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Abstract
Lyme disease, which is primarily caused by infection with the bacterium Borrelia burgdorferi

in the United States or other Borrelia species internationally, presents an ongoing challenge

for diagnostics. Serological testing is the primary means of diagnosis but testing

approaches differ widely, with varying degrees of sensitivity and specificity. Moreover,

there is currently no reliable test to determine disease resolution following treatment. A

distinct challenge in Lyme disease diagnostics is the variable patterns of human immune

response to a plurality of antigens presented by Borrelia spp. during the infection. Thus,

multiplexed testing approaches that capture these patterns and detect serological

response against multiple antigens may be the key to prompt, accurate Lyme disease

diagnosis. In this review, current state-of-the-art multiplexed diagnostic approaches are

presented and compared with respect to their diagnostic accuracy and their potential for
monitoring response to treatment.
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Introduction

Until recently, the only diagnostic approach recommended
by the Centers for Disease Control and Prevention (CDC)
for human Lyme disease diagnosis was a two-tiered
scheme using Western blot analysis after a positive
enzyme immunoassay (EIA or ELISA) result to detect
serum antibodies against the causative agent, Borrelia burg-
dorferi.1 This standard two-tier test (STTT) was shown to
successfully diagnose 29–40% of Lyme disease cases
within the first 30 days of infection.2,3 For a disease with
an estimated national incidence (in the United States) of
476,000 new cases per year,4 false negatives can pose a sig-
nificant risk to public health.5

Low sensitivity of testing during early-stage disease
could mean that practitioners diagnose and treat patients
based on clinical symptoms and without serological confir-
mation. Although the presence of one or more characteristic
erythemamigrans (EM) skin lesions is an acceptable way to
identify Lyme disease in individuals, this clinical sign is
sometimes not present or could appear atypically.6–8

Antibiotic treatment has been shown to be effective by
reducing bacterial load at various points of B. burgdorferi
infection,9–11 but this treatment has been associated with
fewer symptoms and faster recovery when administered
within the first month of infection,12,13 thus supporting an
ongoing need for better diagnostic strategies for early-stage
disease.

Reliance on serological tests for diagnosing an active
infection is less than ideal due to the indirect nature of
antibody testing. There is an inherent delay between initial
infection and a measurable immune response to specific
antigens. The extent of antibody production and how that
changes temporally during the disease course may also
differ across patients. Further complicating this is the pos-
sibility of co-reactivity with other antigens as well as the
difficulty in discerning a new infection in patients who
were previously infected.

Replacement of the qualitative second-tier Western blot
with a quantitative approach has shown promise. On 29
July 2019, the CDC approved a modified testing scheme
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that uses an ELISA in lieu of theWestern blot as the second-
tier assay.14 A recent comparison demonstrated that these
modified two-tier tests, consisting of two quantitative
ELISAs, are as specific as the STTT while yielding poten-
tially higher sensitivity.15,16 Quantitative and semi-
quantitative assays avoid the subjective immunoreactive
band interpretation of standard Western blot analysis,
which may decrease both sensitivity and specificity.17 A
quantitative readout is typically standardized and used to
objectively report target detection. Such data may also con-
tribute to the design of multiplexed algorithms that incor-
porate each target as a diagnostic variable. To screen
antibodies against B. burgdorferi as diagnostic biomarkers,
serum reactivity to individual proteins can potentially be
measured and used to identify targets that correlate with
infection, recovery, or persistent disease manifestations.17

Thus, multiplexed quantitative assays may allow for the
development of better diagnostic strategies for early
Lyme disease, as well as elucidate the etiology of post-
treatment Lyme disease syndrome (PTLDS).18,19

