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Abstract
The last decade has seen many exciting technological breakthroughs that greatly expanded

the toolboxes for biological and biomedical research, yet few have had more impact than

induced pluripotent stem cells and modern-day genome editing. These technologies are

providing unprecedented opportunities to improve physiological relevance of experimental

models, further our understanding of developmental processes, and develop novel thera-

pies. One of the research areas that benefit greatly from these technological advances is the

three-dimensional human organoid culture systems that resemble human tissues morpho-

logically and physiologically. Here we summarize the development of human pluripotent

stem cells and their differentiation through organoid formation. We further discuss how

genetic modifications, genome editing in particular, were applied to answer basic biological

and biomedical questions using organoid cultures of both somatic and pluripotent stem cell

origins. Finally, we discuss the potential challenges of applying human pluripotent stem cell

and organoid technologies for safety and efficiency evaluation of emerging genome

editing tools.
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Introduction

Stem cells are defined by their capacity to either self-renew
or differentiate into functionally specialized cell types
depending on signals in their microenvironments.
Because they play fundamental roles in normal physiology
and under many pathological conditions, stem cells have
been actively studied in laboratories to facilitate greater
understanding of biological processes and to develop

regenerative medicines.1 Derivation of the first human
embryonic stem cell (ESC) lines brought unprecedented
interest in and attention to stem cell research.2

Unleashing the seemingly unlimited potential of stem
cells then faced three major challenges: (1)The limited avail-
ability and genetic diversity of stem cell lines; (2) A lack of
understanding of their differentiation processes; and (3)
Difficulty in achieving precise genetic modifications.
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Adult stem cells have restricted developmental potential,
exist in very low-abundance in tissues, and are generally
difficult to maintain in culture conditions. In contrast, ESCs
can be maintained in defined culture conditions for a pro-
longed time without losing their pluripotency, the potential
to give rise to all types of cells that make up the body.
However, only very limited human ESC lines are available
because they are derived from the inner cell mass of blas-
tocyst stage embryos. For basic research, this means that
investigators would have limited access to these cells and
even more limited genetic diversity to work with. For ther-
apeutic development purposes, overcoming immunogenic-
ity would be a significant challenge because of HLA-
mismatch between ESC-derived cellular products and
potential recipients.3,4 The distinct epigenetic state of
ESCs also means that extra differentiation steps, as com-
pared to differentiating adult stem cells, are often needed
to convert them to specialized cell types. Productive differ-
entiation of ESCs requires extensive knowledge in develop-
mental processes, which is often fragmented. Lastly, the
inability to efficiently and precisely modify genomic
sequences of ESCs also posed a technical obstacle in their
practical use for a broader range of research and for thera-
peutic development.

Major breakthroughs have since been made to address
these challenges, notably twoNobel Prize-winning ground-
breaking discoveries in induced pluripotent stem cell
(iPSC) and designer nuclease-mediated genome editing
technologies.5–7 While efficient iPSC differentiation cur-
rently remains the most significant challenge, technical
improvements have also been made, including the applica-
tion of three-dimensional organoid culture systems in iPSC
differentiation.

Induced pluripotent stem cells

The creation of mouse ESCs and development of homolo-
gous recombination (HR) technology in 1980s have revolu-
tionized mammalian genetics research and developmental
biology.8–10 Creating knock-out or knock-in mouse models
by HR in mouse ESCs has long been a standard technique
for assessing gene functions. ESCs are capable of long-term
proliferation in cultures while preserving relative genomic
stability. They also retain the ability to differentiate into cell
types representing all three germ layers. The prospect of
being able to create functional cells, tissues, or even
organs in culture dishes for human developmental studies
and regenerative therapies has fueled the research that
resulted in the derivation of first human ESC lines.2

