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Abstract
The association between the presence of anti-interferon-c autoantibodies and the onset of

immunodeficiency with intracellular infections has been clearly established. No standard

regimen to control the production of these pathogenic autoantibodies, apart from antimi-

crobial therapy to eliminate infections, contributes to the medical burden of this syndrome,

which sometimes has a fatal outcome. In this review, we summarize the findings on anti-

interferon-c autoantibodies to facilitate further research and to provide guidance for treat-

ment strategies.
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Introduction

The term “adult-onset immunodeficiency” was first coined by
Browne et al. to describe an immunodeficiency syndrome
related to the presence of anti-interferon (IFN)-c autoantibod-
ies (AAbs) in adults with multiple opportunistic infections
similar to that observed in patients with advanced human
immunodeficiency virus (HIV) infection.1 Cumulative reports
have clearly confirmed that anti-IFN-c AAbs contribute to
immunodeficiency that is accompanied by intracellular infec-
tions, mostly in adults. Several studies, including ours, have
shown relatively high rates of fatality in these patients.2–6Most
reports of adult-onset immunodeficiency were from academic
or university hospitals regarding patients who had been
referred from smaller medical care institutions.1,7,8 Thus, we
believe that the actual number of cases of adult-onset immu-
nodeficiency is grossly underestimated as this emerging syn-
drome may not be commonly recognized. Thus far, most
treatments for adult-onset immunodeficiency focus on antimi-
crobial therapy to eliminate infections. There is no standard
treatment guideline for controlling the production of anti-IFN-
c AAbs. This review discusses our current understanding of
anti-IFN-c AAbs in terms of etiology, pathology, its effect on
the immune system, detection, characteristics, and treatment.

Etiology of anti-IFN-c AAbs

It is believed that anti-IFN-c AAbs is the cause of immuno-
deficiency rather than the result of opportunistic infections.

A time series analysis in a patient with disseminated
Mycobacterium avium complex infection showed that neu-
tralizing anti-IFN-c AAbs gradually develop for some time
before the onset of opportunistic infections.9 However, the
factor that triggers anti-IFN-c AAbs production is not
known. It has been shown that natural antibodies against
IFN-c can be found in infection-free healthy individuals
ranging from newborns to adults.10 Nevertheless, titers of
anti-IFN-c AAbs were significantly higher in patients suf-
fering from various viral infections. These titers declined,
approaching normal levels as the infections gradually
resolved. The use of Anaferon, an IFN-c-specific therapeu-
tic antibody for children, in patients with varicella infection
resulted in a significant decrease of anti-IFN-c AAbs com-
pared to patients receiving a placebo.11 These data suggest
that the production of anti-IFN-c AAbs could be the result
of natural immune regulation following infections, but how
these antibodies become pathogenic remains unclear.

Molecular mimicry, when the immune system responds
to foreign antigens sharing a similar sequence or structure
to self-antigens, is proposed as another possibility in the
production of anti-IFN-c AAbs.8 The sequence of amino
acids of the IFN-c molecule that the autoantibodies bind
to shares 100% homology to amino acids of the ribosome
assembly protein Noc2 of Aspergillus terreus, which is
highly conserved across all of the Aspergillus spp.8 A syn-
theticAspergillusNoc2 peptide was able to bind to anti-IFN-
cAAbs in patients and induce antibodies that cross-reacted
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with human IFN-c and inhibit the IFN-c-stimulated
Phosphorylated�Signal Transducer and Activator of
Transcription (pSTAT)�1 upregulation. The difference in
the neutralizing capacity of anti-IFN-c AAbs found in
patients and non-neutralizing antibodies in healthy popu-
lations may explain pathogenicity. This assumption is sup-
ported by evidence showing that patients with anti-IFN-c
AAbs without neutralizing capacity did not have opportu-
nistic infections,1,12 suggesting that not only the amount of
the antibody but also IFN-c–blocking activity is required for
pathogenicity. A longitudinal study is required to identify
risk factors for the onset of the anti-IFN-c AAbs and
immunodeficiency.

