitor cells were
successfully transformed by EWS-FLI-1 fusion protein
(an aberrant transcriptional activator that is believed to
contribute to Ewing’s sarcoma) and generated tumors
that displayed hallmarks of Ewing’s sarcoma.34 The pro-
genitor cell origin of cancers still needs more but rather
difficult proofs because there is a confounding fact that
the surface antigens used to identify progenitor cells are
often shared by stem cells. In addition, experimental con-
ditions may easily affect the exchange between stem cells
and their relevant progenitor cells.

Cancer stem cells

CSCs, postulated as a subpopulation of cancer cells with
greatly-enhanced tumor-initiating potential relative to
other cancer cells within a tumor, display the self-renewal
potential and the ability to spawn non-CSC progeny. This
concept helps explain the histological heterogeneity of the
original tumor. Similar to normal stem cells, a small
number of CSCs can give rise to a tumor consisting of rap-
idly proliferating cells as well as differentiated cells.35,36

The first evidence for CSCs was documented in 1937 that
a single cell from leukemic mice could initiate a new tumor
in a recipient mouse.37 Subsequent studies demonstrated
that the frequency of CSCs in various tumor types was
extremely low, for example, the frequency of CSCs in
human melanoma was <1 per million cells.38 However,
by using different CSCs identification markers, the
number escalates, even increasing to more than 105 folds
over the original counts.39 Regardless, the observation that
just a few cancer cells are capable of tumorigenesis which
led to the conceptualization of CSCs.

By realizing that gene mutations in cells (stem cells, pro-
genitor cells, or differentiated cells) result in tumorigenesis,

Fearon and Vogelstein developed a clonal evolution con-
cept to explain the progression of tumors towards a more
malignant behavior; they proposed that stepwise acquisi-
tion of mutations is needed to transform cells to be aggres-
sive, i.e., tumor cells can become CSCs with a sufficient
accumulation of mutations.40

It is affirmative that these CSCs are tumorigenic, how-
ever, the precise identification of CSCs within tumor cell
populations is still blurry because almost all the studies are
based on the differential expression of surface markers
without a deep understanding of the characteristics of
CSCs. Gene mapping together with linage tracing will
need to be performed, in order to unmask the veil of
CSCs and tumor evolution.

Cancer metastasis and stem cells

Metastasis is responsible for as much as 90% of cancer-
associated mortality.36 Understanding the cellular origin
of metastasis is important for preventing this process in
early diagnosed cancer patients. However, due to the tech-
nical difficulties in capturing the process under naturally
metastatic conditions, it remains the most enigmatic aspect
of cancer pathogenesis.

Based on current understandings, metastatic cascade
comprises two major events: (a) physical translocation of
a cancer cell from the primary tumor to the microenviron-
ment of a distant tissue and (b) colonization.36 In order to
detach from the primary tumor, invade the distant organs
and proliferate to form metastases, some cells acquire
aggressive phenotypes with greatly enhanced migration
and proliferation abilities. Although it is widely accepted
that the emerging of these cells results from a sequence of
genetic and epigenetic alterations, the origin where the
metastatic cells arise from is largely unknown. Currently,
there are a number of perspectives that suggest metastases
arising from: (a) circulating tumor cells (CTCs),41 (b) CSCs,5

(c) epithelial to mesenchymal transition (EMT),42 and
(d) myeloid/macrophage lineage43 (Figure 2). Recent stud-
ies have reported a detection of a population of MSCs that
was recruited from nearby or distant tissues to tumor, pro-
moting tumor growth and increasing metastatic potential.44

Given that MSCs are well known for their abilities of pro-
liferation, migration and differentiation, it can be speculat-
ed that MSCs could become CTCs or CSCs, leading to
cancer “metastasis”.

The relationship between CTCs and CSCs remains unex-
plored. CTCs have a diameter of approximately 20–30 lm,
which is far too large to be allowed passing through the
capillaries (6–7 lm), indicating that most metastases may
not result from CTCs, although it is not exclusive that
exceptionally small or physically plastic CTCs may
exist.36,45 It is now suggested that within the population
of CTCs, there exist CSCs or stem-like cells, which may
be the actual cells that form metastases.45 For example, a
study has identified glioblastoma-derived CTC as CSC-like
cells,46 while another study identified the existence of
patient-derived colorectal CTCs that bear all the functional
attributes of CSCs.47 These results suggested that CTCs
with CSCs characteristics were responsible for metastasis.
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However, the identities of CSCs in CTCs are indistinct,
because different types of cancers vary their expression of
surface markers under different experimental conditions.45

With the consideration of tumor-initiating potential of
CSCs, it is possible that some subsets of CSCs, either intrin-
sic or induced, are able to migrate from the primary tumor
to distant organs and form metastases.