Human ESCs can be generated from culturing dissociated
blastocysts, through somatic-cell nuclear transfer or the
process of parthenogenesis;11–14 however, these procedures
require donation of oocytes or pre-implantation embryos,
which are not only of limited resources but also associated
with controversial ethical issues.15 The groundbreaking
discovery that somatic cells can be reprogrammed into plu-
ripotency by transient expression of transcriptional factors
Oct3/4, Sox2, Klf4, and c-Myc (often collectively referred to
as “Yamanaka factors”) was a game changer.5,6 It was dem-
onstrated, soon after these landmark studies, that iPSCs can

be generated from a wide range of human somatic cells
including not only healthy donor-derived skin fibroblasts,
blood cells, keratinocytes, primary hepatocytes, neural
stem cells, but also cells from malignancies, as well as
banked immortalized lymphoblastoid cell lines.16–30 These
discoveries greatly enhanced the feasibility of using iPSCs
for studies on human genetics, disease modeling, and per-
sonalized medicine, although the impact of iPSC genetic
and epigenetic variations on their differentiation capacity
and other applications remains to be fully understood.31,32

With robust reprogramming technologies in place, the
remaining technical challenges in iPSC research are the
ability to differentiate them into functional cell types and
to genetically modify them with high efficiency.

iPSCs and the development of three-
dimensional organoid culture systems

One of the major applications of human ESCs or iPSCs
considered to be essential is facilitating human develop-
mental biology studies. Much of our knowledge on molec-
ular and cellular mechanisms underlying human
development came from studies of animal models, many
of which are still indispensable to biomedical research but
also evolutionarily distant from humans. It is also impossi-
ble for animal models to capture the vast genetic diversity
of human populations. Human iPSCs, being created from
somatic cells, appear to be ideally suited to address these
challenges and provide an ideal bridge to translate the
knowledge from animal studies into human genetics.

To more accurately recapitulate human developmental
processes, which are precisely orchestrated sequences of
events involving various cell types responding to genetic
and environmental cues, 3D in vitro models of tissues or
organs have become increasingly necessary. Organoid cul-
ture systems have been created in response to such
demands. Organoids are three-dimensional cell cultures
self-organized in ways resembling, to various degrees,
composition, and architecture of human tissues. Although
organoid culture systems only gained popularity in recent
years, using 3D cultures to differentiate stem cells is not
new to stem cell investigators. The use of embryoid body
(EB) formation, coupled with stimulation from exogenous
growth factors, was one of the earliest and most robust
methods to direct ESCs to exit pluripotent stage and initiate
differentiation processes.33 It takes advantage of ESC’s
intrinsic propensity to spontaneously establish complex
cell adhesions and paracrine signaling cascades, after the
three-dimensional spheroid microenvironment is formed
by adhering to each other in suspension. In one of the
first organoid studies that demonstrated the feasibility of
3D cultures in recapitulating spatial and temporal aspects
of organogenesis, ESCs were used and cultured as EBs first
to initiate self-aggregation and further differentiation
towards neural lineages.34

Organoid culture systems have also been reported using
adult stem cells and/or primary cells. In comparison, orga-
noids initiated from ESCs or iPSCs have an advantage in
that all cell types forming the desired tissue can be derived
from the same cell lines, therefore have uniformed genetic
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makeups. Importantly, iPSCs can be derived from patient
samples, providing an exciting opportunity to establish
more relevant disease models. Human iPSC-derived orga-
noids may recapitulate some disease features more faith-
fully than 2D-cultured cell lines because they can
simulate more closely certain tissue structures and func-
tionalities. These organoids may also complement animal
models, particularly in studying diseases that experimental
animal models have not been established due to the intrin-
sic differences between human and nonhuman species in
responses to biological or chemical agents.35–37 To date,
human ESC- or iPSC-derived organoid culture systems
resembling tissues of brain/neural,38–44 gut/intestinal,45–48

lung 49–52 cardiac,53,54 liver,55–59 pancreatic/islet,60,61

kidney,62–64 as well as tumor40 have been reported. In-
depth discussion of the merits of using organoids as
a human model, as well as descriptions of each organoid
culture system are not provided here as there have been
some insightful.