Effect of anti-IFN-c AAbs on its downstream
elements

IFN-c, a central regulator of the immune system critical for
controlling intracellular infections, is secreted by activated
T cells, natural killer (NK) cells, and macrophages. The
binding of homodimer IFN-c to its receptor activates the
Janus-activated kinase (JAK)-STAT pathway. This JAK-
STAT signal harmonizes the transcriptional activation of
several genes and mediates various biological responses.13

High titers of anti-IFN-c AAbs are able to block the binding
of IFN-c to its receptor which inhibit the early aspects of
IFN-c signal transduction, either STAT-1 phosphorylation
or STAT-1 protein expression. These autoantibodies also
inhibit the downstream biological consequences of IFN-c
binding which are the up-regulation of tumor necrosis
factor (TNF)-a and interleukin (IL)-12 production.14,15

Purified anti-IFN-c AAbs is able to block the induction of
IFN-c-inducible genes and the upregulation of HLA class II
expression on peripheral blood mononuclear cells.16

Moreover, patients that were anti-IFN-c AAbs positive
could block IFN-c-mediated antimicrobial immunity in
monocytes and macrophages. These include IFN-c-driven
polarization and M1 macrophages activation, the produc-
tion of cytokines, chemokines and inducible nitric oxide
(iNO)/nitric oxide (NO), biosynthesis and reactive
oxygen species (ROS) generation, and phagocytosis and
degradation efficacy.14,15 These studies clearly demonstrate
that anti-IFN-c AAbs with neutralizing activity can impede
the binding of IFN-c to its receptor, resulting in the absence
of downstream signal transduction, directly affecting
immune responses against intracellular pathogens.

Characteristics of anti-IFN-c AAbs

Most anti-IFN-c AAbs belong to the IgG isotypes, most fre-
quently IgG4 and IgG1 subtypes.1,7,17–21 Several reports
showed heterogeneous patterns of isotypes and subtypes
among patients. A predominance of IgG3 was also reported
in some patients.18 Our study demonstrated that anti-IFN-c
AAbs mainly exhibited the IgG1 and IgG4 subtypes.
However, multiple isotypes and subtypes can be found in
some cases.21 These data suggest that B cells that produce
anti-IFN-c AAbs have undergone antibody class switching.

Several reports found that these autoantibodies recog-
nized an epitope in the C-terminal region of IFN-c.8,17,21

The data suggest that the major epitope contains the
SPAAKTGKRK amino acid sequence, determined by com-
puter modeling. We also found that autoantibodies against
IFN-c in Northern Thai patients recognized the C-terminal
linear epitope containing the KRKR motif.21 This region is
critical for IFN-c receptor (IFNGR) activation and the
binding of these autoantibodies impede IFN-c-mediated
activities.8

Commercially available mouse anti-IFN-c monoclonal
antibodies can bind to distinct epitopes of the IFN-c mole-
cule with different neutralizing activity.22 Competitive-
binding ELISA using commercial neutralizing mouse
anti-IFN-c monoclonal antibodies showed that anti-IFN-c
AAbs in patients bind to discontinuous epitope of homo-
dimeric IFN-c. This study also demonstrated the heteroge-
neity of the auto Abs against IFN-c in AOID patients and
the diverse patterns among individuals. In-depth analysis
of binding epitopes in individuals may provide informa-
tion for designing therapeutic approaches.

Anti-IFN-c AAbs and pathology

Anti-IFN-c AAbs has been associated with various oppor-
tunistic infections. Disseminated nontuberculous mycobac-
terial (NTM) infection is the most common infectious
disease,1,6 but Talaromyces marneffei, Cryptococcus neofor-
mans, Histoplasma capsulatum, Burkholderia pseudomallei,
Salmonella species, and Varicella–zoster virus are also fre-
quently identified as opportunistic pathogens in this
patient group.1,2,6,23 Concomitant infections with at least 2
opportunistic pathogens are more accurate parameters to
confirm the immunocompromised state in these patients.1,2

Several organ systems are involved, in which lymph nodes,
skin, bone and soft tissue appear to be frequently affect-
ed.1,2,6 Bone marrow or blood, lung, bladder, liver, and bil-
iary tree are likewise the sites of infection.6,24–26 The clinical
manifestations, locations of the infected sites, and causative
agents are likely to differ across ethnicities. Rapidly grow-
ing mycobacteria (RGM), such as M. abscessus, were the
most common NTM species isolated from Thai, Chinese
and Filipino patients, whereas M. avium complex (MAC)
was predominant among Japanese and non-Asian
patients.6,27 Lymph nodes were the most common organ
involved in patients with RGM, whereas bone and lung
infections were more common in patients with MAC.

