
Original Research

Altered gene expression in glycolysis–cholesterol synthesis axis

correlates with outcome of triple-negative breast cancer

Peng-Cheng Zhong , Rong Shu, Hui-WenWu, Zhi-Wen Liu, Xiao-Ling Shen and Ying-Jie Hu

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China

Corresponding author: Ying-Jie Hu. Email: yingjiehu@gzucm.edu.cn

Abstract
Identification of molecular subtypes of clinically resectable triple-negative breast cancer

(TNBC) is of great importance to achieve better clinical outcomes. Inter- and intratumor

metabolic heterogeneity improves cancer survival, and the interaction of various metabolic

pathways may affect treatment outcome of TNBC. We speculated that TNBC can be

categorized into prognostic metabolic subtype according to the expression changes of

glycolysis and cholesterol synthesis. The genome, transcriptome, and clinical data were

downloaded from the Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer

International Consortium and subsequently analyzed by integrated bioinformatics methods.

Four subtypes, namely, glycolytic, cholesterogenic, quiescent, and mixed, were classified

according to the normalized median expressions of the genes involved in glycolysis and

cholesterol synthesis. In the four subtypes, the cholesterogenic type was correlated with

the shortest median survival (log rank P¼0.044), while patients with high-expressed gly-

colytic genes tended to have a longer survival. Tumors with PIK3CA amplification and

dynein axonemal heavy chain 2 deletion exhibited higher expressions of cholesterogenic

genes than other mutant oncogenes. The expressions of mitochondrial pyruvate carrier

MPC1 and MPC2 were the lowest in quiescent tumor, and MPC2 expression was higher

in cholesterogenic tumor compared with glycolytic or quiescent tumor (t-test P< 0.001).

Glycolytic and cholesterogenic gene expressions were related to the expressions of prog-

nostic genes in some other types of cancers. Classification of glycolytic and cholestero-

genic pathways according to metabolic characteristics provides a new understanding to previously identified subtypes of TNBC

and could improve personalized treatments based on tumor metabolic profiles.
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Introduction

Triple-negative breast cancer (TNBC), which is a highly
aggressive and heterogeneous cancer,1,2 accounts for
approximately 10–20% of all breast cancer cases, with a
low survival rate due to its high risk of recurrence and
aggressiveness.3,4 These features of TNBC make it the
most challenging subtype of all breast cancers. With the
rapid development of various “omic” techniques, system-
atic integrative identification of TNBC molecular subtypes
shows great potential in the discovery of more effective
strategies for treating TNBC,5 and therefore attracts much

research attention to determining the clinical-related
molecular characteristics and actionable genomic altera-
tions of the cancer.6–12 However, a more comprehensive
understanding on the specific carcinogenesis-related path-
ways involved in TNBC prognostic classification should be
developed for designing personalized and effective therapy
for TNBC patients.

Deregulating cellular energetics is a hallmark of cancer
cells.13 Driven by oncogenes or inactivated tumor suppres-
sors, metabolic adaptation of cancer cells supports cancer
progression in a complicated tumor microenvironment.14
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The pan-cancer analysis on global metabolic pathway
(iPath) demonstrated that cancer metabolic heterogeneity
is related to survival rate, somatic driver gene mutations,
and tumor subtypes.15 However, whether the heterogeneity
of different metabolic pathways can be applied to divide
TNBC into clinical subgroups has not been fully
determined.

MYC amplification and P53 loss-of-function mutation,16

which are inducers of glycolytic pathway in cancer,17–19

take place in most breast cancer cells, and glycolysis con-
tributes to TNBC progression and chemotherapy resis-
tance.20–23 The effects of glycolysis on the occurrence and
development of cancer can be reduced by metabolizing
pyruvate from mitochondrial pyruvate carriers 1 and 2
(MPC1 and MPC2) to mitochondria and partially convert-
ing it to lactate.24–26 In certain tumors, decreased mitochon-
drial pyruvate complex (MPC) activity is usually correlated
with poor prognosis.26 Pyruvate, which is an intermediate
metabolic product of tricarboxylic acid cycle (TCA cycle),
provides adipogenic precursor citrate for the biosynthesis
of cholesterol and free fatty acids.27

The mevalonate–cholesterol biosynthesis pathway plays
a critical role in the growth of cancer cells,28 and accumu-
lation of cholesterol in tumor is associated with tumor pro-
liferation, metastasis, stemness, and drug resistance.29,30

This suggests that pathway inhibitors could be explored
as statins for cancer treatment. However, the relationship
among statins, tumorigenesis, and treatment outcome still
remained controversial,31–34 and different therapeutic
responses of statin are dependent on different molecular
characteristics of a certain tumor.32,35 The expressions of
MPC1 and MPC2 influence tumor prognosis,26 indicating
that differences of pyruvate flow exist among different
cancer types on one hand, and that variation between gly-
colysis and cholesterol synthesis could regulate cancer pro-
gression, on the other hand.