Recent literature reviews on the history, progress, mech-
anism, and limitations of current organoid systems.65–72

As this review is prepared during the COVID-19 pan-
demic, it is worth noting that human organoid systems
have already contributed to our understanding of SARS-
CoV-2 pathogenesis and tissue tropism in humans, an
issue that cannot be fully addressed by animal models.
Human iPSC-derived capillary organoids and kidney orga-
noids were used to show that SARS-CoV-2 may be capable
of infecting kidney as well as blood vessels, providing a
plausible explanation to damage in kidney function
observed in some patients, and a possible mechanism of
virus spreading in the body.73 The potential of these 3D
models in COVID-19 therapeutic development is also dem-
onstrated by observations that human recombinant soluble
angiotensin-converting enzyme 2(ACE2) can block SARS-
CoV-2 infection to these organoid structures.73 Since gastro-
intestinal (GI) manifestations of COVID-19 have been
reported in the literature, several studies were conducted
to investigate SARS-CoV-2 infection and replication in
organoids of GI tract and digestive system. These
systems include human small intestinal organoids derived
from primary gut epithelial cells74,75 and cholangiocyte
organoids derived from human iPSCs,76 and provided evi-
dence that SARS-CoV-2 can infect and replicate in
various tissues of the digestive system. Human iPSC-
derived brain organoids were also used to investigate
central nervous system pathophysiology of COVID-19,
including SARS-CoV-2 neurotropism and mechanisms of
virus-induced brain dysfunction,77–79 which may provide
a platform for future investigations into neurological com-
plications associated with COVID-19. Organoid systems
have been applied to studies on viral infection before the
pandemic,80 and it is reasonable to anticipate an explosion
in studies using human organoid system to study SARS-
CoV-2 in the near future. Of particular interest will be
investigations involving organoids representing human
lung and airway system, given the fact that respiratory
tract illnesses are the main clinical manifestations of
COVID-19.

Overview of genome editing technology
development

Derivation of mouse ESCs and development of homolo-
gous recombination-based genetic modifications have rev-
olutionized mammalian genetics studies. Similarly, the
creation of human iPSCs, as well as the recent progress in
establishing physiologically-relevant human organoid
tissue cultures, is expected to provide unprecedented
opportunity to understand human biology and pathophys-
iology. To achieve this, effective ways of precise genetic
modification are required. The traditional HR-based
method, which works with sufficient efficiency in mouse
ESCs, did not translate smoothly into human ESCs or iPSCs
as low targeting efficiencies were observed in initial stud-
ies.81,82 For the genetic modification efficiency to be suffi-
ciently robust, methods that can improve HR are needed.
A breakthrough came when it was demonstrated that DSB
in mammalian genome, generated by transient expression
of engineered homing nuclease, can enhance homology
directed repair (HDR) efficiency by more than two orders
of magnitude.83 This demonstration motivated the field to
uncover and develop such molecular scissors with ade-
quate specificity, efficiency, and more importantly, pro-
grammability that can be utilized in human cells. The
development of zinc finger nucleases (ZFN) by fusing
DNA-binding zinc finger domains to the cleavage domain
of FokI restriction endonuclease represents one of the first
successes of such programmable endonucleases.84–86

Redesigning ZFNs to target different sequences remains
technically challenging even today and requires protein
engineering expertise that most individual laboratories do
not possess; however, in studies where ZFNs were used,
the system has demonstrated remarkable capability to
enhance gene targeting efficiency including in patient-
specific human iPSCs.87,88 The search for more easily repro-
grammable endonucleases continued. Soon after a family of
transcription activator-like effector (TALE) proteins was
described in plant pathogens,89,90 it was realized that
their modular DNA recognition code can be utilized to con-
struct designer TALE nucleases (TALENs) by replacing the
zinc finger domains in ZFNs.91,92 It was rapidly shown that
this class of genome editing enhancing tool can be widely
applied to many biological systems including human plu-
ripotent stem cells.93–95 TALENs are much easier to design
and construct than ZFNs, and would have been much more
widely used in biological andmedical research if not for the
recent explosion of genome editing tools based on CRISPR
(an abbreviation for clustered regularly interspaced palin-
dromic repeats) systems. CRISPR and the CRISPR-
associated (Cas) proteins are important parts of a type of
prokaryotic adaptive immune system found in many bac-
teria and archaea.96,97

As sequence-restricted endonucleases, CRISPR-Cas use
RNA molecules (termed guide RNAs or gRNAs) to deter-
mine binding and cleavage specificity of the Cas protein.98

