
Minireview

Sounding out the hidden data: A concise review of deep learning

in photoacoustic imaging

Anthony DiSpirito III1 , Tri Vu1, Manojit Pramanik2 and Junjie Yao1

1Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; 2School of Chemical and Biomedical Engineering,

Nanyang Technological University, Singapore 637459, Singapore

Corresponding author: Junjie Yao. Email: junjie.yao@duke.edu

Abstract
The rapidly evolving field of photoacoustic tomography utilizes endogenous chromophores

to extract both functional and structural information from deep within tissues. It is this power

to perform precise quantitative measurements in vivo—with endogenous or exogenous

contrast—that makes photoacoustic tomography highly promising for clinical translation

in functional brain imaging, early cancer detection, real-time surgical guidance, and the

visualization of dynamic drug responses. Considering photoacoustic tomography has

benefited from numerous engineering innovations, it is of no surprise that many of photo-

acoustic tomography’s current cutting-edge developments incorporate advances from the

equally novel field of artificial intelligence. More specifically, alongside the growth and

prevalence of graphical processing unit capabilities within recent years has emerged an

offshoot of artificial intelligence known as deep learning. Rooted in the solid foundation of

signal processing, deep learning typically utilizes a method of optimization known as gra-

dient descent to minimize a loss function and update model parameters. There are already a

number of innovative efforts in photoacoustic tomography utilizing deep learning techniques for a variety of purposes, including

resolution enhancement, reconstruction artifact removal, undersampling correction, and improved quantification. Most of these

efforts have proven to be highly promising in addressing long-standing technical obstacles where traditional solutions either

completely fail or make only incremental progress. This concise review focuses on the history of applied artificial intelligence in

photoacoustic tomography, presents recent advances at this multifaceted intersection of fields, and outlines the most exciting

advances that will likely propagate into promising future innovations.
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Introduction

The hybrid imaging modality of photoacoustic tomography
(PAT) combines optical excitation and ultrasound detection
to achieve an unparalleled balance of spatial resolution,
penetration depth, and imaging speed.1–3 PAT relies on
the photoacoustic effect, by which the absorption of excita-
tion light by endogenous or exogenous chromophores
causes a transient temperature rise that generates a pres-
sure rise proportional to the optical absorption.1,4 This
rapid pressure rise propagates through the tissue as ultra-
sound waves that are detected by an external ultrasound

transducer or transducer array. PAT has two major imple-
mentations: photoacoustic computed tomography (PACT)
using wide-field light illumination and parallel acoustic
detection, and photoacoustic microscopy (PAM) using
focused light illumination and point-by-point acoustic
detection. Both PAT implementations introduce their own
unique set of challenges, which were often restricted to
hardware solutions in the past, like more expensive and
complex transducer arrays in PACT or novel and equally
costly scanning mechanisms in PAM. However, with the
advent of traditional iterative reconstruction methods and
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dictionary learning at first, and later deep learning techni-
ques, there now exists promising new pure-software solu-
tions to address these persistent technical challenges. Many
of these software solutions rest on the same fundamental
premise—there exists a lack of certain key pieces of infor-
mation due to imperfect measurement methods. This
incomplete data can be approximated via optimization
methods that take advantage of either established mathe-
matical models of the imaging progress, some overarching
property of the targets like smoothness (i.e., total variation
minimization), or features extracted from simulation data,
phantom studies, or in vivo data during the process of
model training.

This review begins with a brief summary of PAT—the
fundamentals and current challenges, and then proceeds
onto a survey of deep learning principles, with an emphasis
on how deep learning is uniquely suited to address the
obstacles in PAT. This review extensively explores the his-
tory of deep learning optimization methods in PAT, putting
current advances in context as part of a continuous line of
progress that emanates from the past and propagates for-
ward onto a future of further innovative research. The
review then concludes with an in-depth discussion of the
significance of the most promising current advances and a
look toward the future.

Fundamentals of photoacoustic imaging

PAT relies on a physical phenomenon known as the photo-
acoustic effect. First reported by Alexander Graham Bell in
1880, the photoacoustic effect refers the physical phenom-
enon by which light is absorbed by a material and con-
verted into acoustic energy (see Figure 1(A)).6,7 This
conversion occurs when the optical absorption causes a
rise in temperature, which causes a rise in pressure through
thermo-elastic expansion, which then propagates through
the tissue as ultrasound waves—called the photoacoustic
wave.1,4 The most important advantage of PAT is thus its
ability to combine optical excitation, and therefore optical
absorption contrast, with the spatial resolution of ultra-
sound for imaging deep within optically scattering tissues.
Two key timescales must be met in PAToptical excitation in
order to maximize the initial pressure wave: the thermal
relaxation time (sth) and the stress relaxation time (ss).