TNBC cell lines have unique glycolysis and adipogenic
properties and have shown their responses to metabolic
drugs. The combination of glycolysis inhibitor 2-deoxy-D-
glucose (2-DG) or 3-bromo-pyruvate with the epidermal
growth factor receptor (EGFR) inhibitor gefitinib signifi-
cantly suppressed TNBC cell (MDA-MB-468 and BT549)
proliferation. Co-administration of 2-DG and gefitinib
caused a remarkably shrinkage of tumor size in an MDA-
MB-468 xenograft tumor model in mice.36 A fatty acid syn-
thase (FASN) inhibitor G28 demonstrated a significant anti-
proliferative effect on TNBC cell line MDA-MB-231 (231)
and its derivatives resistant to doxorubicin (231DXR) and
paclitaxel (231PTR).37 EGCG, another anti-FASN com-
pound, plus cetuximab displayed strong antitumor activity
against doxorubicin-resistant TNBC cell lines (231DXR and
HCCDXR).38 However, whether heterogeneity of gene pro-
file in different metabolic pathways will affect clinical out-
comes or regulate metabolic vulnerability in TNBC is
unclear.

The current study classified TNBC into several subtypes
according to the expression characteristics of glycolytic and
cholesterogenic genes and examined their relationships
with survival, mutational, and expression features of prog-
nostic genes.

Materials and methods

Data acquisition and processing

The data in the present study were obtained from
Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC)39 and the Cancer Genome Atlas
(TCGA) database (https://www.cancer.gov/tcga). TCGA
(BRCA-US) data (sequence-based gene expression,
GRCH37) for all available BRCA-US samples (n¼ 1100)
were downloaded from the ICGC Portal (http://dcc.icgc.
org/releases/PCAWG/) on 2 January 2020 (ICGC data
release 28). BRCA_METABRIC data (Illumina Human v3
microarrays with expression log-intensity levels) were col-
lected from cBioPortal (http://www.cbioportal.org)
(n¼ 2506). Subsequently, any samples labeled as metastatic,
xenografts, cell lines, normal, or non-laser microdissected
enriched were removed.

Somatic mutation data of all the screened samples,
including CRCh37 and those both with copy number var-
iation (CNV) or single-nucleotide variants/indels (SNV/
Indels), were downloaded from the ICGC Portal on 2
January 2020. TNBC samples were filtered out from
breast cancer samples by using characteristic receptors of
ER, PR, and HER2 as the screening criteria. The final
sample sizes are listed in Table 1. The present study does
not require ethical approval or informed consent because
all the data were downloaded from the internet databases.

For RNA-seq data, quantitative data were downloaded
and the counts were standardized using the TMM.40

Standardized gene expression values of TNBC-US were
original count values, and METABRIC standardized gene
expression values of TNBC were log-transformed (log 2
[normalized_countþ 1]). We utilized ESTIMATE R package
(DOI: 10.1038/ncomms3612) to screen all the samples, and
those with cancer content less than 30% were excluded.
Finally, the batch effects of the TNBC-US and TNBC
METABRIC data sets were removed using Training
Distribution Matching method.41

Identification of metabolomic subgrouping

To identify molecular subgroups related to breast cancer
metabolism, we first retrieved the gene sets
“REACTOME_GLYCOLYSIS” (n¼ 29) and “REACTOME_
CHOLESTEROL_BIOSYNTHESIS” (n¼ 72) pathways from
the genes pertaining to molecular features database
(mSigDB42), and the genes included in the two pathways
were genes involved in glycolysis and cholesterol produc-
tion. The two type of genes were subjected to consensus
clustering using ConsensusClusterPlus43 v1.38 (parame-
ters: reps¼ 100, pItem¼ 0.8, and pFeature¼ 1). Euclidean

Table 1. The number of TNBC samples in the TCGA and METABRIC

data sets.