The CRISPR-Cas9 system was the first to be adapted to
make sequence-specific DNA cleavages in test tubes,7 and
soon after, in mammalian systems including human
cells.99,100 In the following years, other CRISPR-Cas
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systems such as Cas12 and Cas13 have been discovered and
adapted to serve as DNA or RNA editing tools.101–103

There are several notable advantages of CRISPR-Cas
over other genome editing tools. Because the target specif-
icity of CRISPR systems is determined by complementarity
between guide RNA and its DNA or RNA targets, re-
purposing of CRISPR-Cas only requires a change in the
target-specific spacer sequence (�20 nt in the case of
CRISPR-Cas9) in guide RNA, which is significantly easier
and cheaper than re-designing and/or assembling a pro-
tein component as required in ZFN and TALEN systems.
Numerous studies have also demonstrated the robustness
of CRISPR-Cas in targeting various plant and animal
genomes. Moreover, it has been shown in patient-specific
iPSCs that CRISPR/Cas9 can specifically target either the
mutant or the wild-type allele with little disruption at the
other allele differing by a single nucleotide, giving it an
advantage in allele-specific genome editing of point muta-
tions.104 In addition, the relatively small size of specificity-
determining guide RNAs, compared to proteins as in the
cases of ZFNs and TALENs, makes it easier to deliver mul-
tiple components targeting different genomic sequences
simultaneously. This enhanced multiplexed targeting
capacity is another important advantage over all other
designer nucleases.105 Because of its unprecedented sim-
plicity, efficiency and robustness, CRISPR/Cas has rapidly
become the most popular genome editing system in biolog-
ical, medical, and agricultural research.

One of the most exciting recent progresses in CRISPR
genome editing is the development of tools that do not
rely on creating DNA double strand breaks (DSBs) for pre-
cise genome editing. As discussed in the previous section,
the basic underlying mechanisms of modern-day genome
editing tools are to create chromosome breaks at predefined
location/sequence and stimulate cellular DNA repair
machinery including HDR, which can incorporate new
sequences near the break site in the presence of a homology
donor template. In the absence of a repair template, the
DSBs can be rejoined through a nonhomologous end join-
ing (NHEJ) mechanism, which often introduces short DNA
insertions or deletions (indels) that can effectively disrupt
gene functions. The reliance on cellular DNA repair path-
ways, which are often cell type- and cell cycle-dependent, is
a rate-limiting factor in improving genome editing efficien-
cy. The development of base editing and prime editing are
two examples of remarkable protein engineering successes
that were aimed at expanding the CRISPR genome editing
toolbox and achieving precise genome editing without cre-
ating DSBs and with less dependency on cellular DNA
repair machinery. Base editors were designed to make
single nucleotide changes and were developed by fusing
engineered, catalytically impaired Cas proteins to DNA/
RNA modifying enzymes such as nucleoside deami-
nases.106,107 Depending on the enzymatic components
used, base editors can be categorized into two main classes,
cytosine base editors mediate C:G to T:A transitions, while
adenine base editors can convert A:T to G:C.106,107

Efficiency of base editing has been demonstrated in various
biological systems.108

Prime editing is a more recent development that utilizes
a different approach to achieve defined genetic modifica-
tions beyond single nucleotide changes.109 In a prime
editor, a nickase form of Cas9 is fused to an engineered
reverse transcriptase (RT) enzyme, while the guide RNA
is extended to form a prime editing gRNA (pegRNA).
After the DNA nicking events occur at a genomic locus
defined by the gRNA, a portion of the pegRNA anneals
to the complementary DNA strand near the nick site. This
displaces the non-targeted strand, allows the nicked DNA
to serve as a primer to initiate the reverse transcription
process catalyzed by the RT activity from the prime
editor, using another portion of the pegRNA as the RT tem-
plate. The result of this reverse transcription is the transfer
of sequence information from the pegRNA into the target
DNA strand.109 The advantage of this approach is that it
can mediate targeted insertions and deletions beyond base-
to-base conversions, while still without the need for gener-
ating DSBs or exogenous donor DNA templates. Both base
editing and prime editing do not rely on generating DNA
DSBs to mediate editing effect, therefore potentially
improving their safety profile by reducing the incidence
of unwanted insertions, deletions, and chromosomal
rearrangement.