This minireview summarizes some of the quantitative,
multiplexed strategies that are currently under develop-
ment for Lyme disease serology, as well as the diagnostic
scoring algorithms used to predict infection status. We fur-
ther describe a limited number of studies that investigated
antibody titer changes throughout phases of infection and
recovery. We focus here on antibody detection in serum
samples, which is an indirect strategy limited by a time
window between pathogen exposure and the host’s
immune system producing antibodies at detectable levels.
Indirect detection is widely used because, despite the time
window described, it has still been shown to be more sen-
sitive and cost efficient than some more direct detection
strategies that measure scarce amounts of bacteria and bac-
terial products.17 Although quantitative strategies that
directly detect targets using methods like PCR analysis,20–
23 chromatography/mass spectrometry,24–27 and genomic
sequencing28–31 are available or in development, compre-
hensive exploration of each type of data and its analytical
interpretation is beyond the scope of our discussion.

Quantitative multiplexed assays for
predicting Lyme disease status

Serological tests for Lyme disease have been developed to
detect IgG and IgM antibodies against proteins embedded
on the surface of spirochetes involved in the infection.
While Lyme disease is primarily caused by B. burgdorferi
sensu stricto in the United States, in Europe there is
increased prevalence of other Lyme disease Borrelia spe-
cies, including Borrelia garinii,32 Borrelia afzelii,32 Borrelia
bavariensis,33 Borrelia lusitaniae,33 Borrelia valaisiana,33

Borrelia bissettii,33 and Borrelia spielmanii.33 Of these, B. burg-
dorferi, B. garinii, and B. afzelii aremost frequently associated
with the typical presentation of Lyme borreliosis.32,34

Different serological targets have been used to diagnose
the infection in the US compared with Europe,34 although
a comprehensive test that incorporates all Lyme disease
bacteria in a multiplexed assay would be useful to correctly
diagnose individuals who have traveled in these areas.

Among the diagnostic antigens used to detect Lyme dis-
ease in the United States and in Europe, some are conserved
across several Lyme disease Borrelia species (e.g. C6 pep-
tide of VlsE),35 while others have variants that can differ
considerably across species (e.g. OspC).36,37 Several pro-
teins with diagnostic potential have been reviewed,38

which include those used in the STTT.39 Proteins that
have been incorporated into quantitative diagnostic
assays include outer fibronectin binding protein (BBK32),
decorin-binding proteins (DbpA and DbpB), flagellin
(FlaB), outer surface proteins (Osp proteins), OspEF-
related proteins (Erp proteins), oligopeptide permease A2
(OppA2), and the vmp-like sequence expressed protein
(VlsE). Besides full-length proteins, peptide sequences effi-
ciently expose specific epitopes for antibody binding but
could neglect antigenic qualities of protein folding.40 A
recent study screened 12-mer peptide sequences derived
from 62 distinct B. burgdorferi proteins, including 10
sequences found most useful for diagnosing early-stage
Lyme disease.41 Use of recombinant sequences enables
the incorporation of proteins that are normally expressed
by B. burgdorferi within the infected host but not when
grown in vitro (e.g. certain variants of VlsE and
OspF),42,43 thus expanding the repertoire of potential tar-
gets compared with the standardWestern blot, and making
it possible to utilize modified or truncated proteins.

The variety of antibodies that bind antigenic proteins
found in Lyme disease suggests that patients develop an
independent immune response (which can be quantified by
antibody titer) to each antigen. Since an infected individual
may produce detectable amounts of antibody against a
subset of antigens, a multiplexed diagnostic approach
could potentially maximize test sensitivity.44 Moreover,
establishing criteria for a positive result that involves mul-
tiple targets could increase test specificity.45 The potential
redundancy of antibody responses to bacterial antigens in
multiplexed analysis may also provide reassurance against
systematic errors caused by protein batch inconsistencies or
assay-specific characteristics that affect the ability to ana-
lytical sensitivity. A comparison of the ViraChip and
ViraStripe assays that measured similar targets in a micro-
titer well or a quantitative line blot, respectively, showed
less than 100% agreement.46 Inherent differences in assay
matrix and detection mechanism may also contribute to
this discrepancy. Tests that are designed to detect the
same target can also differ in serum antibody affinity
because of the antigen variant used (e.g. OspC A type vs.
OspC K type).44 By casting a wider net for targets and
allowing for potential redundancy, multiplexed detection
may achieve higher sensitivity and specificity than single-
plex analysis.