Many studies showed that disseminated NTM in patients
with anti-IFN-c autoantibodies can mimic malignancy, cancer,
and synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO)
syndrome.26,28,29 Therefore, differential diagnosis should be
handled delicately. Most reported cases of patients with anti-
IFN-c AAbs are older adults. Nevertheless, adolescents and
young adults with disseminated opportunistic pathogenic
infections with anti-IFN-c AAbs have been reported recent-
ly.30,31 The majority of patients reported to have anti-IFN-c
AAbs have been narrowed to Asia-born Asians, particularly
those from Southeast Asian populations with human leuko-
cyte antigen (HLA)�DRB1 and DQB1 alleles, especially
HLA�DRB1*15:01/16:02 and DQB1*05:01/05:02.32–34

However, opportunistic pathogenic infections have been
reported in Caucasian patients with anti-IFN-c AAbs living
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in the UK, USA, Germany as well as in patients of African
ancestry.16,19,20,35 Although correlations between anti-IFN-c
AAbs, types of opportunistic infections, clinical manifesta-
tions, HLA alleles, and ethnicity have been demonstrated,
other issues, such as environmental factors and genetic diver-
sity must be elucidated for in-depth understanding of this
disease. Interestingly, by fitting a linear mixed model adjusted
for age, sex, as well as the presence of infection, antibiotic use
and cyclophosphamide or rituximab use, anti-IFN-c AAbs
levels decreased overtime regardless of ethnicity, even in the
absence of immunomodulatory therapy.6 Neither age nor sex
was a discriminating factor in the antibody levels over time.
Therefore, the factors predicting specific outcomes remain to
be revealed.

Detection of anti-IFN-c AAbs

Considering the significance of anti-IFN-c AAbs-associated
pathology, it is important to evaluate antibody detection
even though most patients clinically present with dissemi-
nated infections. Currently, the approaches used to evaluate
anti-IFN-c AAbs in suspected cases with certain infections
vary greatly from simple assays to long tedious bioassays.
We have summarized the different wide-ranging methods
from qualitative or quantitative IFN-c-specific binding
and biological activity assays based on previous reports
(Figure 1). The most common assay used to detect anti-
IFN-c AAbs is the enzyme-linked immunosorbent assay
(ELISA), in indirect,2,12,17,18,21,23,36–41 sandwich,14,16,32,42 or
inhibitory2,3,8,17,23,32,37,43,44 assay format. For the ELISA-
based method, the results could be reported qualitatively
(positive or negative) or quantitatively as optical density
(OD),39 titer,43 or through calculations of arbitrary units21

or ELISA units (EU).36,39 The easy-to-use, low-cost Dot

ELISA strip, which can be read directly on the strip, was
developed as a point-of-care screening tool in remote set-
tings.8,45 A particle-based assay with claims as a fast, easy,
and relatively inexpensive technique has also been used to
detect multiple anti-cytokine autoantibodies simultaneously
in human plasma.6,18,46 QuantiFERON-TB Gold In-tube
(QFT-GIT), a commercialized IFN-c release assay commonly
used for detection of latent tuberculosis in many hospitals
has also been modified for the screening of neutralizing anti-
IFN-c AAbs.38,47 Luciferase immunoprecipitation system
(LIPS) is a high throughput quantitative method useful for
detecting multiple anti-cytokine autoantibodies at the same
time.1,48 Immunoblot of IFN-c have also been used to verify
the exact nature of the binding activity.8,14,40,44

Assessment of pSTAT1 is an important approach
often used to confirm the anti-IFN-c AAbs inhibitory
function, commonly performed by flow cytome-
try3,8,12,20,36–38,40,43,44,46,48 or immunoblot.14,46,48 Shima
et al. demonstrated that all disseminated NTM participants
with inhibited STAT1 phosphorylation have high titers of
anti-IFN-c AAbs.40 However, non-concomitant results in
three participants with high-titer anti-IFN-cAAbs but with-
out opportunistic infections showed no IFN-c–blocking
activity.1 A report by Lin et al. illustrated that among
healthy individuals who possessed autoantibodies against
IFN-c, no neutralizing activity nor effect to IL-12 produc-
tion was found.8 These findings suggest that detection of
the existence and the level of anti-IFN-c AAbs may not be
enough for evaluation of clinical management. Other bio-
logical activity assays include evaluation of IFN-c down-
stream effector molecules.8,14,16,17,20,32,41,43,44,49,50

To date, a standard method has not yet been endorsed.
Therefore, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) of assays

Figure 1. Summarized methods of detection, the qualitative/quantitative IFN-c specific binding, and functional assays of anti-IFN-c AAbs. IFN-c: interferon gamma;