8 In
short, the thermal relaxation time refers to the time it takes
the thermal energy of an excitation pulse to propagate out
of the heated region. When the excitation pulsewidth is
much shorter than the thermal relaxation time, thermal
conduction during the laser pulse excitation is considered
negligible and the excitation is in thermal confinement.
Similarly, the stress relaxation time refers to the time
required for stress (i.e., pressure) to propagate out of the
heated volume. When the laser pulse duration is less than
the stress relaxation time (i.e., stress confinement) and ther-
mal confinement has been met, the fractional volume
expansion DV

V can be considered negligible9 (as shown in
equation (1))

DV
V

¼ �jDpþ bDT ¼ 0 (1)

where Dp and DT represent changes in pressure and tem-
perature respectively; j represents isothermal compress-
ibility, and b denotes the thermal coefficient of volume
expansion. This state of thermal and stress confinement
allows the fractional volume expansion to be considered
negligible and thus the initial local pressure rise (p0) imme-
diately after the laser excitation pulse can be computed as
(equation (2))

p0 ¼ b
jqCv

gthlaF ¼ CgthlaF ¼ CEa (2)

where q denotes the mass density, Cv is the specific heat
capacity at a constant volume, gth is the percentage of spe-
cific optical absorption converted to heat, la is the optical
absorption coefficient, F is the optical fluence, and Ea is the
absorbed optical energy. Therefore, the initial local pressure
rise is directly proportional to the non-radiative optical
energy absorption via the proportionality factor C, known
as the Grüneisen coefficient. With 100% sensitivity to the
optical absorption contrast, PAT is fundamentally an opti-
cal imaging modality.

Major photoacoustic imaging implementations

So far, PAT has developed two primary implementations
based on the image formation methodologies, known as
photoacoustic computed tomography (PACT) and photo-
acoustic microscopy (PAM). In this section, we briefly dis-
cuss the fundamentals of PAM and PACT, and highlight
how the nature of these different techniques introduces
unique challenges to be overcome by hardware or software
interventions. PACT usually employs diffused light illumi-
nation and parallel acoustic detection by an ultrasound
transducer array (Figure 1(B)).8 The ultrasound transducer
array captures the photoacoustic waves at different projec-
tion angles, typically through tomographic scanning (i.e., a
linear detection geometry) or volumetric imaging (i.e., a
spherical detection geometry). The ultrasound signals
from different projection angles can then be assembled
and backprojected using various reconstruction techniques
to estimate the initial pressure distribution.4 This initial
pressure distribution is approximately proportional to the
optical energy deposition within the tissue. PACT can
achieve deep imaging depths of several centimeters, far
beyond the optical diffusion limit in soft tissue (�1mm),
benefiting from the diffusive optical illumination and rela-
tively low-frequency ultrasound detection. The spatial res-
olution of PACT is determined primarily by the ultrasound
detection and not the optical excitation.1,9

PAM differs from PACT in its image formation method-
ology. PAM typically utilizes a focused single-element
ultrasound transducer to form images through point-by-
point scanning (see Figure 1(B)). The scanning method
can vary significantly among PAM implementations.8 For
example, some traditional PAM systems utilize slow
mechanical raster scanning, while modern PAM systems
utilize high-speed optical scanning mirrors.1,5,10–14

Although all PAM systems utilize focused ultrasound
detection, some systems only use weakly focused optical
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excitation—known as acoustic resolution PAM (AR-
PAM)—while other systems use tightly focused optical
excitation—known as optical resolution PAM (OR-PAM).8

In other words, OR-PAM and AR-PAM are different in
terms of which imaging process is more focused, the optical
excitation (OR-PAM), or the ultrasound detection (AR-
PAM). As such, OR-PAM can provide optical-diffraction-
limited resolutions within the (quasi) ballistic regime
(<1mm), while AR-PAM can provide acoustic-diffraction-
limited resolutions within the quasi-diffusive regime
(<10mm).5

Technical challenges in PAT

In PACT,many challenges arise from solving the PA inverse
problem, which is typically ill-posed—mostly due to partial
and/or sparse detection geometries.15 In sparse-sampling
PACT, fewer ultrasound transducers are used to reduce the
system cost and complexity, at the price of spatial sampling
density and projection angles.16,17 The lack of adequate pro-
jection angles results in reconstruction artifacts, reduced
image contrast, and diminished quantification accuracy.
Similarly, PACT may also suffer from the limited-view
problem with low visibility of certain target structures.18

