
Brief Communication Highlight article

Functional intrinsic optical signal imaging for objective

optoretinography of human photoreceptors

Taeyoon Son1 , Tae-Hoon Kim1 , Guangying Ma1, Hoonsup Kim1 and Xincheng Yao1,2

1Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA; 2Department of Ophthalmology and Visual

Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA

Corresponding author: Xincheng Yao. Email: xcy@uic.edu

Abstract
Functionalmapping of photoreceptor physiology is important for better disease diagnosis and

treatment assessment. Fast intrinsic optical signal (IOS), which arises before light-evoked

pupillary response, promises a unique biomarker of photoreceptor physiology for objective

optoretinography with high resolution. This study is to test the feasibility of non-mydriatic IOS

mapping of retinal photoreceptors in awake human. Depth-resolved optical coherence

tomography verified outer segment (OS) as the anatomic origin of fast photoreceptor-IOS.

Dynamic IOS changes are primarily confined at OS boundaries connected with inner segment

and retinal pigment epithelium, supporting transient OS shrinkage due to phototransduction

process as the mechanism of the fast photoreceptor-IOS response.
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Introduction

Retinal photoreceptors play an important role in
phototransduction process which converts light energy
into electrochemical signal for visual information process-
ing. Phototransduction abnormalities have been demon-
strated in diabetic retinopathy,1,2 retinitis pigmentosa,3,4

age-related macular degeneration,5,6 etc. Early detection
of photoreceptor dysfunctions is one essential step to
enable prompt interventions for preventing irreversible
vision loss. Traditional fundus photography can give
useful information for eye examination, but the morpho-
logical only information is not sufficient.7 In general
speaking, physiological abnormality might appear in
diseased cells before morphological deformations, such as
retinal thickness change and cell loss. Therefore, functional
assessment of physiological changes in retinal photorecep-
tor is important for early eye disease diagnosis.
Electroretinography (ERG), including focal ERG8–12 and
multifocal ERG,13,14 allows objective assessment of retinal
physiological function. Particularly ERG a-wave provides
an objective biomarker for assessing photoreceptor func-
tion. However, spatial resolution of ERG measurements is
typically low. At early stages, eye diseases caused by

cellular damages are typically in the format of degenerative
and apoptotic abnormalities of small groups of retinal
neural cells. Thus, it is desirable to have a high-resolution
method for objective measurement of physiological func-
tion of retinal photoreceptors.

Intrinsic signal imaging, which is also known as opto-
physiology or optoretinography (ORG),15 can provide an
objective method for mapping retinal physiology with
high resolution.16,17 In comparison with ERG that measure
light-evoked electrophysiological activities, the ORG
records transient intrinsic optical signal (IOS) changes in
the retina. Light-evoked IOS changes were first reported
in outer segment (OS) suspensions of photoreceptor18–20

and isolated retinas.21–23 These early studies showed that
the transient IOS changes were closely related with early
phase of the phototransduction. Recently, activation phase
of phototransduction in retinal photoreceptors has been
demonstrated in intact animal retinas, and photoreceptor-
IOS abnormality has been also disclosed in mouse models
with retinal degeneration.24,25 Almost immediate arise of
the photoreceptor-IOS after the stimulus onset can be a
unique biomarker of objective ORG to assess retinal photo-
receptor physiology.26
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In vivo IOS imaging of human subjects has several tech-
nical challenges. First, the visible light can produce a pupil-
lary response, and thus contaminate the IOS recording.
Light-induced pupil constriction can reduce the pupil size
and also increase focus depth of the ocular optics to affect
optical coherence tomography (OCT) imaging. Since IOS
imaging compares OCT recordings before and after the
light stimulation, pupillary response may cause IOS artifact.
In principle, pharmacological pupil dilation can minimize
the effect of pupillary response. However, pharmacological
pupil dilation is uncomfortable for the patients and may
create extra complications, making the measurement time-
and cost-consuming. Second, light-evoked neural activities
at the inner retina and corresponding hemodynamic
changesmay contaminate the IOS recording of retinal photo-
receptors. Fortunately, the rapid photoreceptor-IOS shows
immediate onset after the stimulus, while an inner retina
and hemodynamic changes have a time delay.27–29