AAbs: autoantibodies; ELISA: enzyme-linked immunosorbent assay; QFT-GIT: QuantiFERON-TB gold in-tube; LIPS: luciferase immunoprecipitation system; STAT1:

signal transducer and activator of transcription 1; PBMC: peripheral blood mononuclear cell; TNF: tumor necrosis factor; IL: interleukin; MHC: major histocompatibility

complex. (A color version of this figure is available in the online journal.)
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should be taken into consideration when selecting a screen-
ing method. Nithichanon et al. demonstrated that inhibito-
ry ELISA is more specific and has greater PPV and NPV
than indirect ELISA with comparable sensitivity.37 Some
methodological limitations are of concern. For example,
pSTAT1 is diminished in a day dependent manner when
kept at 4�C, therefore it is important to take into account the
timing of the assay following phlebotomy when using
whole blood for pSTAT1 detection.40 Several methods
may be required to confirm the presence and functional
activities of anti-IFN-c AAbs.

Clinical management of anti-IFN-c AAbs

Sensitive antimicrobial therapy is the most important
strategy for eliminating infections, including in patients
carrying anti-IFN-c AAbs. The most common drugs
used for the treatment of NTM are a regimen combining
rifampin, ethambutol, clarithromycin, linezolid, and ami-
kacin.4,19,26,39,51–53 Anti-fungal medicines that include
amphotericin B, itraconazole, and fluconazole have been
used for the treatment of Talaromyces marneffei and
Cryptococcus spp.54,55 Nevertheless, the disease can be
refractory and fatal, despite appropriate and aggressive
antimicrobial treatment.3,46,56

In addition to antimicrobial therapy for clinical disease
management, there is no standard treatment guideline for
anti-IFN-c AAbs. Treatment with various immunomodula-
tory agents has been evaluated in order to modulate humor-
al immunity. Rituximab, a chimeric monoclonal antibody
specific to CD20 expressed by B cells, is the most studied
immunomodulatory agent in patients carrying anti-IFN-c
AAbs. Treatment with rituximab results in depletion of cir-
culating B cells, reduction of anti-IFN-c AAbs titers, restora-
tion of IFN-c signaling, and improvement of clinical
conditions and inflammatory markers.46,57,58 A combination
of methylprednisolone and rituximab treatment produced
favorable outcomes.58,59 Nevertheless, clinical relapse has
been observed in some patients and the time to clinical
improvement, reduction of anti-IFN-c AAbs titers, and
improved IFN-c signaling differed among patients.46

Therefore, optimization of the immunomodulatory agents
is needed to constitute appropriate duration and dosage of
the therapies. One patient did not respond to multiple doses
of anti-CD20 monoclonal antibody, but an anti-CD38 mono-
clonal antibody targeting plasma cells (daratumumab) suc-
cessfully suppressed the antibody levels with clinical
improvement.60 Although immunomodulatory agents
could successfully offer effective treatment for autoantibod-
ies, these regimens may not be required for patients who
respond to antimicrobial therapy alone.46 Therapies directed
at autoantibodies may be important adjunct treatment for
patients with high-titer anti-IFN-c AAbs who continue to
have persistent and progressive infection despite long-term
antimicrobial therapy.6,46

In settings where rituximab is less accessible, cyclophos-
phamide, an alkylating agent capable of inhibiting protein
synthesis through DNA and RNA crosslinking, may be
an alternative option. Treatment of patients carrying anti-
IFN-cAAbs with cyclophosphamide results in the decrease

of the antibody titer with clinical improvement, faster com-
plete remission, a longer duration of remission, and a lower
incidence of relapsed infection compared with patients
receiving rituximab.42,61 This may be due to broader
immune suppression on various immune cells.

In addition to immunomodulatory agents, it has been
demonstrated that a variant of IFN-c, in which the anti-
IFN-c AAbs binding epitope was replaced with a corre-
sponding sequence from mouse, is capable of restoring
IFN-c signaling in vitro despite the presence of patient
sera.8 Restoration of IFN-c responses by using a variant of
IFN-c or an epitope-deprived peptide offers a potential
treatment regardless of depletion of the anti-IFN-c AAbs.
Nevertheless, more investigations in vivo are needed to
apply this approach for clinical purposes.

Conclusions

Cumulative reports on anti-IFN-c AAbs reveal increasing
impact of anti-IFN-c AAbs-associated opportunistic infec-
tions. This not only affects health, but also impedes the
welfare and economic status of the patients and caregivers,
as well as nations. This review provides insight into the
context of the etiology, pathology, function, diagnostic
methodologies, characteristics, and clinical management
of anti-IFN-c AAbs. This information may promote better
understanding of adult onset immunodeficiency associated
with anti-IFN-c AAbs.
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