Figure 1. Principle of photoacoustic tomography (PAT). (A) The imaging process of PAT. (B) The major implementations of PAT, including (a) transmission-mode OR-

PAM system, (b) reflection-mode OR-PAM system, (c) AR-PAM system with a dark-field illumination, (d) PACT system with a ring-shaped ultrasound transducer

array (UTA), (e) PACT system with a linear UTA, (f) PACT system with a hemispherically-shaped UTA, (g) PACT system with a 2D Fabry-P�erot interferometer as

the acoustic sensor, and (h) side-viewing intravascular PA catheter. Adapted with permission from Wang and Yao.5 (A color version of this figure is available in

the online journal.)
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Additional reconstruction artifacts can also come from
inadequate frequency sampling due to limited-bandwidth
of the ultrasound transducers.19 In PACT, the above chal-
lenges are often present simultaneously and it is difficult to
separately address their individual impacts on the final
imaging performance.

One of the most pressing challenges in PAM is the slow
speed resulting from the point-by-point scanning. The
point-by-point scanning in PAM often results in long
image acquisition times in order to cover a large field of
view with a fine spatial resolution.20 Consequently, this has
led to spatial undersampling in traditional PAM systems in
order to reduce the image acquisition time, and has
inspired the development of fast-scanning systems with
or without undersampling.1 Traditionally, in order to main-
tain high image quality, interpolationmethods were used to
upsample the downsampled PAM images. However, as
PAM undersampling is not a blurring procedure, but
rather a process of skipping effective pixels, the interpola-
tion procedure can result in severe aliasing artifacts and
image blurring.20 In addition, the slow scanning in PAM
also results in motion artifacts for dynamic imaging.21

Fast scanning or undersampling can improve the imaging
speed, but often at the cost of inferior image quality and
resolution. Besides the imaging speed, PAM systems also
suffer from quickly deteriorating spatial resolutions out-
side of the optical and/or acoustic focal zone.22

While numerous engineering efforts have been spent to
address the above technical challenges in PAT, many of
them rely on complex and expensive hardware such as
powerful light sources, 2D ultrasound arrays, and high-
speed scanning mirrors, as well as time-consuming image
reconstructions and processing, such as iterative-based
methods. Moreover, these engineering solutions often
must make trade-offs between different imaging parame-
ters such as the imaging speed versus the field of view, and
the spatial resolution versus the penetration depth. There
exists an acute need in PAT for innovative solutions that can
approach these challenges from a completely different per-
spective, without the need for upgrading the imaging sys-
tem’s hardware or software. As is the case in many other
scientific disciplines, deep learning methods have emerged
as a viable path to efficiently address many of PAT’s long-
standing technical challenges.

Deep learning in PAT

Brief introduction to deep learning

Deep learning (DL) developed out of computer science,
originally taking the form of simple neural networks, like
the perceptron.23 Inspired by the biological structure of
neurons, these networks used nodes connected by edge
weights and a nonlinear activation function (Figure 2
(A)).24 Eventually, researchers devised schemes like the
multilayered perceptron that used layered nodes with
“hidden layers,” which are layers not directly observed
by the inputs and outputs (a “black box”). The layer
weights were optimized through loss backpropagation
and gradient descent (Figure 2(B)).23,25 A subset of neural

networks known as convolutional neural networks (CNN)
were developed for imaging applications and take advan-
tage of spatial neighborhood relationships.23 CNNs shifted
the focus from optimizing edge weights among various
layers of interconnected nodes to optimizing layered con-
volutional kernel weights (Figure 2(C)). The convolutional
operation can be represented as a Toeplitz matrix multipli-
cation, and a bias term can be incorporated into the matrix
multiplication.23 The reformulation of convolutional kernel
weights as matrix operations has enabled the combination
of DL methods with graphical processing units (GPUs),
which are particularly efficient at matrix operations.23,26,27

Deep learning formulation

The typical process of DL involves using input data (either
simulation or experimental results) to find a near-optimal
set of model parameters that minimize a specified loss
function, at which point the DL model has approximated
a desired end-to-end functional mapping f : X ! Y. The
model parameters are typically optimized using a variant
of stochastic optimization strategies, such as stochastic gra-
dient descent (SGD) or Adam, by which a mini-batch of
input data is processed and a loss function is calculated.
The derivative of the model loss with respect to each of the
model parameters can then be backpropagated and the
model parameters updated accordingly.