When properly implemented, multiplexed assays pro-
vide options for measuring antibody titers and further
using these data to generate a diagnostic result. The best
approach to multiplexed assay design is not always obvi-
ous and it may be beneficial to try a few different strategies
to select the one offering the highest sensitivity and specif-
icity for a comparable sample.47 By first determining signal
cutoffs for each target, some assays are then able to estab-
lish optimal criteria for positive diagnosis when a specified
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proportion of targets are detected.47,48 Alternatively, posi-
tive diagnosis can be made using a weighted score combin-
ing the measured titers of each target based on a
multivariate regression model.45,49–51 Other multiplexed
assays do not distinguish between targets, but instead
directly measure a combined signal to predict infection
status.44,52 Cut-off and/or threshold establishment, wheth-
er it is for detection of individual targets or for scoring a
positive sample, is another important decision in assay
design. Using multiples of standard deviations above neg-
ative signal (a common standard is the mean plus three
times the standard deviation) is a straightforward method
that affords flexibility for controls, such as pooled negative
samples, but could miss consistent subtle differences
between groups. Moreover, pooled negative samples can
potentially dilute or diminish low-level reactivity to targets,
as it does not represent any individual sample. Cutoffs can
also be established with receiver operating characteristic
(ROC) analysis to determine the best threshold for classify-
ing positive and negative outcomes.53 This generally
requires a large set of negative controls in balance with
the positive samples and data analysis may be complex.

Table 1 summarizes several quantitative multiplexed
strategies for Lyme disease diagnosis. These strategies
often use one of three biosensing mechanisms: antigen-
coated bead assays, protein microarrays, and standard
ELISA (Figure 1). The general binding scheme entails anti-
gen probes capturing IgG and/or IgM antibodies in serum
and use either direct signal readout or attachment of a sec-
ondary label for detection. Automated line blot assays,
interpreted using the same criteria as the standard
Western blot, have also been used to decrease subjectivity
in blot interpretation.46,54 However, the interpretation soft-
ware is adjustable by human technologists and the diag-
nostic strategy is not novel compared with the STTT, so
these assays are excluded from our discussion.54

Bead-based quantitative assays have recently gained pop-
ularity for serological detection, since they can be optimized
for simultaneous detection of multiple targets using existing
commercial technologies, such as the Luminex xMAP
system.51,55 One study adopted this technology using sets
of antigen-coated polystyrene beads to detect IgG against
VlsE protein and IgM against a 10-mer peptide derived
fromOspC protein.45 The authors tested severalmultivariate
regression classifiers to combine the two targets into a bio-
informatic score, where a value greater than 1.0 indicated a
positive result. The resulting model was used as a second-
tier test replacing the Western blot and provided potentially
better overall diagnostic performance than the STTT.45

Besides measuring single-antigen coated beads, other simi-
lar assays measure a combined signal output using beads
coated with multiple antigens44 or modified recombinant
antigen hybrids.52 In the bead-based assays mentioned
here, cutoff values for a positive result were determined
using several standard deviations above the mean signal
obtained from negative control serum samples.

Another type of multiplexed assay measures the signals
of targets uniformly separated along a biosensing surface,56

thus avoiding the limitation of size-based separation that
occurs inWestern blot analysis. One example is the grating-

coupled fluorescent plasmonics (GC-FP) biochip devel-
oped by our research group,57 which used a plasmonic
fluorescence microarray to screen IgG antibodies against
17 proteins (DbpA, OspD, BBA73, RevA, BmpA, FlaB,
BBA65, ErpL, VlsE, OspC, P45, BBA69, ErpG, DbpB, P58,
BBA70, ErpY) for predicting Lyme disease status. The most
predictive markers were determined using ROC analysis.
Several combinations of targets where detection of 2 out of
3, 4, or 5 targets indicated a positive result yielded 90%
sensitivity and 100% specificity for a small sample of
human subjects.