Applications of genome editing in human
organoid studies

As the genome editing technologies were being advanced,
they have been widely used in all areas of life sciences
including human stem cell research and the stem cell-
derived organoid research.110 It is anticipated to continue
playing important roles in advancing studies on human
organoids, including those derived from iPSCs and from
primary cell types (Table 1). One of the reported genome
editing applications in human organoids is to create knock-
in reporters by targeted and in-frame insertion of a fluores-
cence reporter to the gene of interest.55,111 Expression of the
fluorescence reporter, whether directly fused to the endog-
enous gene, or separated by a “self-cleaving” 2A peptide,
will be under the control of the endogenous promoter and
enhancer. This is a useful approach to analyze kinetics of
gene expression in real-time. By targeting an endogenous
gene that has a tissue-specific expression pattern, this
approach can be used to monitor lineage commitment in
the 3D cultures without the need of, or as a complementary
approach to, immunohistochemistry. It is particularly ben-
eficial for studying intracellular proteins such as transcrip-
tion factors that often require cell/tissue permeabilization
for immunostaining. This approach has been successfully
used in tagging the cytokeratin 7 locus with mCherry to
study 3D bile duct differentiation from human iPSCs,55

and in tagging the AFP locus with mNeon to trace hepatic
development in hepatocyte organoids.111 Using an
improved CRISPR-based HDR-independent knock-in
method, TUBB::mNEON;CDH1::tdTomato double-knock-
in hepatocyte organoids were achieved, which made it
feasible for the first time to conduct human hepatocyte divi-
sion dynamics study by reporter-based mitotic spindle
analyses.111
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In the majority of the recent human organoid studies
that incorporated genome editing, the objective was to
understand genetic basis of diseases. Specifically, CRISPR
system has been used to achieve gene knock-out or genetic
mutation repair to facilitate disease modeling (Table 1).
Organoids generated from genome-edited patient-specific
iPSCs were used to evaluate genetic contributions to dis-
eases such as DKC1 mutation in dyskeratosis congenita,112

22q11 deletion in neuropsychiatric disease,113 RPGR muta-
tions in retinitis pigmentosa,114 roles of podocalyxin, PKD1
and PKD2 in kidney development and polycystic kidney
disease,115 CFTR in cystic fibrosis,116 TSC2 in tuberous scle-
rosis complex,117 as well as IFT140 variants in
nephronophthisis-related ciliopathies.118 3D organoid cul-
ture has also seen increasing applications in cancer
research. Organoids created from cancer patient cells,
sometimes termed “tumoroids”, have been reported to
model the formation, progression, and phenotypes of
tumors.72 As cancer development is often associated with
genetic aberrations, genome editing becomes an essential
tool and has been applied in human iPSC-, ESC-, and pri-
mary cell/tissue-derived organoids to model a variety of
tumorigenesis and the contributions of genetic variations
such as those in TP53, SMAD4, APC, KRAS, PIK3CA,
MLH1, RNF43, and CDKN2A.119–128

In addition to the conventional HDR-based gene correc-
tion and NHEJ-mediated small indel formation, some orga-
noid studies have also employed the latest editing tools or
unconventional editing approaches to achieve research
goals. In a study on traditional serrated adenoma (TSA)
modeling, CRISPR-Cas9 with a pair of guide RNAs was
used to facilitate chromosome rearrangements by generat-
ing DSBs at the two intended chromosomal fusion break-
points.129 Using this approach, the investigators
successfully created human organoid models of TSA that
contain several R-spondin gene fusions. Unsurprisingly,
the investigator observed that successful propagation of
organoids with detectable intra-chromosomal deletions
can only be achieved when the organoids are defective in
TP53, or when the medium contains IGF1 and FGF2. This
observation is consistent with previous reports that p53-
mediated growth arrest, in response to CRISPR-Cas medi-
ated DSBs, negatively affects editing outcomes.130,131