Deep learning needed in PACT and PAM

There is a clear difference between the DL formulation in
PACTand PAM. In PACT, the final image needs to be recon-
structed from the signals received by different transducer
elements. DL models in PACT can be used as a pre-
processing or post-processing step in the image reconstruc-
tion, replace the traditional reconstruction altogether, or be
incorporated into an iterative reconstruction. As PAM does
not require inverse reconstruction, deep learning models
can directly map input signals to output images and
improve the image quality accordingly. DL is especially
suited for many of PAT’s current challenges, like improving
ill-posed reconstruction, removing artifacts, denoising
channel data, improving spatial resolution, and upsam-
pling sparse scanning input data, as DL is an efficient,
GPU-accelerated method for the robust approximation of
non-linear spatial mappings in reasonable optimization
time scales.26–35

Deep learning in PACT

PACT reconstruction is often ill posed and prone to arti-
facts, mostly due to heterogeneous target properties (e.g.,
speed of sound) and system parameters such as limited-
view, limited-bandwidth detection, and sparse sampling.
Traditional reconstruction methods often incorporate
implicit or explicit prior knowledge such as l1, l2, and
total variation (TV) regularization16,36 to optimize the ill-
posed inverse process, which are typically very time con-
suming and highly sensitive to noise. By contrast, DL-based
approaches, such as model-based learning, have replaced
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the traditional regularization terms with a learned regular-
ization term, and thus can be less time consuming.

So far, there has been a variety of deep learning formu-
lations proposed to address the ill-posed reconstruction
problem. Several deep learning approaches train pre-proc-
essing models to improve the channel data, while other
post-processing models have been used to remove recon-
struction artifacts. Some deep learning models have even
been used to replace the inverse operator entirely, and
others are used to improve quantitative imaging, like func-
tional or molecular imaging (Figure 3).

DL for direct image reconstruction

One of the earliest works on deep learning-based direct
image reconstruction was reported by Waibel et al., in
which the authors used U-Net to estimate the initial pres-
sure distribution directly from the detected channel data.37

A CNN model was trained with simulated data and
achieved similar performance with post-processing meth-
ods.37 Around the same time, Anas et al. trained a deep
CNN with large 9� 9 convolutional kernels and dense
blocks with dilated convolutions on simulation data to
directly perform beamforming on channel data—notably
outperforming traditional delay-and-sum (DAS) beam-
formed results.38 Nevertheless, both of these early imple-
mentations were not tested with experimental data.
Another similar study employed Res-UNet and achieved
success on phantom experiments.39 Subsequent recent
works have proven that using modified channel data
yields improved performance.40–42 For example, Kim et al.
applied a delay on the channel data for each spatial point
before feeding the data into a U-Net.41 This so called
upgUNET simplified the learning process by exposing the
model to the back-propagation of channel data41 and

improved the structural similarity index (SSIM)43 modestly
on both simulated and experimental data (see Figure 4
(A)).41 Guan et al. also applied a similar approach using
FD U-Net—an advanced U-Net architecture with a four-
layered dense block at each level,40 which outperformed
the same model trained for post-processing reconstructed
images and was able to correct limited-view and sparse-
sampling artifacts.40 However, Guan et al. did not test
their model on experimental data. Conversely, Lan et al.
utilized both delay-and-sum images and raw channel
data to train a dual-encoder Y-Net as the inverse model,
which showed a slight improvement over post-processing
models.42 More recently, Lan et al. proposed their BSR-Net
utilizing a novel residual separation block which combines
the positional information obtained by applying a channel
delay with the reconstruction result (unreviewed preprint,
URL: https://arxiv.org/abs/2012.02472). In addition, BSR-
Net relies on a space-based calibration and removal module
(SCRM) and two novel losses (response loss and overlay
loss) to produce results that have even fewer artifacts than
the ground truth images when tested on simulation data.
With similar training times, all of these approaches have
demonstrated improved image quality over traditional
backprojection-based image reconstruction.

DL for pre-processing channel data

Besides direct image reconstruction, DL has also been used
to process raw channel data before performing traditional
beamforming. For example, Gutta et al. used a fully con-
nected deep neural network (FC-DNN) to correct the sono-
grams acquired by each transducer channel.19 The
ultrasound transducer is effectively a bandpass filter that
blurs sharp edges and suppresses low-frequency signal
components. This approach was able to broaden the

Figure 2. Depiction of representative DL concepts. The (A) perceptron-style neuron, (B) multilayered neural network, and (C) a simple CNN with a 2D convolutional

kernel. (A color version of this figure is available in the online journal.)
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bandwidth of the received channel data, and thus increase
the SNR of beamformed images by �6 dB19. A follow-up
work applied U-Net on channel data for resolution
improvement and bandwidth broadening, as shown in
Figure 4(B), and was validated on experimental data.44

Allman et al. employed VGGNet to identify point sources
from the channel data and reduce reflection artifacts in the
reconstructed images, which was useful for detecting the
catheter tip in PACT-guided surgical intervention.45–47 In
summary, pre-processing DL applications in PACT are

able to identify and remove noise, reflection artifacts, and
bandlimited artifacts directly from the channel data, which
would otherwise very difficult to separate from recon-
structed images.