The mChip-Ld is a different chip-based assay that
detects serum antibodies against VlsE, pepVF (synthetic
peptide combining regions of VlsE and FlaB), and OspC
(K variant).49 In developing this assay, 12 antigens were
screened with EIA for their correlation with Lyme disease
diagnosis using a serum panel from the CDC: Hsp90, ErpB,
p45, p28, FlaB, p93/100, BmpA, DbpA, DbpB, OspC (K
variant), VlsE, and pepVF. Out of these 12 antigens, the
above 3 were deemed most predictive and incorporated
into the mChip-Ld platform. ROC analysis of over 10,000
permutations of signal intensity weights for each antigen
was conducted to develop the optimal quantitative algo-
rithm for generating a diagnostic score, which is a linear
sum of each weighted antigen signal.

Multi-antigen coated wells onmicrotiter plates represent
another type of microarray. Using this technology, the
ViraChip measures IgG and IgM antibodies against B. burg-
dorferi sensu stricto strain B31 and the SeraSpot assay does
this for various European Lyme disease Borrelia.58 The
ViraChip is scored in the same way as STTT IgG and IgM
Western blots, where detection of at least 2 out of 3 IgM
targets or 5 out of 10 IgG targets indicates a positive
result.46 The SeraSpot assay scores positive with detection
of at least two targets for IgG positivity or at least two
targets (or detection of anti-OspC or anti-DbpA) for IgM
positivity.59 Recently, alternative interpretation criteria
have been proposed for the ViraChip assay to increase sen-
sitivity and specificity.58

Although not inherently a multiplexed platform, the
standard ELISA is a versatile technique that can be used
to measure antibody titer via colorimetric detection of an
enzyme-activated labeling antibody on a microtiter plate.
Different targets are typically not measured within the
same well, but the large number of wells per plate affords
analysis of several targets at once when reagent volumes
permit it. ELISA was used to detect IgM against BBA65,
BBA70, BBA73, OspC, FlaB, BmpA in early-stage Lyme dis-
ease.47 A positive diagnostic result on this test required
detection of at least two out of the six targets, which yielded
higher sensitivity for early Lyme disease than the standard
IgMWestern blot. The authors explored different strategies
to determine the cutoff values for antigen detection, includ-
ing 2SD above the negative control, ROC analysis for best
sensitivity while setting the specificity at �99%, and devel-
opment of a weighted scoring metric.47 In other study, IgM
and IgG against B. afzelii flagella antigen was detected
using ELISA. The resulting signals were then combined to
generate an S score for predicting the risk for having Lyme
disease.50
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The diverse strategies for measuring serum antibodies
and developing diagnostic algorithms have made the field
highly interdisciplinary, harnessing the expertise of micro-
biologists, statisticians, and engineers alike. This would
ultimately promote the development of a better diagnostic
test that can be used to improve health outcomes. However,
the general focus of algorithm development and optimiza-
tion thus far has been on determining Lyme disease status
in relatively uncomplicated samples, specifically patients
with acute or disseminated active infection and those with-
out a history of Lyme disease. The methods used to identify
these two groups could potentially be applicable to more
complex populations.