Sample Sample size (TCGA) Sample size (METABRIC)

TNBC 115 299

Non-TNBC 985 2207

TNBC, triple-negative breast cancer; TCGA, the Cancer Genome Atlas;

METABRIC, Molecular Taxonomy of Breast Cancer International Consortium.
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distance and hierarchical clustering with K¼ 5 were con-
sidered as distance metric and clustering algorithm, respec-
tively. Each sample was allocated cholesterogenic
(glycolysis� 0, cholesterol> 0), glycolytic (glycolysis> 0,
cholesterol� 0), quiescent (glycolysis� 0, cholesterol� 0),
or mixed (glycolysis> 0, cholesterol> 0) metabolic sub-
group according to the median level of co-expressed glyco-
lytic and cholesterogenic genes.

Comparison with the existing molecular subgroups

Previous research showed that characteristics of TNBC
gene expressions were correlated with patients’ survival.
Subtypes associated with poor prognosis included the clas-
sification were discovered by Liu et al., Jang et al., and Pinto
et al. Liu subtyping was based on one-gene feature of the
original version;44 Jang subtyping was based on one-gene
feature of the original version;45 and Pinto subtyping was
based on three-gene features of the original version.46 The
overlapping relationship between metabolic subgroups
proposed in the current study and previous molecular sub-
types was systematically compared in order to better
understand the relationship of the two. Specifically, for
each processing of the subtype, the samples were clustered
based on each classifier genes, followed by semi-automatic
subtype distribution according to gene expression patterns.
Finally, the sample intersection of different subtypes was
counted.

Association between MPC-related genes MPC1/2 and
metabolic subgroups

In cancer cells, MPC regulates mitochondrial pyruvate
flow, inhibits the expressions of MPC1 and MPC2, and pro-
motes glycolytic activity and lactic acid generation.26 To
investigate the relationship between MPC1 and MPC2
and glycolysis and cholesterol-generating phenotypes, we
first compared the mutation frequencies and expressions of
the two genes in the metabolic subsets. Next, Spearman
rank correlation coefficients of all genes associated with
MPC1 or MPC2 were calculated, so as to find cell pathway
related to MPC1/2 expression, and the gene set significant-
ly positively or negatively associated with MPC1/2 was
screened with false discovery rate (FDR)< 0.01 as the
threshold. Finally, these genes were used for GO functional
enrichment analysis for identifying the biological pathway
significantly associated with MPC1/2.

Association analysis of genomic variation and
molecular subtypes

All the data were obtained from hg19. SNV/Indels and
CNV in TNBC-TCGA, and TNBC METABRIC samples
were identified as previously described. As to TNBC
METABRIC tumor ploidy, DNA fragments with CNV� 1
or �–1 were considered as having amplifications or dele-
tions, respectively. TNBC-TCGA CNV data were down-
loaded from GDC Data Portal (https://portal.gdc.cancer.
gov/) on 2 January 2020. Following a previous study.47

TNBC-US copy number events were screened for those
with at least 10 probes and a mean value of fragment> 0.2

(enlargement) or <–0.2 (deletion). Bedtools v2.26 was used
to map the coordinates of copy number events into gene
coding region. The SNVand CNVof each gene were exam-
ined before contingency analysis. In every subgroup, each
of the 12 genes was tested and calculated by Fisher’s exact
test to determine whether there was a loss-of-function
mutation or copy number amplification/deletion. The
resulting P values were corrected using Benjamini–
Hochberg method.

Pan-cancer analysis

Driven by mutant environment and expression of organ-
specific enzyme, different cancers exhibit unique metabolic
features that may affect clinical treatment outcomes.15,48 To
clarify the relationship among glycolytic, cholesterogenic
expression subtypes, and other organ sites, we performed
consensus clustering analysis of glycolytic and cholestero-
genic expressions in 25 cancer types. RNA-seq for all non-
BRCA TCGA samples was downloaded from GDC Data
Portal, and the data type was set as TPM. For non-BRCA
TCGA cancer, 26 cancer types incorporating at least 100
samples were identified. The gene expressions were log-
transformed (log 10[TPMþ 1]), and gene orientation scale
was used for batch correction in every type of cancer. In
addition, gene expression value belonging to
“REACTOME_GLYCOLYSIS” (n¼ 29) or
“REACTOME_CHOLESTEROL_BIOSYNTHESIS” (n¼ 72)
was subjected to repeated consensus clustering (consensus
clustering parameter: reps¼ 100, pItem¼ 0.8, pFeature¼ 1;
Ward.D2 and Euclidean distance, k¼ 5). The proportion of
glycolytic and cholesterogenic genes was calculated for
each gene cluster, and a core gene cluster was defined
when a gene cluster contained more than 90%
CHOLESTEROL gene or more than 30% GLYCOLYSIS
gene. For these cancer types with multiple core clusters in
a same gene set, the most homogeneous clusters were
defined as core. Metabolic subtype of each cancer type
was distributed based on the median value of each core
glycolytic and cholesterogenic gene.