The idea of EMT contributing to metastasis comes from
the finding that many cancers arise in epithelial tissues.43

The transformation of a cancer cell from an epithelial cell
phenotype to a mesenchymal cell type enables the cell to
invade and migrate.48 However, this idea was challenged
by a study using breast cancer CTCs, showing that CTCs
expressing epithelial markers contributed to their metastat-
ic potential and correlated with poor clinical outcomes.49

There aremany studies demonstrating that EMTcan induce
non-CSCs to enter a CSC-like state. In particular, CSC-like
cells derived from the EMT induction in human mammary
epithelial cells (HMECs) expressed stem cell markers,
formed mammospheres, and differentiated to multiple
linages.50–52 When the induction of EMT was performed
after activation of HER2/neu oncogene and infection with
a vector expressing tamoxifen-activated form of either Snail
(Snail-ER) or Twist (Twist-ER), the tumorigenicity of the
CSC-like cells was greatly enhanced.50 Knockdown of
CD44 (a most commonly used CSC marker in hepatocellu-
lar carcinoma) inhibited the invasion and metastasis of
hepatocellular carcinoma both in vitro and in vivo by
reversing EMT.53

Based on the similarities betweenmacrophages andmet-
astatic cancer cells, it was proposed that metastatic cancers

were also arisen from cells of the myeloid lineage. As
reviewed before, the similarities not only refer to their abil-
ity of intravasation, migration, survival in hypoxic and
necrotic environments, and extravasation, but also include
their behaviors of phagocytosis, fusogenicity, and expres-
sion of some myeloid antigens, for example, CD26, C3bi
and CD11b.54 Because macrophages are derived from cir-
culating monocytes that originate from HSCs55,56 and
abnormalities of HSCs themselves lead to cancers of the
hematopoietic system,57,58 it is reasonable to assume that
HSCs may directly or indirectly account for metastasis in
some extent.

MSCs, like HSCs and their descendants, can also circu-
late in the blood. In response to tissue injury, MSCs are
mobilized from their niches, access to the blood circulation
system, and migrate to the damaged tissue to participate in
tissue repair.59 It is well accepted that tumor shares many
common features with the injured tissue, and thus has long
been considered as a “wound” that never heals. In cancer,
the recruited MSCs would constitute tumor stroma and
secrete factors that facilitate tumor growth.44 On the other
hand,MSCs present in tumormicroenvironment (TME) can
be transdifferentiated to myeloid-derived suppressor cells
(MDSC) or M2-type microphages under the influence of
cytokines or chemokines.60–62 The phenotype and function
of MSCs are tightly regulated by its surrounding microen-
vironment. Based on the proliferation, migration, and dif-
ferentiation properties of MSCs and their potential
interaction with molecules released from cancer cells, it is
speculated that MSCs in the TME would make a contribu-
tion to cancer metastasis.

Figure 2. Possible ways of cancer metastasis. (a) Primary tumor cells may translocate from the primary tumor to a distant organ and colonize within that organ;

(b) CSCs within the population of CTCs may be the actual cells that form metastases; (c) Cells within TME may become induced CSCs as a consequence of EMT and

lead to cancer metastasis; (d) Metastatic cancer cells may arise from cells of myeloid origin or from hybrid cells following fusion between macrophages and non-

metastatic cancer cells, which travel to the lymph nodes and form matastases. (A color version of this figure is available in the online journal.)
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MSCs in tumor microenvironment

The TME

The TME is composed of a heterogeneous population
of cells, including tumor cells and nearby endogenous
stromal cells recruited by the tumor.44 Tumor-associated
stromal cells can be arisen from at least six distinct cellular
origins: fibroblasts,63 pericytes,64 bone marrow-derived
MSCs,64 adipocytes,65 macrophages,66 and immune
cells.67 There is no consensus on the role of these cells in
supporting tumor growth, as some contradictory results
have been reported that MSCs either support or suppress
tumor growth.68 However, these different observations
and interpretations may result from varying experimental
conditions and tumors used in different studies.

In fact, detailed in vivo analysis of the cellular composi-
tion of TME is difficult, especially at early stages of metas-
tasis, as it is constrained by the difficulty of spatially
discriminating the metastatic-niche cells within the bulk
tissue. To resolve this issue, a mCherry niche-labeling
system was invented, in which metastatic cancer cells
release a cell-penetrating fluorescent protein that can be
taken up by neighboring cells.69 By using this method,
the presence of parenchymal cells within the TME was
identified. These cells exhibit stem-like cells features,
multi-lineage differentiation potential, and self-renewal
activity.69 In consistence with previous studies,41,70 these
results suggest that stem cells or stem-like cells may play
a critical role in tumor growth and progression.