A recent study examined the feasibility of adenine base
editors (ABEs) in correcting genetic defects associated with
disease progression in patient-derived organoids.132 By
analyzing cystic fibrosis transmembrane regulator (CFTR)
mutations in a CF intestinal organoid biobank, Geurts et al.
determined that only 1.2% of the organoid samples carry
mutations that are suitable for spCas9-ABE-mediated edit-
ing. These targetable sequences have the mutated nucleo-
tides that can be functionally corrected by A:T-to-G:C
transitions, and are located within the base editor editing
window. In addition, they need to be able to tolerate by-
stander editing of nearby A:T pairs that are also located in
the editing window. By targeting a R785X mutation, the
study shows that a SpCas9-ABE achieved an editing effi-
ciency of 8.88%, which is 5-fold higher than the convention-
al Cas9-mediated HDR using single-stranded donor
oligonucleotides. Functional rescue of CFTR activity was

demonstrated in a forskolin-induced swelling assay.132

xCas9-ABE,133 a further engineered version that has a
more relaxed protospacer adjacent motif (PAM) sequence
requirement than spCas9-ABE, achieved editing efficien-
cies of 1.43% at two additional mutations W1282X and
R553X,132 which were not suitable targets of spCas9.
Although an improvement in absolute efficiency was not
observed in xCas9-ABE, the much broader targeting range
(19% in the organoid biobank now have targetable muta-
tions) demonstrated its advantage and the value of research
on expanding Cas variants with altered and/or relaxed
PAM constraints.134–138 This study also evaluated the edit-
ing specificity, an issue that majority of human organoid
genome editing studies have not yet assessed, using
genome-wide analysis and demonstrated negligible off-
target effect of ABEs.132

iPSC systems for evaluating genome editing

While the advances in genome editing have facilitated cut-
ting edge studies on human development and disease
mechanisms using stem cell-derived organoids, it is reason-
able to anticipate that iPSC-derived organoids can contrib-
ute to safety and efficiency evaluation of genome editing
technology as new and more sophisticated tools emerge.

Undifferentiated human iPSCs have long been used in
evaluating genome editing tools because they are more
physiologically-relevant than other immortalized cell line,
are more readily available than many types of primary
human cells, and are more feasible for clonal expansion
than adult stem cells. One of the biggest safety concerns
over the conventional CRISPR-Cas systems has been the
potential of causing unintended genetic changes or off-
target cleavage, which was first reported in studies of
immortalized human cell lines, soon after the initial dem-
onstrations of CRISPR-Cas9-mediated mammalian genome
editing.139–141 To further address the off-target issue in a
physiologically relevant system, several studies analyzed
clonally selected genome-edited human iPSCs using
whole genome sequencing approach. Data from these stud-
ies suggest that although genetic variants are observed, cor-
rectly edited iPSC clones with no or few unintended
modifications caused by CRISPR-Cas9 can be
obtained.142–144

Human iPSC studies also contributed to the understand-
ing of base editor safety profiles. Based on the evidence on
endogenous cytidine deaminases causing mutations in
human cancers, unbiased genome-wide analysis was con-
ducted in base-edited iPSC clones to determine whether
such mutagenesis activity remains in the engineered base
editors that contain deaminase domain. Together with two
other reports on cytosine base editors using plant and
mouse systems,145,146 the study reveals that global unin-
tended mutations enriched for C:G->T:A transitions can
occur at genomic locations with local sequence context con-
sistent with the APOBECmutagenesis signature.147 Human
iPSCs will remain valuable tools for assessing safety pro-
files of further evolved base editors148,149 and other emerg-
ing genome editing tools.
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As summarized in Table 1, genome editing technologies
have been applied in iPSC-based organoids to further their
power for understanding human organogenesis, normal
physiology, and disease pathology. One can also envision
that the organoid culture systems can be used as an evalu-
ation tool to facilitate development of genome editing tools.
Traditional pre-clinical evaluation of candidate therapeu-
tics, particularly those for gene and cell therapies, often
includes ex vivo functional studies in cell lines and, when
feasible, in vivo studies using animal models. In vitro stud-
ies and animal studies are meant to complement each other,
as both have advantages and disadvantages. Animal stud-
ies are generally necessary because they provide the phys-
iological complexity that does not exist in cell lines. It had
been increasingly realized, however, that physiological dif-
ferences between experimental animals (such as rodents
and large animals) and humans are beyond simply size;
genetic differences, which result in distinct organ organiza-
tion, tissue composition, cellular metabolism and signaling,
can complicate safety and efficacy predictions of candidate
therapeutics based on animal studies.150,151 It is a particu-
larly important issue in evaluating genome editing tools, as
difference in genomic sequences can have more consequen-
tial impact on procedure outcomes. For example, a 90%
DNA sequence homology between a human transcriptional
factor and its mouse ortholog may not result in functional
difference in any significant way, but certainly could result
in a need for different targeting strategy (e.g. different
gRNAs) when being edited. Human cell lines and primary
human cells, on the other hand, provide human-relevant
systems. Cell lines are also easier and more economical to
maintain andmanipulate, and not as ethically controversial
as animal models. However, cell lines have one significant
disadvantage in that they do not have the complex physi-
ological behavior representing what is occurring in vivo,
which makes the use of animal models necessary. With
their human origin and the complex three-dimensional
tissue-like structures, human organoid culture systems
may address some of the limitations of the current evalua-
tion tools and, with further improvement, may lead to the
reduction in the use of animal models for proof of concept
studies.