DL for post-processing reconstructed images

DL has also been applied in PACT as a post-processing
method for artifact removal (Figure 3(C)). Despite typically
suffering from artifacts, reconstructed PACT images are

Figure 4. Representative in vivo DL-based PACT reconstruction. (A) Direct reconstruction of a human finger using upgUNET.41 (B) Reconstructed images for in vivo rat

brain data with enhanced bandwidth using U-Net.44 (C) Sparse-sampling and limited-view artifacts of whole-body mouse images are greatly suppressed using U-Net

trained by in vivo data.17(A color version of this figure is available in the online journal.)

Figure 3. Deep learning strategies in PACT. (A) General pathways to apply DL to PACT reconstruction. Pre-processing CNNs correct raw data before reconstruction,

while post-processing DL is applied to post-reconstruction images. CNNs can also be used to replace acoustic inversion altogether. (B) General paths to use DL for

quantitative PACT, w.r.t blood oxygenation estimation. (C) Paper count on selected DL-based PACT topics. Only referenced papers are included in the counts. (A color

version of this figure is available in the online journal.)
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able to provide a good approximation of the initial pressure
distribution. Thus, there are fewer features and filters for
the neural network to learn, which simplifies and stabilizes
the training process. Specifically, post-processing DL meth-
ods have been applied for identifying and reducing arti-
facts that result from sparse-sampling, limited-view, and
limited-bandwidth detection. For instance, Antholzer
et al. and Guan et al. have used U-Net and FD U-Net respec-
tively to remove undersampling artifacts in reconstructed
PACT images acquired by ring-shaped ultrasound arrays
(see Figure 5)16,48 FD U-Net outperformed U-Net on a sim-
ulated mouse brain vasculature dataset.48 The distinctive
curved-stripe artifacts resulting from sparse sampling
were significantly suppressed in simulated data, improv-
ing structural visibility in the reconstructed images.
Knowledge-infusion generative adversarial network
(GAN), an advanced model architecture with two sub-net-
works competing against each other, has also been pro-
posed for addressing the sparse sampling issue.49

Similarly, a deep CNN has been applied to the truncated
singular-value-decomposition (SVD) of reconstructed
images, in order to resolve the limited-view issue.50 The
performance of these early methods has yet to be tested
on in vivo data. A novel approach by Zhang et al., known
as Dual Domain U-net (DuDoUnet), utilizes input informa-
tion from both the time domain and frequency domain in
the form of DAS image and k-space image inputs, respec-
tively (unreviewed preprint, URL: https://arxiv.org/abs/
2011.06147). This DuDoUnet is able to effectively utilize
information from both domains in its limited-view artifact
removal procedure through its use of information sharing
blocks (ISBs) and a mutual information (MI) constraint.
This dual-domain technique outperformed the SSIM of U-
net, Y-Net, and DEU-net when trained on simulation data.
The PA-Fuse method by Awasthi et al. first performs both

linear backprojection and regularized inversion (TV or
Lanczos Tikhonov), and then fuses these reconstruction
results together using a Siamese network.51 This method
was shown to outperform both traditional regularized
inversion methods and contemporary fusion methods,
such as modified guided filtering, under a variety of
noise levels. Similarly, Antholzer et al. showed how com-
pressed sensing PAT inversion, such as data acquired using
a sparse sampling or Bernoulli measurements, can benefit
from joint l1-minimization and Tikhonov regularization
using a learned regularization term (i.e. NETT).52

DL-based post-processing approaches have also been
used to remove different PACT artifacts simultaneously.
The DL-based methods generally outperform traditional
beamforming methods and can accommodate different
detection geometries. For PACT with a linear-array trans-
ducer, a stabilized GAN model—Wasserstein GAN
(WGAN) with gradient clipping—has been employed to
reduce both limited-view and limited-bandwidth artifacts,
improving the contrast-to-noise ratio of in vivo data.53 In
another study, Godefroy et al. employed an external
CMOS camera to acquire ground truth for reconstructed
PACT images deteriorated by artifacts.54 A modified U-
Net was used with the pairwise camera-and-PACT
images for training.54 Using an optical camera to obtain
ground truth is, however, not applicable for deep tissue
imaging. For PACT with a ring-array transducer, Zhang
et al. used a deep CNN with 10 layers to significantly sup-
press both undersampling and limited-view artifacts in
simulated data and in vivo mouse brain data.55 Similarly,
Lu et al. proposed the use of a GAN model for a ring-array
PACT system with a limited view.56 Rather than using sim-
ulated data for training, Davoudi et al. have directly uti-
lized experimental data to train a U-Net for removing
both sparse-sampling and limited-view artifacts.17 Full-