MSC transformation by tumor-derived factors

MSCs have been reported to undergo transformation by
different tumor-derived factors and contribute to tumor
progression by either becoming tumor-associated stromal
cells or acquiring pro-metastatic phenotypes.64,71–76 As dis-
played in Table 1, both bone marrow- and adipose
tissue-derived MSCs have been observed to display trans-
formation induced by tumor-derived factors to myofibro-
blasts or tumor-associated fibroblasts (TAFs), as revealed
by the expression of specific cell markers. The conversion
of MSCs to these phenotypes is mostly accomplished by
transferring these cells with tumor-secreted factors or
tumor-derived exosomes (Figure 3). A study demonstrated
that bone marrow progenitor cells can be educated by mel-
anoma exosomes towards a pro-vasculogenic phenotype
through MET.71 To further explore the origin of TAFs and
vascular stromal elements in the TME, a study used a series
of multi-colored bone marrow and adipose tissue trans-
plantations prior to tumor establishment to quantitate the
contributions of these populations to TAFs and vascular
stromal elements. The results demonstrated that the major-
ity of fibroblast specific protein (FSP) positive and fibro-
blast activation protein (FAP) positive TAFs were
originated from BMSC (bone marrow-derived MSCs),
whereas most vascular and fibrovascular stroma (pericytes,
a-SMAþ myofibroblasts, and endothelial cells) were origi-
nated from neighboring adipose tissue.44

Interestingly, there are some studies demonstrating that
cancer cells could malignantly transform MSCs in the
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TME.77 For example, when normal BMSCs were indirectly
co-cultured with C6 glioma cells or glioma stem-like cells,
they exhibited an increasing growth and proliferation, as
well as tumorigenicity in athymic nude mice.77,78 Similar
results were also found in BMSCs co-cultured with micro-
vesicles released from human leukemia cell line K562
(K562-MVs).79

It is likely that the different results reported reflect var-
iations in tumor types and differential experimental condi-
tions. Regardless, there is sufficient evidence that suggests
alternative approaches should be considered for interrupt-
ing the involvement of stem cells in tumor progression in
the development of novel therapies for cancers.

Cancer therapy

As summarized in Figure 4, different strategies are devel-
oped to treat cancer. Importantly, based on the growing
understandings of stem cells in cancer biology, strategies
involving bone marrow transplantation, CSC-targeted ther-
apies, and stem cell-based cancer therapies are emerging
opportunities for better treatment of different cancers.

CSCs in cancer therapy

A major challenge in cancer therapy is the recurrence and
progression of the disease, which may attribute to the
development of resistance to chemotherapy in a small sub-
population of CSCs. There are evidences that indicate that
CSCs develop some mechanisms protecting themselves
from toxins and genotoxic stress, including increased
expression of drug transporters,12,80 heightened DNA
damage repair capacity,12,81 maintenance of a low reactive
oxygen species (ROS) environment,82 and recruitment of a
protective niche.12,83 Therefore, current therapeutic strate-
gies directed at CSCs often involve targeting various CSCs

signaling pathways that are required for the maintenance
of stem cells. For example, vismodegib, a hedgehog path-
way inhibitor was approved by the US Food and Drug
Administration to target CSCs in basal-cell carcinoma.84,85

Inhibition of other pathways, such as Notch and Wnt sig-
naling pathways, which are involved in oncogenesis and
tumor development, also results in a profound elimination
of residual CSCs.86–91 In addition to these studies, emerging
therapeutics targeting CSCs and their surrounding micro-
environment have been reported.92 However, many puta-
tive agents to eliminate CSCs have failed to demonstrate
the efficacy in clinical trials.12,93

It is important to realize that the heterogeneity nature of
CSCs and non-specific therapeutic agents make a predict-
able failure of the agents in eradicating CSCs93 (Figure 5).
Since CSCs own plasticity and can shift between quiescent
and proliferative state, it is not surprising that the
responses of different populations of CSCs to therapeutic
agents can differ and their phenotypes can constantly
change in response to anticancer treatment, which ultimate-
ly results in cancer relapse. The similarities between CSCs
and normal stem cells also hinder the application of many
therapeutic agents with less targetability due to potentially
severe side effects and toxicity. Hence, a comprehensive
understanding of the role of CSCs in cancer relapse
would be greatly beneficial to better treatment of cancers.

Stem cells in cancer therapy

The ability of stem cells in promoting tissue regeneration
enables their potential to become therapeutic agents. For
cancer treatment, bone marrow transplants containing
HSCs have been successfully used for more than 60 years
to treat patients with hematological cancers.94 However, the
application of HSCs has not been extended to the treatment
of other types of cancers. A study has shown that HSCs

Figure 3. TME and MSCs transformation by different tumor-derived factors. TME is composed of a heterogeneous population of cells, including tumor cells and

nearby endogenous stromal cells recruited by the tumor. MSCs within TME could be transformed into myofibroblasts or TAFs, which in turn promote tumor growth.