Potential advantages of iPSC organoid
systems for assessing genome editing

With the rapid expansion of the genome editing toolbox,
investigators now havemore options to edit a genomemore
efficiently. In comparison, development of methods for
functional evaluation of genome editing outcomes is lag-
ging far behind. Determining the biological consequences
of genetic changes, including intended genetic modifica-
tions and off-target editing, remains one of the biggest chal-
lenges. The commonly used in vitro assays, such as the IL-2
independent T cell proliferation assay, simply could not
provide adequate biochemical microenvironments for
most genetic alterations to manifest.152 Optimization of
human iPSC organoid technologies could provide a signif-
icant andmuch needed boost to genome editing evaluation,
for the following reasons: (1) In the 3D multicellular

organoids, more complicated cellular functions and physi-
ological features can be assessed than those in 2D culture
conditions. (2) Genome-edited iPSCs can theoretically gen-
erate an array of organoids recapitulating all major tissue/
organ types, making it possible to capture tissue-specific
manifestation of a genetic alteration. (3) Organoids can be
generated from patient-specific iPSCs or from iPSC banks
with defined genetic diversity, to examine genotype-
specific functional outcomes and facilitate personalized
therapy or precision medicine. (4) Functional organoids
with multiple integrated cell types can also be used to
assess certain in vivo genome editing procedures, particu-
larly in cases that the genome editing components are
either delivered by vehicles with cell/tissue specificity
(e.g. nanoparticles or viral vectors with cellular tropisms)
or expressed under tissue-specific promoters.

Limitations and future possibilities of
organoid-based genome editing evaluation

Technologies for creating miniature tissues or organs in
cultures have greatly improved over the last decades; how-
ever, for the system to be effective in evaluating genome
editing technologies, technical improvements are still
needed.

Most of the reported organoid structures so far recapit-
ulate some structural and physiological features of certain
tissue types, but rarely have the complexity or carry out
compete functions of their respective organs. This feature
has advantages and disadvantages. On one hand, a simpli-
fied structure with limited major cell types makes it easier
to isolate and identify genome editing events, which would
make it particularly advantageous for single-cell RNA-seq
or other characterizations relying on a relatively pure cell
population. On the other hand, a more complete assess-
ment of the biological consequences of a given genetic mod-
ification can only be made when cells carrying the edits
have the necessary environmental cues to carry out the
full spectrum of their natural functionality. For the orga-
noid systems to be able to replace or reduce animal uses,
further cell engineering is needed to push these in vitro
cultured structures closer to behaving like actual organs.

In iPSC-derived organoids, maturity of the cells is an
issue. In organoids derived from primary tissue stem/pro-
genitor cells, these miniatures are structurally and function-
ally close to their tissues of origin. However, in organoids
through directed differentiation from iPSCs, maturation
and functionality remain a prominent problem in many
tissue types at present.153–156 This is owing to the molecular
mechanisms governing developmental trajectory of organs
remain largely unknown. It is anticipated that, with more
molecular mechanisms being deciphered in iPSCs, more
mature iPSC-derived organoids can be achieved.