Figure 5. Depiction of a modified U-Net implemented by Antholzer et al.16 (A color version of this figure is available in the online journal.)
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view reconstructed images were used as the ground truth
to train a CNN model to improve sub-aperture recon-
structed images.17 By training the CNN model with exper-
imental data directly, the model avoids biases in simulated
training data and improves its quick adaptation onto in vivo
data (Figure 4(C)).17

DL methods have also been used for improving the SNR
of PACT systems using laser emission diodes (LED) as the
light source. LEDs are cost-effective and compact, but have
low output power and generate weak PA signals. Singh
et al. used a high-power laser to acquire pre- and post-aver-
age PACT images in order to train a U-Net model, which
was able to improve the SNR of the LED-based images.57

However, the training and testing data were not from the
same imaging platform, which may induce biases like
detection geometry and bandwidth. By contrast, Anas
et al. applied a recurrent neural network (RNN) on multiple
consecutive reconstructed images from the same system.58

The RNN, with its long-short-term-memory, was capable of
extracting noise from the signal’s temporal information and
outperformed both simple averaging and a conventional
CNN.58 Hariri et al. utilized a multi-level wavelet CNN
(MWCNN) to restore PA image quality and contrast
under a variety of optional fluence conditions, such as the
low fluence levels provided by LED sources.59 This unique
MWCNN architecture replaced pooling blocks with dis-
crete wavelet transforms and upsampling blocks with
inverse wavelet transforms, thereby removing information
loss during the downsampling and upsampling proce-
dures. The DL model of Hariri et al. showed promising
results for a variety of targets under different optical flu-
ence conditions. DL-based denoising approaches can also
be applied to improve the image quality of traditional
PACT systems when imaging deeper targets, which also
suffer from deteriorated SNR due to optical attenuation.
Manwar et al. successfully used a U-Net to improve the
SNR of in vivo deep tissue regions when using low laser
energy.60

DL-based resolution enhancement has been explored in
PACT. For a circular detection geometry, Rajendran and
Pramanik have applied an advanced FD U-Net, named
TARES, to improve tangential resolution of reconstructed
PACT images far away from the scanning center (or close to
the transducer surface).61 TARES outperformed FD U-Net
on both phantom and in vivo rat brain data, and has shown
a great potential for enhancing the resolution of other detec-
tion geometries—especially those with a linear-array
transducer.

Integrated DL-enhanced PACT reconstruction

Instead of targeting only a single step of the PACT image
reconstruction, some researchers have applied CNNs at
multiple steps of the reconstruction process. For example,
to remove limited-view and sparse-sampling artifacts with
a circular detection geometry, Tong et al. used a CNNmodel
for both direct reconstruction and post-reconstruction proc-
essing to optimize final image quality.62 Both the original
channel data and its time derivative were used as themodel
input.62 This approach outperformed standalone DL

methods.62 Nonetheless, training two CNNs significantly
increases the training time and requires substantially
larger datasets.

CNNs can also act as a regularizer in model-based PACT
reconstruction (i.e., model-based learning), which incorpo-
rates the PA forward operator to account for the imaging
system’s physical parameters such as the speed of sound
and limited detection angles. Model-based methods are
superior in accurately estimating the initial pressure distri-
bution, at the cost of time-consuming iterative optimiza-
tion. Traditional model-based methods employ
regularizing terms such as l1, l2, and total variation (TV).
However, such simple regularizers, which aim for noise
reduction or edge preservation, often fail to handle the
complex features of experimental data.18 Instead, using
deep gradient descent (DGD) to correct limited-view arti-
facts, Hauptmann et al. replaced TV regularization with a
trained CNN,18 and demonstrated better reconstruction
quality on human palm vasculature images.18 Boink et al.
replaced both the primal and dual domain with CNNs in
their learned primal-dual method (L-PD),63 which
improved the joint reconstruction and vessel segmentations
with limited-view detection.63 Similarly Hauptmann et al.
devised a learned iterative reconstruction utilizing a fast
and approximate forward model that is based on k-space
methods for PAT, called fast forward PAT (FF-PAT) recon-
struction, for improving subsampled data acquired using a
limited detection aperture.64 This technique was validated
in vivo and shown to have speeds 32 times faster than tra-
ditional TV variation reconstructions, while still maintain-
ing a competitive PSNR. Yang et al. also combined deep
learning, in the form of recurrent inference machines
(RIM), with PAT k-space methods to accelerate iterative
PAT reconstruction.65