In addition to determining Lyme status, algorithms can be
developed that may allow one to distinguish between past
(treated) and current infections, which in regions of endemic-
ity, would be useful for determining if a patient has been re-
infected. Among patients who report persistent symptoms
after a full course of treatment, an exploration of how anti-
body profiles may differ in these groups compared with
treated groups with no long-term symptoms may lead to
objective diagnostic algorithms for PTLDS or refractory
Lyme disease. Lastly, because Ixodes (ticks) can be a vector
for co-infectious organisms,60,61 potentially causing some
combination of Lyme disease, Ehrlichiosis, Babesiosis, and/
or Anaplasmosis, multiplexed diagnostic algorithms that
detect and distinguish the immune response in the presence
of co-infections may be particularly useful.41,60 Symptoms of
active infection and post-treatment symptoms that result
from co-infections manifest differently than simple Lyme
infections in the absence of other tick-borne organisms.60

Quantitative immunoassays for diagnosis
and monitoring of treatment response

There is currently no standard for monitoring the serolog-
ical response to Lyme disease treatment, which could be

useful to diagnose re-infection or PTLDS. Early studies on
antibody titer changes focused on either a limited subset of
antibody markers or the general antibody titer against
whole-cell lysate.62–65 To shed light on the temporal
dynamics of specific antibody titers during infection and
treatment, researchers examined antibody biomarkers with
affinity to C6 peptide, flagellin, OspC, VlsE, OspA, OspB,
DbpA, Arp, and Borrelia whole-cell lysate. Table 2 summa-
rizes various findings involving human patients.63–70

Ultimately, a screening effort to select biomarkers and
design algorithms for predicting treatment prognosis,
such as the case for diagnostic assays, has remained elusive.

According to some previous studies, early markers for
infection include antibodies against OspC, DbpA, Arp,
VlsE, and Borrelia sonicate.64,70 During late-stage infection,
OspA and OspB may be detectable, although antibodies
present during early disease may also be detectable
during disseminated disease or for some time after initiat-
ing treatment.65 Researchers have reported conflicting
results regarding antibody persistence after the standard
course of treatment was completed. One study using
serial serum samples from 74 patients with Lyme arthritis
reported decreased antibody levels against several antigens
4–6months following treatment,70 while other studies with
sample sizes ranging from 79 to 128 patients with varying
disseminated Lyme disease manifestations reported persis-
tently elevated antibody levels years following treat-
ment,65,69,71,72 which were independent of clinical
symptoms. It has also been shown across human
(n¼ 120–131) and rhesus macaque (n¼ 7) studies that C6
antibody titer exhibited a �4-fold decrease following treat-
ment, especially if the patient is treated early.13,66,73 For
human patients, these results were in accordance with clin-
ical symptoms, such that those who exhibited a �4-fold
decrease in C6 antibody titer were also clinically asymp-
tomatic at the last point of serum collection. Furthermore,
the rare patients who had persistent arthritis or

Figure 1. Quantitative multiplexed assays for Lyme disease serology use various strategies for multiplexed detection. Some recent work in this area has focused on:

(a) bead-based flow cytometry, such as with the Luminex xMAP system, which uses lasers (e.g. red and green beams in the figure) to excite fluorescent tags that

correlate with captured target analytes on individual beads and generates signal intensity readouts for each bead; (b) fluorescent microarray image analysis, such as

with the GC-FP biochip, which captures target analytes passed through a lateral flow chamber for image-based quantitation via signal intensities of fluorescent labels;

and (c) standard ELISA analysis, a common immunoassay platform conducted in microtiter plates and analyzed with specialized detectors that quantify targets via

colorimetric or other chemical changes within wells. (A color version of this figure is available in the online journal.)
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neurological symptoms associated with the Lyme disease
were also more likely to also have persistently high (i.e.<4-
fold decrease) C6 antibody titer.13,73

To explain some of the conflicting evidence about anti-
body levels against Lyme disease Borrelia following return
to a healthy state, researchers posit that the ability of some
antigens to be stored in folliculodendritic cells as immune
complexes may stimulate B-cells to produce antibodies for
up to several years, resulting in the maintenance of detect-
able titers independent of active infection.13,74 Such anti-
gens would be abundant and stable during active
infection, with low turnover rate. Other proteins that
undergo frequent turnover, such as VlsE, would be unlikely
to reach the folliculodendritic cells at levels enough to gen-
erate long-term B-cell immunity.75,76 Another potential
explanation for differential maintenance of specific anti-
body levels is the T-cell dependency of each antigen.77