Previous studies revealed a�0.5 s time delay of IOS changes
at the inner retina,28 and hemodynamic contamination can
be compensated by digital vessel filtering.27 Moreover, func-
tional OCTcan provide depth-resolved imaging capability to
dissect the IOS changes at different retinal layers.30–33 In the
mouse retina, the fast photoreceptor-IOS can reach a magni-
tude peak within 20–30ms.28 We speculate that the fast
photoreceptor-IOS in the human retina may have a similar
time course as that in the mouse retina. If so, a 100ms post-
stimulus window can be enough for functional IOS imaging
of retinal photoreceptors, which excludes the requirement of
pupillary dilation because the pupil response typically
occurs around �300ms after the visible light stimulus.34

In this study, we validate the feasibility of non-mydriatic
IOS imaging for objective ORG of retinal photoreceptors in
awake human and establish the spatiotemporal character-
istics of the retinal transient IOS changes.

Materials and methods

The study has been approved by the Institutional Review
Board at University of Illinois at Chicago and followed the
tenets of the Declaration of Helsinki. Three healthy subjects

(three men, mean age 31.67� 1.53 years) without history of
ophthalmic disease were recruited for technical validation
of functional IOS imaging of retinal photoreceptors. Each
subject provided informed consent prior to participation in
the research.

A lab-built functional OCTwas employed for this study
(Figure 1(a)). One NIR superluminescent diode (D-840-HP-
I, Superlum, Cork, Ireland) was used in the OCT for NIR
IOS imaging, while a visible light LED was used as the
retinal stimulator. The illumination power was �600 mW
on the cornea for OCT imaging, which is below the
American National Standards Institute limit. The axial
and lateral pixel resolutions were calculated as 1.5 and
5.0mm, respectively. For aiding retinal localization, a
pupil camera was used, and to verify the time course of
pupillary response (Figure 1(b)), corresponding to the ret-
inal stimulation. A dim red light was used as fixation target
to minimize voluntary eye movements. The OCTspectrom-
eter was designed with a line-scan CCD camera which has
a 70,000Hz line rate and 2048 pixels. For the OCT imaging,
the recording speed was 100 B-scan/s, with frame resolu-
tion of 500 A-lines/B-Scan. For the functional IOS imaging,
the subjects were dark adapted for 1 h and then imaged at
the fovea for 1.2 s. After the 0.2 s prestimulus, a 50 mW vis-
ible stimulus flash was applied to the adapted retina with a
cold white LED (MCWHF1, Thorlabs, New Jersey).

Results

Figure 2 is representative OCT-IOS imaging. Basic proce-
dures of IOS data processing have been reported in previ-
ous publications.29 In order to minimize the effect of
pupillary response on the IOS imaging, each pixel intensity
was normalized relative to the inner retina, i.e. the inner
plexiform layer, before IOS processing. Ten OCT and IOS
images were averaged for Figure 2(a)–(c) and the raw
recording speed was 100 B-scan/s. Figure 2(d) represents
single frame recordings at different time points. Both pos-
itive (red) and negative (green) IOSs were observed (Figure
2(b)), which is consistent with our previous observation in
animal retinas.35 In order to simplify the discussion,

Figure 1. (a) Schematic diagram of the OCT system. BS: beam splitter; CL: collimation lens; Lenses: L1, L2, L3, L4, L5, and L6; PC: polarization controller; SLD:

superluminescent diode. (b) Representative pupil image (b1) and pupillary response (b2). (A color version of this figure is available in the online journal.)
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we ignore the signal polarities to employ IOS magnitude
values for following analysis of IOS time course and spatial
distribution. As shown in Figure 2(b)–(d), rapid
photoreceptor-IOSs occur promptly after the onset of stim-
ulus. Particularly, for the first �100ms after-stimulus
recording period, the IOS is primarily observed within
the OS region. This is consistent with our previous animal
study of fast photoreceptor-IOS.30 Later IOS recording
might be contaminated by corresponding pupillary
response and hemodynamic change. However, as shown
in Figure 1(b2), a 220ms time window is available for IOS
imaging without the effect of pupillary response to enable
non-mydriatic ORG assessment of retinal photoreceptors.