DL-assisted quantitative PACT imaging

Over the past few years, DL-based methods have been
investigated for quantitative PACT. Compared with pure
ultrasound imaging, PAT is advantageous in functional
and molecular imaging. Spectroscopic PA measurements
can be performed to quantify the concentrations of different
endogenous chromophores (e.g., deoxy- and oxy-hemoglo-
bin) and exogenous probes (e.g., nanoparticles and reporter
gene products). However, quantitative PAT has long been
challenging for deep-seated targets, because the optical flu-
ence attenuation is highly wavelength dependent in biolog-
ical tissues, a phenomenon called spectral coloring. The
spectral coloring may result in an erroneous quantification
of deep tissue components using conventional spectral
unmixing methods.66 Recent DL approaches in PACT
have provided a promising solution to deep tissue quanti-
tative imaging, by either completely replacing the spectral
unmixing algorithms or by better estimating the optical
fluence at different wavelengths (Figure 3(B)). As an exam-
ple, we will introduce various DL methods for quantifying
the oxygen saturation of hemoglobin (sO2) in blood vessels,
which is critical information for studying cancer hypoxia
and tissue inflammation.
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Early attempts by Cai et al. and Yang et al. explored
ResU-Net and DR2U-Net with multi-wavelength recon-
structed PAT images.67,68 The DL-reconstructed sO2 map
suggested better performance than linear unmixing.67

Olefir et al. used dimensionality-reduced spectra as the
input in their bi-directional RNN model, named DL-
eMSOT69. DL-eMSOT predicted maps of eigenfluence in
deep tissue,69 which were subsequently used for linear
unmixing of the oxy- and deoxy-hemoglobin concentra-
tions.69 DL-eMSOT takes advantage of a sequential-learn-
ing RNN and achieved less error than the conventional
eMSOT approach (Figure 6(A)).69 In the LSD-qPAI
approach, Gr€ohl et al. applied a fully connected neural net-
work on multi-spectral (26 wavelengths) pressure maps
(unreviewed preprint, URL: https://arxiv.org/abs/1902.
05839). This method yielded accurate sO2 estimations on
phantom experiments and in vivo porcine brain data
(Figure 6(B)). A 3D sO2 estimation is highly desired for
volumetric quantification of the tissue’s oxygen status.
Bench et al. applied a 3D encoder-decoder neural network
to predict volumetric sO2 maps.70 This method, however,
has not yet been adapted to in vivo data due to the com-
plexity of tissue properties.70

Deep learning in photoacoustic microscopy

Without the pressing need for improving inverse image
reconstruction, the utilization of DL techniques in PAM
has been relatively sparse in comparison to that in PACT.
PAM does not suffer from the difficulties that arise from an

ill-posed reconstruction, but there are still a number of
ways deep learning has been utilized to augment PAM
capabilities, including the spatial resolution, imaging
speed, and SNR.

Before the widespread utilization of deep learning in
PAM, a precursor technique known as dictionary learning
was utilized by Govinahallisathyanarayana et al. to remove
reverberation signals from mouse brain images without
compromising the underlying microvasculature struc-
ture.71 One of the first utilizations of deep learning for
enhancing PAM was published by Chen et al. in which a
simple three-layered CNNmodel, with various kernel sizes
tested, was implemented to remove motion artifacts from
OR-PAM images(see Figure 7(A)).21

One of the major utilizations of deep learning in PAM is
to upsample sparsely sampled OR-PAM images, thereby
shortening image acquisition time without substantially
degrading image quality. We developed the first DL tech-
nique for this purpose with a now open source dataset of
mouse brain PAM images.72 We trained a modified fully
dense U-net architecture (FD U-net).20 This pivotal publi-
cation utilized fully sampled OR-PAM images as the
ground truth and artificially downsampled images, train-
ing and testing a CNN with varying degrees of downsam-
pling along either imaging axis (see Figure 7(B)). This work
successfully demonstrated the feasibility of using CNNs to
upsample PAM images, using only approximately 2%
effective pixels, and made open source a large collection
of murine brain images for further deep learning research.
Soon after this work came a report by Zhou et al. that