It has been shown that several B. burgdorferi surface anti-
gens elicit T-cell independent responses and that such anti-
gens may also elicit relatively weak B-cell humoral
immunity.78 Altogether, one may hypothesize that among
the larger repertoire of Lyme disease diagnostic antigens,
there exists a subset of diagnostic antigens useful for mon-
itoring treatment response and help elucidate the etiology
of persistent symptoms in PTLDS. These may include anti-
bodies that decrease after treatment or, alternatively, tend to
be elevated in patients who experience successful recovery
compared with patients that report persistent symptoms.19

In the latter disease paradigm, researchers found that a
robust plasma B cell response contributes to inhibition of
bacterial growth and disease clearance.19

A thorough effort to identify potential biomarkers asso-
ciated with active infection or persistent symptoms would
benefit from detailed documentation of the time points

Table 2. Studies that investigated the temporal dynamics of serum antibody titer against Lyme disease bacteria during treatment and recovery.

Antigen/Antibody isotype Serological course References

Flagellin/ IgG and IgM IgM and IgG decreased over 10 years following treatment, but some

study subjects remained seropositive without associated

symptoms

Hammers-Berggren et al.63

C6 peptide/ IgG and IgM In a clinically cured group, antibody titer decreased either fourfold or

to undetectable levels in most patients within 6 to 12months post

treatment

Philip et al.66

VlsE (B. garinii strain PBi)/ IgG Using the LIAISON Borrelia Screen assay, all IgG-positive patients

became seronegative at 2 to 6months post treatment, although

these patients remained seropositive based on a comparable

Anti-Borrelia Plus VlsE ELISA

Marangoni et al.67

OspC7 peptide/ IgG and IgM Of IgM-positive patients, 22% and 50% had a declining or negative

titer, respectively, 2months post treatment. Of IgG-positive

patients, 60% and 40% had a declining or negative follow-up titer,

respectively.

Jobe et al.68

OspC/ IgG and IgM Early IgM response occurred in patients with EM or meningitis.

Increased IgG titer 3months to 4 years after disease onset may

coincide with arthritis episodes.

Fung et al.64

OspA/ IgG Western blot showed increasing IgG reactivity towards later disease,

which coincided with arthritis episodes

Kalish et al.65

OspB/ IgG Western blot showed IgG reactivity 2–6 years following disease

onset, which coincided with some arthritis episodes.

Kalish et al.65

Flagella (B. afzelii, strain

DK-1)/ IgG and IgM

Patients with EM fit three profiles at post treatment follow-up �1þ
year later: persistent positive titer, persistent negative titer, or

decrease of a positive pretreatment titer to negative signal.

Glatz et al.69

B. burgdorferi sonicate/ IgG Low antibody reactivity in early disease with increased titer months

later. Antibody titers remained high up to 3months after starting

antibiotic therapy and declined by 4–6months.

Kannian et al.70

DbpA/ IgG Antibody reactivity was sometimes present during early disease and

titers increased considerably months later. Median antibody titers

remained steady or increased 1 to 3months after starting antibi-

otic therapy and decreased by 4–6months.

Kannian et al.70

OspA/ IgG No detected antibody reactivity during early disease, but some

patients developed increased antibody titer later on. Antibody titer

tended to be higher in antibody-refractory arthritis patients,

including 4 to 6months after starting treatment.

Kannian et al.70

Arp/ IgG Antibody reactivity was sometimes present during early disease and

some of the patients treated for Lyme arthritis demonstrated low

antibody reactivity, which decreased in patients who were

responsive to therapy but increased slightly before decreasing by

4–6months in patients with antibiotic refractory arthritis.