Statistical and survival analysis

Kaplan–Meier survival curve was plotted using the R pack-
age “survival” v.2.4.2 (https://CRAN.R-project.org/pack
age=survival) and “survminer” v.0.4.2 (https://cran.r-proj
ect.org/web/packages/survminer/index.html). Samples
with overall survival period shorter than one month were
excluded from the survival analysis.

Results

Analysis of glycolytic and cholesterogenic gene
expression identified four distinct subgroups of TNBC

To stratify TNBC subgroups, after removing samples with
low tumor content (< 30% per sample), a total of 414 sam-
ples (TCGA n¼ 115, METABRIC n¼ 229) were obtained
based on the relative expressions of cholesterogenic and
glycolytic genes, and of these genes those belonged to
responsive genome “cholesterol biosynthesis” (n¼ 72)
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and “glycolysis” (n¼ 29) were selected for further analysis.
To detect co-regulated genes of each pathway and were
related to TNBC biology, consensus clustering was per-
formed to identify a robust co-expression metabolic sub-
type gene in both glycolysis (n¼ 13) and cholesterol
biosynthesis pathways (n¼ 8) (Figure 1(a)). The median
expressions of co-expression cholesterogenic and glycolytic
genes in each sample were calculated and applied to one of
the following four curves particularly relevant to these two

pathways: quiescent, glycolytic, cholesterogenic, and
mixed (Figure 1(b)). Figure 1(c) demonstrates the expres-
sion levels of glycolytic and cholesterogenic genes in met-
abolic subgroups. Quiescent phenotype defined the largest
cluster(138/414; 33.3%), mixed type (105/414; 25.36%), cho-
lesterogenic type (85/414; 20.5%), and glycolytic type (86/
414; 20.7%). Genetic characteristics of metastatic and non-
metastatic TNBC cases were subjected to perform cluster
analysis in order to determine whether matrix type affected

Figure 1. Stratification of TNBC tumors based on the expressions of glycolytic and cholesterogenic genes. (a) Heatmap showing consensus clustering solution (k¼ 5)

for glycolytic and cholesterogenic genes in resected and metastatic TNBC samples (n¼ 414). (b) Scatter plot showing median expression levels of co-expressed

glycolytic (x-axis) and cholesterogenic (y-axis) genes in each TNBC sample. Metabolic subgroups were assigned on the basis of the relative expression levels of

glycolytic and cholesterogenic genes. (c) Heatmap showing the expression levels of co-expressed glycolytic and cholesterogenic genes across each subgroup.

(d) Kaplan–Meier survival analysis of patients with all (left), metastatic (middle), and non-metastasic (right) TNBC stratified by metabolic subgroup. Log-rank test

P values are shown. (A color version of this figure is available in the online journal.)
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metabolic classification, and we observed that the distribu-
tion of metastatic subsets was not significantly different
between these two subtypes. Survival curve of cholestero-
genic and glycolysis group showed a significant survival
difference (log rank P¼ 0.044) in all the TNBC samples. The
survival prognosis was remarkably worse in cholesterogenic
group than that in glycolytic group (Figure 1(d), left). In the
comparison with non-metastatic groups, significant differ-
ence in prognosis was observed between cholesterogenic
and glycolytic group (log rank P¼ 0.01). In metastatic
groups, no significant difference has been observed between
glycolytic and cholesterogenic groups (log rank P¼ 0.68)
(Figure 1(d), middle and right). Noticeably, a more favorable
survival was found in cases with increased glycolytic gene
expression. Apart from these, multiple metabolic pheno-
types related to glycolysis–cholesterol synthesis axis in
TNBC were identified, among them, tumor with higher gly-
colytic rate and lower cholesterol synthesis was less aggres-
sive and more chemotherapy-sensitive than tumor with
more cholesterogenic phenotypes.