Sizes of current organoids are mostly in the range of
millimeters, far from the actual sizes of most organs, so it
may not be ideal yet to evaluate efficiency and accuracy of
tissue-specific delivery of genome editing tools.157 Of note,
many organ systems are largely replicas of structural units
at a similar size scale of organoids, such as the lobules of
liver and nephrons of kidney. How to functionally organize
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each individual organoids through tissue engineering is a
critical next step toward building an organ-like surrogate
for research and replacement therapies.

A lack of vasculature and blood circulation is a common
feature of current organoid systems. Without functional
vasculature, organoids of larger sizes may undergo hypox-
ia and suffer from nutrient depletion in the inner cores. It
also leads to another important issue that is the lack of
immune cell penetration in the mesenchymal and epithelial
tissues. Given the ubiquitous involvement of immune
system in cell behavior, a thorough evaluation of genome
editing consequences would be difficult to achieve with the
current technology.158 It is conceivable that organoids
derived from somatic stem cells (such as those from intes-
tinal crypts) are not best suited to recapitulate individual
villus with a centralized blood vessel, owing to the tissue-
restricted properties of these cells. iPSCs and some of their
progeny with considerable differentiation potential may
offer some advantages in inducing vasculogenesis during
organoid formation. The alternative, and not mutually
exclusive, approach is through advanced tissue engineer-
ing. Progress made in addressing this issue includes incor-
porating mesenchymal stromal cells, endothelial cells in
organoid culture, ectopically expressing pro-angiogenic
gene, transplantation of in vitro-generated organ buds,
and utilizing 3D fabrication or microfluidic technologies
to create vascular-like structures.59,159–163

One significant disadvantage of most organoid systems,
compared to animal models, is the absence of interactions
between organs or even between different types of tissues.
Fortunately, active ongoing research in approaches such as
organs-on-a-chip and body-on-a-chip systems are provid-
ing opportunities to potentially address this issue and
improve communications between organoids as well as
between organoids and their environments.164–166

For certain mutations, their phenotypical manifestations
at cellular, tissue, or organ levels may not become instan-
taneously detectable and will require long-term culture of
the mutant cells. The development of organoid culture
technology is an improvement over the traditional 2D cul-
ture in maintaining cells with stem/progenitor cell pheno-
types. However, few studies have addressed the culture
conditions for long-term steady state maintenance of
human organoids, although some organoids have been
reported to be maintained in culture for over 100days.167

Like many other issues with organoids, it will benefit from
a better understanding of molecular mechanisms underly-
ing tissue homeostasis and repair, as well as advanced engi-
neering approaches.

In order for organoids to serve as an evaluation plat-
form, certain technical standards should be established,
and the system needs to be able to generate functional
units with predefined size range and consistent functional-
ity. So far, most of themethods used to create 3D tissues rely
to certain degrees on spontaneous aggregation, which
results in variations in size, transcriptional landscape, and
functionality among individual spheres and between
batches.62 Biomedical engineering approaches, such as bio-
printing and microfabrication,168–170 may be highly valu-
able for improving the consistency of organoid formation

pave the way pushing the organoids into more practical
use.

Summary

As we witnessed over the past decade or so, technical
advancements in generating normal and patient-derived
iPSCs have significantly enhanced our understanding of
human developmental dynamics and plasticity.
Applications of these knowledge also substantially expand-
ed our ability to advance regenerative medicine, with
implementing in vitro organoid miniatures being a critical
milestone in developing advanced tools for tissue replace-
ment therapies and drug development. Meanwhile, the
emergence of tailored genome editing technologies tremen-
dously potentiates the precision-demanding genetic
manipulations of human genomes. While this break-
through is having an unprecedented impact on nearly all
biological research areas, ongoing and future improve-
ments of genome editing technology could also greatly ben-
efit from the physiological relevance of human stem cells
and organoids when they are implemented as evaluation
tools. It is anticipated that synergies among these technol-
ogies will continue to accelerate the transformation of
translational research in biomedicine.
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