Kannian et al.70

VlsE C6/ IgG Moderate antibody reactivity observed early in disease. Antibody

titers decreased within the first 3months of starting antibiotic

treatment and further declined during additional follow-ups.

Kannian et al.70
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from infection to treatment, specific patient characteristics,
and the prescribed treatment regimen. It has been shown
that a longer interval between exposure and treatment may
lead to more severe disease (e.g. multiple EM, neurologic
symptoms, and arthritic symptoms), which is further asso-
ciated with higher and more expansive antibody reactivity
that lasts longer compared with patients treated at earlier
stages of the disease.48,66,69,79 Individual differences in
genetic background and other circumstances can also
affect how a patient responds to infection and antibiotic
treatment. Thus, patients may be prescribed one of several
variations of the standard treatment. The Infectious
Diseases Society of America recommends the following as
first-line treatment for early localized or early disseminated
Lyme disease (i.e. EM in the absence of neurological symp-
toms nor atrioventricular heart block): oral doxycycline
(100mg twice daily) or amoxicillin (500mg 3 times daily)
for 14–21 days.10 For patients intolerant of these treatments
or present to the clinic with more serious disseminated dis-
ease symptoms, including Lyme arthritis and neurological
involvement, IV administration of other antibiotics is rec-
ommended.10 Additional treatment for patients with per-
sistent symptoms is not recommended by the Infectious
Disease Society of America guidelines; however, some
studies involving patients with PTLDS report inconsistent
results of retreatment.13,80–82 Ultimately, the “standard
treatment” for Lyme disease is not a one-size-fits-all proto-
col that induces the same response in everyone. An under-
standing of the differences within the patient population, as
well as supplementing the existing and novel testing pro-
cedures with information about patient medical histories
would allow for more personalized and potentially accu-
rate predictions of treatment prognosis.

Novel diagnostic approaches may provide additional
information about serum antibody levels and the profile
of antibody response against different antigens for acute
and convalescent disease. Using a highly sensitive
microarray-based detection platform called GC-FP, our lab-
oratory measured IgG antibody levels against 17 B. burg-
dorferi antigens (BBA65, BBA69, BBA73, BmpA, DbpB,
ErpG, ErpL, ErpY, OspC, OspD, P41, P45, P58, RevA,
VlsE) in acute and convalescent serum pairs from two
patient cohorts, in conjunction with our prior study on
GC-FP for Lyme diagnostics (Figure 2).57 As a caveat for
this analysis, the time interval between samples collected
before and after initializing treatment differed across
patients as well as cohorts and the total number of paired
acute/convalescent samples is limited. The first cohort
(n¼ 3) consisted of patient samples from the Lyme
Disease Biobank taken during early Lyme disease and
again 76 to 99days after initiating the standard course of
antibiotic treatment. Convalescent stage patients in this
group may have reached at or neared clinically asymptom-
atic disease resolution.57 This may explain the observed
general decrease in IgG antibody titers below detectable
levels using GC-FP analysis. Although patient serum sam-
ples from the CDC Lyme Serum Repository were also taken
at the early Lyme disease stage for the second cohort (n¼ 4),
the convalescent stage sample was drawn much earlier
than in the first cohort, at 10–35 days after initiating

treatment.57 At this stage of early convalescence, patients
may have been in the process of mounting a peak humoral
immune response to the infection.66 Thus, there was a mea-
sured titer increase for IgG antibodies to several antigens at
the convalescent stage. The baseline titers of early acute
samples may further be affected by the time interval
between infection and initial serum collection, individual
genetic differences, and whether samples were decontami-
nated with heat shock treatment (as was done for the CDC
samples).83 Thus, several factors including the temporal
dynamics of infection and treatment, as well as sample han-
dling conditions, need to be standardized and accounted
for to accurately predict Lyme disease status based on the
circumstances of each patient (and their serum samples).
Nonetheless, these initial results demonstrate the potential
to measure differential antibody profiles during acute and
convalescent phases of infection, which could provide
insight into a patient’s stage of disease or response to treat-
ment. Along the same line of investigating temporal
changes in immune response to Lyme disease, another
study measured levels of various cytokines and chemo-
kines associated with T-helper cell (Th1 and Th17) func-
tion.84 The authors reported several differences across
serum samples from patients with early disease with or
without antibiotic treatment, versus late-stage Lyme arthri-
tis. Analysis of these inflammatory mediators can provide
information about how heterogeneity of immune responses
may correlate with disease stage, Lyme symptoms manifes-
tation, and possible autoimmune phenotypes,84 potentially
supplementing antibody data in determining Lyme disease
prognosis.