Relation between tumor genome of metabolic subtypes
and known TNBC subtypes

To determine oncogenic events in different subtypes, we
examined SNV, Indels, and CNV affecting mutation

frequency of frequently mutated genes in TNBC6,49 in the
metabolic subgroups (Figure 2(a)). The data revealed that
although there was no significant difference about muta-
tion frequency of each gene among the subtypes (Fisher’s
exact test and BH correction, adjusted P> 0.05), we noted
that the median expression of cholesterogenic genes
increased significantly in samples with PIK3CA amplifica-
tion and dynein axonemal heavy chain 2 (DNAH2) deletion
(Figure 2(b)). The expressions of cholesterogenic genes
were negatively correlated with DNAH2 and positively
correlated with PIK3CA (Figure 2(c)). These findings
were consistent with the fact that PIK3CA promotes glycol-
ysis metabolism of TNBC and suggested that tumors with
enhanced replication of DNAH2 and PIK3CAmay be more
dependent on the use of cholesterol and are more suscep-
tible to cholesterol inhibition.

To examine whether the expression model of glycolysis–
cholesterol synthesis axis could screen the difference
among previously classified subtypes, we identified vari-
ous TNBC subtypes in each sample (n¼ 7) and studied
their overlap degree with metabolic phenotype (Figure 3
(a)). Quiescent group mainly included good-prognosis
cases (51.1%) (Liu et al.), which were significantly different
from the good-prognosis cases (Fisher’s exact test and BH
correction) in mixed group (0.2%, adjusted P value¼ 0.003)

Figure 2. Mutational landscape across metabolic subgroups of TNBC. (a) Oncoprint showing the distribution of somatic mutation (SNV/Indel) and CNV events

affecting frequently mutated genes in TNBC across the metabolic subtypes. (b) Box plot showing median expression of glycolytic genes in samples with DNAH2 and/or

PIK3CA copy number. (c) Scatter plot showing the correlation between median cholesterogenic gene expression and PIK3CA (left) and DNAH2 (right) expression.

(A color version of this figure is available in the online journal.)
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and cholesterogenic group (18.57%, adjusted P val-
ue¼ 4.4e-3) (Figure 3(b)). Using Pinto classification, the
sample number of quiescent group was significantly differ-
ent from that of mixed and cholesterogenic group (P val-
ue¼ 7.8e-6 and P value¼ 4.0e-4,respectively).

Significant differences were found in the number of
poor-prognosis samples between quiescent group and cho-
lesterogenic group (P value¼ 3.3e-3). Furthermore, a corre-
lation analysis was conducted between the gene expression
of cholesterol biosynthesis/glycolysis pathway and
gene-dependent expression based on Liu and Jang’s classi-
fications. We found that based on Jang classification, in
poor-prognosis samples, the expression of genes by

characterized grouping was positively correlated with the
expression of genes in the cholesterol biosynthesis path-
way. However, in good-prognosis samples, according to
Liu classification, the expression of genes by characterized
grouping was negatively correlated with those in the cho-
lesterol biosynthesis pathway. There was a high consistent
correlation of the genes in the cholesterol biosynthesis path-
way and glycolysis pathway in the above two clinical types
(Figure 3(c)). The above data indicated that different tumor
metabolic pathways play a role in the prognostic effects of
the TNBC subtypes and determined that glycolysis and
cholesterol biosynthesis can serve as potential metabolic-
targeted active sites for different TNBC subtypes.

Figure 3. Alignment of TNBCmetabolic subgroups with known gene expression subtypes. (a) Overlap of metabolic profiles with TNBC expression subtypes based on

the Liu, Jang, and Pinto classifications. (b) Bar plots showing the proportion of TNBC expression subtypes across each metabolic subgroup. (c) Scatter plot showing

reciprocal correlations between expression of glycolytic and cholesterogenic genes and genes associated with the Liu and Jang classifications. (A color version of this

figure is available in the online journal.)
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MPC as a potential regulator of glycolysis–cholesterol
synthesis axis in TNBC

To study the relationship between MPC1/2 and phenotype
of glycolysis–cholesterol synthesis, we compared the muta-
tion frequency and the expression of the two genes in met-
abolic subgroups of TNBC. A specific relationship of CNVs
in each gene was found, among the CNVs those affects
MPC1 showed specific deletions, whereas the CNVs affects
MPC2 were mostly amplified (Figure 4(a)). Significant dif-
ferences existed between the expressions of MPC1 and
MPC2 in metabolic subgroups. Compared with cholesterol
group, the expression of MPC2 gene was significantly
reduced in glycolytic samples, while the expression of
MPC1 was significantly higher in mixed and

cholesterogenic group than that in quiescent group, and
MPC2 expression was significantly increased in cholestero-
genic group compared with that in quiescent group
(Figure 4(b)). These results indicated that the dysfunction
of mitochondrial pyruvate transport at mRNA level might
be correlated with metabolic tumor subgroups.