Figure 6. Representative in vivo DL-based quantitative PACT. (A) DL-eMSOT estimation of blood oxygenation shows significantly reduced error when compared to

conventional eMSOT, on abdominal cross-sections of two mice.69 (B) sO2 estimation derived from a multispectral PA image of a pig brain using LSD-qPAI,

showing improved accuracy compared to linear unmixing (unreviewed preprint, URL: https://arxiv.org/abs/1902.05839). (A color version of this figure is available in the

online journal.)
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utilized a CNN architecture with squeeze-and-excitation
(SE) blocks to perform a similar upsampling procedure.73

Following these more traditional CNN implementa-
tions, we utilized an innovative deep prior methodology
that iteratively refines undersampled PAM images using
a deep learning prior—a “Deep Prior” (unreviewed pre-
print, URL: https://arxiv.org/abs/2010.12041). Results
comparing Deep Prior to other DL architecture is shown
in Figure 7(C). This work is of particular note because it
does not require training on a large PAM dataset with
established ground truth, thereby circumventing the data
bottleneck that currently exists in many DL-based applica-
tions. Deep learning, in the form of a feedforward denois-
ing CNN, has also recently been used by Tang et al. to
improve the low SNR of PAM images.74 Most recently,
there has been some promising work by Sharma et al. that
uses an FD U-net to both denoise and enhance the

resolution of AR-PAM images, especially outside the
focus plane (Figure 7(D)).22

Conclusions

Both the fields of photoacoustic imaging and deep learning
have progressed at an exceedingly accelerated rate over
recent years.75–77 This innovative intersection of fields has
served as the staging ground for a number of important
innovations in both PACT and PAM, augmenting the capa-
bilities of both imaging methodologies and overcoming
many of the persistent challenges facing the field of photo-
acoustic imaging. We hope this concise review can succinct-
ly summarize recent exciting technological advances and
make them accessible to the broader scientific community.

This concise summary of recent work implementing
deep learning in PACT and PAM has highlighted several

Figure 7. Representative DL methods in PAM. (A) Motion artifact removal using a CNN.21 (B) FD U-net upsampling performance on OR-PAM in vivo mouse brain

images at various downsampling ratios of 20%, 5%, and 2% effective pixels, respectively.20 (C) Comparison of Deep Prior with other upsampling methods on a mouse

brain image (unreviewed preprint, URL: https://arxiv.org/abs/2010.12041). (D) DL resolution enhancement of out of focus plane signal.22 (A color version of this figure is

available in the online journal.)
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remaining challenges and avenues for promising future
research. One such challenge for implementing deep learn-
ing in PACT is the current reliance on simulation data and
the lack of large, open source repositories of in vivo data.
Deep learning models learn various features from training
data, but simulation data inherently lack much of the var-
iability that exists in in vivo data. This gap between simu-
lation data and in vivo data makes model extrapolation to in
vivo applications difficult. The two apparent solutions that
exist to address this concern are for the community to create
a large, open source repository of variable in vivo training
examples, or to improve the quality of simulation data to
better mimic in vivo cases. In vivo data can be readily
obtained for training DL models to improve predictably
degraded PAT data, such as spatially undersampled OR-
PAMdata or sparsely sampled/limited-view PACT data, so
long as the system’s degradation function can be replicated
through post-processing. This method of establishing
in vivo ground truth can be done by acquiring fully sampled
or full-view data (i.e. the ground truth), and subsequently
applying artificial degradation to synthesize the expected
physically degraded input data. However, acquiring
ground truth in vivo PAT data to train DL models to
exceed current state-of-the-art system capabilities remains
a looming challenge for PAT and medical DL researchers
alike. Despite this challenge, the future incorporation of
deep learning into photoacoustic imaging technology and
eventual clinical adoption will require robust models that
can readily adapt to a variety of in vivo conditions—many
of which, like sparsely sampled, limited-view, and limited-
bandwidth detection, will be in non-ideal environments.

A key area of future research for both PACT and PAM
will be the upstream integration of deep learning techni-
ques with system design and engineering. For example, one
method that has been used to integrate the PA forward
operator into a deep learning formulation has been the
model-based learning utilized by Hauptmann et al. and
Boink et al. However, these iterative methods can be time
consuming, and have yet to truly integrate the deep learn-
ing approach into the system design. Deep learning techni-
ques have typically been applied to pre-existing system
configurations, but the next generation of PACT and PAM
DL applications will likely be designed with both deep
learning and compressed sensing techniques at the fore-
front. The light source, detector arrangement, scanning
mechanism, and data acquisition can be optimized based
on the accompanying DLmodels. This will make it possible
to achieve full integration of deep learning and PA imaging,
thereby allowing the next generation of “smart” PA tech-
nology to far exceed what has come before.
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