(A color version of this figure is available in the online journal.)
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mobilization from peripheral blood progenitors antago-
nized chemotherapy-induced myelotoxicity and thereby
allowed dose escalation by a factor of 1.5 to about 20 in
the treatment of breast cancer.95 However, a subsequent
study showed that high-dose chemotherapy with autolo-
gous HSCs supplement was not superior to dose-dense and
dose-escalated therapy.96

Since CSCs play important roles in tumor development,
relapse, and metastasis, newly developed agents targeting

CSCs surface markers bring to a great promise for cancer
therapy. For instance, US-FDA approved gemtuzumab ozo-
gamicin (GO, also known as CMA-676) for the treatment of
adults with newly diagnosed CD33 (a myeloid differentia-
tion antigen found on blasts in acute myeloid leukemia and
leukemic stem cells)-positive acute myeloid leukemia. The
indication of gemtuzumab ozogamicin for newly-
diagnosed CD33-positive acute myeloid leukemia was
extended to include pediatric patients. In a randomized

Figure 4. Therapeutic strategies in cancer therapy. (a) Traditional cancer therapies including surgery, chemotherapy, and radiation therapy are commonly used in

clinic to treat cancer; (b) With recognition of the immune system in protecting the body from threats such as cancer cells, immune therapy strategies are developed to

be a potent type of cancer therapy; (c) Bone marrow transplantation is successfully used to treat patients with hematological cancers; (d) Stem cells are integrated with

anticancer drugs/enzymes/genes/oncolytic virus for their targeted delivery to tumors and metastases; (e) Therapeutic strategies directed at CSCs may avoid

recurrence of the disease and may lead to better treatments for cancer patients. (A color version of this figure is available in the online journal.)

Figure 5. Possible mechanisms of cancer relapse. Due to the heterogeneity nature of CSCs, the therapeutic agents are not particularly specific, leading to the failure of

the agents in eradicating CSCs. The residual CSCs are responsible for the recurrence of cancer. (A color version of this figure is available in the online journal.)
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clinical trial-AAML0531 (NCT00372593), the combination
of gemtuzumab ozogamicin with chemotherapy, relative
to chemotherapy alone, reached a 20% increase for the per-
centage of patients free of induction failure, relapse, or
death at five years. Other strategies targeting CSCs involve
disrupting the microenvironment that enriches CSCs, sup-
pressing signaling pathways or inhibiting CSCs metabo-
lism, were carefully reviewed previously.92

Besides targeting CSCs, normal stem cells have been
used as “drug deliverers” to treat cancer. Given that
MSCs are of inherent tumor-tropic properties, the integra-
tion of anticancer genes/drugs with stem cells has been
tested for targeted delivery of these genes/drugs to
tumors and their metastases.97,98 Several studies have
shown that by using click chemistry to tether chemothera-
peutic agents or immune checkpoint inhibitors to stem
cells, tumor growth can be inhibited.99–101 Other studies
showed that stem cells can be loaded with prodrug-
activating enzymes (cytosine deaminase, carboxylesterase,
thymidine kinase), interleukins (IL-2, IL-4, IL-12, IL-23),
interferon-beta, apoptosis-promoting genes (tumor necro-
sis factor-related apoptosis-inducing ligand), oncolytic
viruses, or metalloproteinases (PEX).98,102 These anticancer
agent-preloaded stem cells have elicited a significant anti-
tumor response in animal models of various cancers.98,102

These studies highlight the therapeutic potential of engi-
neered stem cells; however, their clinical application has
yet to be explored.

Perspectives

This minireview focuses on how stem cells or cancer stem
cells play their role in cancer initiation, metastasis, and
therapeutic resistance. This is an emerging field of cancer
research, and there are many more questions than few clear
answers, but experimental studies continue to shed light on
promising new hope in future cancer treatment. It is ulti-
mately important for both clinical and experimental studies
to develop alternative approaches applicable to clinical
application.

Systemic therapies have displayed an inability to cure
metastatic tumors, and had cytotoxic effects on normal
functional cells. Patients often suffer from severe side
effects and usually die of progressive organ failure. Many
efforts have been made to develop new approaches for
therapeutic intervention, although the rate of failure
remains high. The cells responsible for cancer relapse can
protect themselves from toxins and constantly change their
phenotypes in order to survive in harsh conditions. This
evolving understanding help develop stem cells or cancer
stem cells therapy for cancers. Given the possible role of
stem cells in promoting cancer, it is likely that restoring the
natural microenvironment for stem cells would be a critical
factor to treat or prevent cancers.
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