A comprehensive correlation analysis was performed on
MPC1/2 and all the other tested genes (n¼ 25,483) for the
detection of cellular pathways correlated with MPC1/2
expression. MPC1/2 (Spearman correlation BH correction
P< 0.01) (Figure 4(c)) was found to be positively correlated
with a total of 1147 genes and negatively correlated with 95
genes. The molecular functions of positively correlated
gene also showed a positive correlation with cellular

Figure 4. Association of MPC1 and MPC2 expressions with TNBC metabolic subgroups and cell signaling pathways. (a) Oncoprint showing the distribution of MPC1

and MPC2 SNVs and CNVs across the metabolic groups. Only one case was found with an SNV in MPC2. (b) Box plots showing significant (t-test P< 0.001)

differences in expression levels of MPC1 and MPC2 across TNBC metabolic subgroups. (c) Scatter plot showing the correlations between MPC1 (x-axis) and MPC2

(y-axis) and each of 25,483 genes. A total of 1147 and 95 genes were found to be positively (Spearman correlated BH-adjusted P< 0.01; q>0) and negatively (adjusted

P< 0.01; q< 0) correlated with MPC1 and MPC2 expressions, respectively. (d) The most significantly enriched (hypergeometric test BH-adjusted P<0.05) gene sets

among genes positively (up) and negatively (bottom) associated with MPC1/2 expression. (A color version of this figure is available in the online journal.)
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energy metabolism (hypergeometric test, BH correction
P< 0.05) (Figure 4(c)). The pathways enriched in negatively
correlated genes were cell cycle transition and phosphory-
lation (Figure 4(d)). These data suggested that MPC activity
is involved in cellular network related to tumor progression
of TNBC, at least partially, through affecting the balance
between glycolysis and cholesterol synthesis of TNBC.

Relationship between glycolytic/cholesterogenic gene

cluster and other cancer types

The relationship among glycolytic, cholesterogenic expres-
sion subtypes and other organ sites was determined by
repeating consensus clustering analysis of glycolytic and
cholesterogenic expressions in 25 cancer types obtained
from TCGA (tumor content� 30%). We discovered that
specific gene clusters of co-expressed pathways were in
discrete state. Many genes have consistent expression pat-
tern in a majority of cancer types, but it may also vary as

certain genes are unique to a few cancers in co-expressed
glycolytic and cholesterogenic pathways, suggesting that
some genes have cell-type-specific function in metabolic
process of each cancer (Figure 5(a)). Based on TNBC clas-
sification system constructed by Pinto et al., the expressions
of cholesterogenic genes were significantly positively cor-
related with the expression of poor-prognosis genes
(Spearman correlation BH correction P< 0.05), suggesting
that gene signatures indicative of a poor outcome were
related to increased cholesterol synthesis activity, with a
wider coverage of tumor types (Figure 5(b)). In some
cancer types, we found median expression of glycolytic
genes was positively correlated with expression of
KRAS (COAD,ESCA,STAD,LGG,OV,THYM,READ,LUAD,
KIRC,LUSC,UCEC,PCPG,LAML,HNSC,GBM,PRAD,KIRP,
THCA) andMYC (STAD,THCA,LUSC,LUAD,UCEC, KIRP,
COAD,KIRC,HNSC,PCPG,SKCM) (BH correction
P< 0.05). Similar to TNBC, the expression of MPC1
(LUAD,COAD,PRAD,READ,TGCT,THCA,CESC,LAML,

Figure 5. Glycolytic and cholesterogenic gene profiling of other cancer types. (a) Heatmap showed that glycolytic and cholesterogenic genes were robustly

co-expressed when consensus clustering was applied to each individual cancer type. (b) Bar plots showing the proportions of metabolic subgroups across the various

cancer types (top) and correlation between CHOL subgroups and expression of Hoshida poor subtype, KRAS, MYC, and MPC1/2 in each cancer type (bottom).