Outlook

The ongoing challenges of diagnosing early Lyme disease
and understanding the treatment response have been
important areas for research. Current test sensitivity for
early Lyme disease was estimated to be 60 times lower
than comparable HIV serological tests.5 Currently there is
no standard method for confirming that a patient has fully
recovered from Lyme disease or has been re-infected after
being diagnosed and treated previously. Among proposed
solutions, quantitative multiplexed serological assays have
emerged to be relatively simple and powerful techniques
that have been shown to be comparable or better than the
current STTT scheme.44,49 Besides accessing quantitative
information about the extent of specific antibody response
to spirochete proteins, a layer of information not typically
permitted with qualitative methods such as the Western
blot, such assays also provide data that can be used to dis-
cover patterns in serum reactivity and enable us to predict
disease status based on these patterns. For example, we
recently used both ROC analysis and machine learning
algorithms to develop diagnostic thresholds for COVID-
19 antibody detection in a GC-FP based assay.85 This has
been done to diagnose Lyme disease using several quanti-
tative multiplexed assays described in this minireview. We
further propose that similar techniques using predictive
modeling and machine learning can be adapted to differ-
entiate active Lyme infection in patients who have complex
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Lyme disease statuses, such as past infection, PTLDS, and
co-infection.

In these cases, when disease status is complicated, ran-
domized training and test sets could be useful in making
cutoff decisions and designing diagnostic algorithms to
prevent model overfitting. To accomplish this, a large-
scale effort to collect and consolidate a variety of data
from negative serum control sets representative of local
and general populations could be used to identify
active disease in areas of different prevalence for Lyme
disease antibodies and where people may have other
look-alike or cross-reactive conditions.83 Although they

may be difficult to obtain and confirm, negative controls
from successfully treated Lyme disease patients would
be particularly useful in identifying re-infections.
Data from patients with confirmed treatment failure,
while also difficult to obtain, would help in
elucidating why a subset of patients exhibit PLTDS.13,86

Data from these populations may contribute to novel diag-
nostic algorithms that address the current gap in scientific
knowledge and move Lyme disease diagnostics closer to a
quantitative analysis of the immune response to disease,
and thus promote better ways of tackling tick-borne illness
in the clinic.

Figure 2. GC-FP analysis was conducted to measure IgG antibody levels against 17 B. burgdorferi antigens (BBA65, BBA69, BBA73, BmpA, DbpB, ErpG, ErpL, ErpY,

OspC, OspD, P41, P45, P58, RevA, VlsE) in acute and convalescent serum pairs from two cohorts. Cohort 1 consisted of samples from three patients, collected by the

Lyme Disease Biobank and Cohort 2 consisted of samples from four patients collected by the CDC Lyme Serum Repository. Samples from both cohorts included an

early Lyme disease sample (early acute) and a sample collected after initiating treatment (convalescent), with the days after initial dose of treatment specified. The

mean GC-FP signal intensity for each antigen is reported for each patient. The red lines indicate cutoff values for detectable signal, which were determined from

measurement of negative control serum samples. For a given sample and antigen, GC-FP signal above the red line indicatesmeasurable antibody concentration above

the background signal measured in a negative control sample. (A color version of this figure is available in the online journal.)
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