Figure 3 illustrates spatiotemporal characterization of
IOS distribution in the retina. Figure 3(a) shows the
functional IOS image (Figure 2(c)) superimposed on the
structural OCT (Figure 2(a)). This superimposed illustra-
tion confirmed that the fast photoreceptor-IOS is observed
in the OS region, primarily distributed over OS boundaries
connected with inner segment (IS) and retinal pigment epi-
thelium (RPE). This observation was verified with two
other human subjects with the same retinal stimulation
and recording parameters (Figure 3(a2) and (a3)). Figure 3
(b) shows corresponding M-sequences, i.e. averaging IOS
waveforms at each retinal depth, further confirming that
the fast photoreceptor-IOSs attribute to the OS regions, pre-
dominantly distributed at the IS/OS and OS/RPE bound-
aries. For producing the M-sequence IOS map (Figure 3(b)),
the IOS in each retinal depth was averaged. In other words,
the IOS in horizontal direction of the B-scan image (Figure 3
(a)) was averaged. Each vertical line in Figure 3(b)

corresponds to the whole 500 A-lines averaged recording
at each time point. Figure 3(c) further confirms that rapid
photoreceptor-IOS can be detected within 10ms after the
beginning of stimulus.

Discussion

In summary, technical feasibility of functional IOS imag-

ing for objective, non-mydriatic ORG of retinal photo-

receptors was demonstrated in awake humans. A

custom designed OCT was constructed for functional

IOS imaging of the retina. A pupil camera was used to

verify that the pupillary response occurs �220 ms after

the onset of retinal stimulation (Figure 1(b1)). Therefore,

a time window up to 220 ms provides the feasibility of

non-mydriatic IOS imaging for objective ORG of photo-

receptor function. The non-mydriatic imaging modality

is essential for easy implementation of clinical

applications.

Fast photoreceptor-IOS was consistently observed almost
right away, before detectable pupillary response. Depth-
resolved OCT verified the OS as the physical origin of
fast photoreceptor-IOS. This observation is consistent to
our previous animal studies with wild-type and transgenic
mouse models.26 Recently, light-evoked rapid optical path
length changes within the cons OS were also reported in
human studies32,33 and increase of cone reflectance36,37 in a
few milliseconds. The fast photoreceptor-IOS is primarily
confined at IS/OS and OS/RPE boundaries (Figure 3), sup-
porting transient OS shrinkage due to phototransduction

Figure 2. Representative OCT-IOS image sequence. (a) Representative OCT image sequence. (b) Corresponding IOS distributions of positive (red) and negative

(green) changes. (c) IOS magnitude sequence with 0.1 s time intervals. (d) IOS magnitude sequence with 10ms time intervals. (A color version of this figure is available

in the online journal.)

Son et al. Functional optoretinography of human photoreceptors 641
...............................................................................................................................................................



process as the physiological mechanism of the fast photo-
receptor-IOS.38 The uneven IOS distribution in transverse
direction was observed in the OS layer (Figures 2 and 3).
This might result from the light sensitivity difference of
individual photoreceptors. It is also known the rod and
cone distribution is eccentricity dependent, relative to the
fovea.39,40 Further investigation, with variable stimulus
light color and intensity controls, is required to characterize
the spatiotemporal properties of the IOS in rod and cone
photoreceptors. In animal study, transient OS conforma-
tional changes have been observed prior to the ERG a-
wave which reflects the photoreceptor hyperpolarization.41

Moreover, ERG a-wave could be reversibly blocked in
low-sodium medium, but the light-evoked OS change
was sustained in wide manner,41 which supports that
the signal source of the fast photoreceptor-IOS is not iden-
tical to that of ERG a-wave, cyclic guanosine monophos-
phate gated ion channel closure. Also, comparative IOS
measurement in wild-type and retinal degeneration 10
mice revealed that fast photoreceptor-IOS arises before
phosphodiesterase activation.25 Therefore, the fast
photoreceptor-IOS provides a unique biomarker for objec-
tive measurement of photoreceptor physiology.
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