Median glycolytic gene expression was positively (Spearman q> 0, BH-adjusted P< 0.05) correlated with basal-like gene expression in all cancer types. The

correlation between MPC1/2 expression and the glycolytic subgroup was measured using Wilcoxon rank sum tests followed by BH correction. (c) Kaplan–Meier

survival analysis curves showing differences in median overall survival across metabolic subgroups in CESC and SARC.
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LGG,KIRP,LUSC,ESCA,KIRC), MPC (READ,STAD,THCA,
PAAD,PRAD,ESCA,KIRC,COAD, BLCA,TGCT), and both
(ESCA,KIRC,COAD,PRAD,READ,TGCT,THCA) were
increased significantly in cholesterogenic group (Figure 5
(b)). These results further supported the finding that that
changes in mRNA expressions of these genes contribute to
cholesterol synthesis of tumor. Survival rates of the four
metabolic subtypes showed significant differences in
CESE (log rank P¼ 0.0044) and SARC (P¼ 0.00087,
Figure 5(c)). In CESE, significant survival differences were
compared between mixed and cholesterogenic group, and
mixed group showed a poor prognosis. In SARC, however,
the prognosis of quiescent and glycolytic groups was worse
than those of cholesterogenic and mixed groups. Taken
together, these results indicated that tumor metabolism
dependency varies according to different genomic features
and cancer-type-specific tumor microenvironment factors.

Discussion

A comprehensive understanding of clinically relevant
tumor subtype develops personalized therapies of TNBC.
In the current study, TNBC showed distinctive metabolic
signature according to the expressions of genes related to
glycolysis and cholesterol synthesis, which were two bio-
logical processes affecting TNBC prognosis. Due to struc-
tural variations, chromosomal rearrangement events,
epigenetic modification, and gene expression signatures,
high degree of molecular heterogeneity in TNBC results
in tumor subtypes of the cancer with distinctive differen-
ces.2,6,9,50,51 According to unique molecular characteristics
of each tumor subtype, such a phenomenon also aroused
great interest in applying related knowledge to clinical
practice to estimate prognosis, predict clinical efficacy,
and design personalized treatment of patients. TNBC tran-
scriptomic subclasses are currently used to predict surviv-
al,3,4,52 but their prediction accuracy in actual clinical
management and development of new therapies is relative-
ly low. Previous studies demonstrated that heterogeneity of
metabolic gene expression, including isoenzyme in specific
pathways, varies according to specific cancer types,15,48 and
metabolic gene expression reprograming is correlated with
the changes in metabolites.15 In the present study, we found
that the expressions of glycolytic and cholesterogenic genes
and TNBC-specific oncogenes were closely related to each
other, and such a finding provides a deeper understanding
of applying TNBC subtypes to targeting metabolic vulner-
abilities of aggressive tumors.

Glycolysis facilitates tumor growth, immune escape,
and drug resistance.14 Previous study indicated that
cancer patients with increased expressions of glycolytic
genes tend to have a shorter overall survival, pointing to
the role of glycolysis in promoting the progression of
TNBC.53,54 Similarly, cholesterol metabolism also facilitates
tumor cell growth, and the function of tumor-suppressor
AMPK is partially mediated by the inhibition of cholesterol
synthesis.55–57 Interestingly, the current study found that in
TNBC cases high-expressed glycolytic genes benefit patient
survival, suggesting although both glycolysis and choles-
terol synthesis stimulates tumor cell growth, they do not

necessarily exert the same synergistic effect on the progres-
sion of certain cases of TNBC. The relationship between
molecular heterogeneity of glycolysis-cholesterogene axis
and prognostic performance of different TNBC subtypes
suggests that different treatment methods should be specif-
ically designed to target its corresponding metabolic vul-
nerabilities. Therefore, blocking dependency of tumor on
glycolysis and cholesterol synthesis according to the sub-
type of TNBC patient can translate into clinical benefit.

The potential mechanisms leading to the poor outcome
of cholesterogenic tumor may be explained by the tumor-
promoting effect of cholesterol metabolites, as a majority of
cholesterol metabolites and derivatives can promote tumor
growth.58 Cholesterol ester (CE), a cholesterol metabolites,
is found up-regulated in glioma and prostate cancer,59 and
the abnormal accumulation of CE is related to a poor
prognosis in pancreatic cancer.60 Caveolin-1 is a regulator
of intracellular cholesterol homeostasis, and Caveolin-
1-mediated pathway may play an important role in
tumor metastasis promoted by CE.61 Acyl-coenzyme A:
cholesterol acyltransferase-1 can activate sterol regulatory
element-binding protein-1 (SREBP1) through excessive CE
synthesis, thereby promoting caveolin-1-mediated MAPK
signaling pathway and ultimately leading to metastasis.60

27-Hydroxycholesterol (27-HC) is a hydroxylated metabo-
lite of cholesterol and can be used as selective estrogen
receptor modulator62 and LXR agonist in the body.
A study showed that compared with normal breast tissue,
27-HC concentration is increased significantly in patients
with breast cancer, and that cholesterol 27-hydroxylase is
positively correlated with higher grade of breast cancer.63

In addition, 27-HC can elevate the expression of mouse
double minute 2 protein (MDM2) and enhance MDM2-
mediated P53 ubiquitination and degradation, resulting
in accelerated proliferation of estrogen receptor-positive
breast cancer cells.64 Moreover, it has been reported that
the proportion of metastatic tumor nodules is increased
significantly in 27-HC-pretreated breast cancer mouse
model compared with that in the placebo group.65

Molecular events are able to drive metabolism reprog-
raming of cancers, including in TNBC.17,66 Hyperactivation
of PI3K/AKT/mTOR signaling pathway is one of the most
widely studied mechanisms in cholesterol metabolic
reprograming. In an mTOR complex1-dependent manner,
PI3K/AKT signaling pathway activates SREBP pathway-
mediated cholesterol endogenous synthesis and LDLR-
mediated exogenous input, and simultaneously inhibits
ABCA1-mediated reverse cholesterol transport, resulting
in increased intracellular cholesterol.67,68 DNAH2 is
microtubule-associated motor protein complex with
ATPase activity.69 DNAH2 is mainly expresses in bronchus
and testis, and it is reported that DNAH2 mutation is
involved in bronchial diseases, sperm flagella defects,
Fanconi anemia, and chronic myelomonocytic leuke-
mia.70–74 In this study, we found that TNBC tumor with
PIK3CA amplification and DNAH2 deletion had
higher cholesterogenic gene expression, suggesting that
this TNBC subtype may have a cholesterogenic
dependency and susceptibility to cholesterogenic inhibi-
tion. Thus, a potential therapeutic strategy targeting
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cholesterogenic-dependent tumor with PIK3CA amplifica-
tion and DNAH2 deletion could be to transfer the metabol-
ic phenotype to activation of the glucose metabolism
pathway.

MPC is composed of pyruvate carriers 1 and 2 (MPC1
and MPC2), and loss of activity in any single subunit of the
complex can result in dysregulated MPC, which subse-
quently leads to decreased mitochondrial pyruvate trans-
location and utilization.24,25 It has been previously found
that suppression of pyruvate transport greatly inhibits both
glucose and pyruvate oxidation, surprisingly, oxygen con-
sumption, TCAmetabolism, and cell growth are well main-
tained. MPC knockdown significantly increases lipogenic
AcCoA pool, thus inducing substrate to convert to De Novo
Lipogenesis.75 In this study, we found that CNVs affect
MPC1 through specific deletions, and for MPC2, through
amplification, which will directly induce the dysfunction of
MPC. Cholesterogenic subgroup showed a poor prognosis,
possibly because MPC mutation caused expansion of lipo-
genic AcCoA pool, consequently promoting more choles-
terol synthesis and thus accelerating the occurrence and
development of cancer. In the same context, survival bene-
fit in glycolytic subgroup may be due to the relatively low
glucose and pyruvate oxidation and low-expressed intrin-
sic cholesterogenic genes. From the above analysis, it can be
observed that MPC2 expression is negatively correlated
with cell genetic programing, leading to aggressive tumor
subtype. These findings define the MPC as a latent target
for changing cancer metabolic profiles. Based on this, in
cholesterogenic TNBC cases, down-regulation of MPC2
expression may be able to attenuate the effects of tumor
cholesterol synthesis through converting the tumor into a
glycolytic subtype. Moreover, MPC2 can be a potential
target for reducing the degree of malignancy of TNBC
with or without MPC1 deletion. Correlation analysis
found that the genes negatively correlated with MPC2
expression were mainly enriched in cell cycle transition
and phosphorylation process, which points out an impor-
tant direction for further study on the action mechanism of
MPC2 in tumor metabolic reprograming.

Taken together, the findings presented in this study not
only provide a new perspective for prognostic prediction of
TNBC, but also suggest new treatment strategies for TNBC
metabolic subtypes. In TNBC cases, increased glycolytic
gene expression is statistically correlated with more favor-
able prognosis, by contrast, high-expressed cholesterogenic
gene has the opposite effect. As such, this finding offers an
alternative and complementary approach for improving
outcome predictions in TNBC. Except for poor prognosis,
TNBC subtype with higher cholesterogenic gene expres-
sion is associated with PIK3CA amplification and
DNAH2 deletion. Thus, cholesterogenic inhibition treat-
ments may offer a novel therapeutic approach for this
tumor type.
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