
Minireview

Importance of extracellular vesicles in hypertension

Zhi Z Liu1,2 , Pedro A Jose3, Jian Yang4 and Chunyu Zeng1,2,5

1Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese

Academy of Sciences, Chongqing 400714, P.R. China; 2Chongqing Key Laboratory for Hypertension Research, Chongqing

Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, P. R. China; 3Division of Renal Diseases

& Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; 4Department

of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China; 5Department of

Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China

Corresponding authors: Chunyu Zeng. Email: chunyuzeng01@163.com; Jian Yang. Email: jianyang@hospital.cqmu.edu.cn

Abstract
Hypertension affects approximately 1.13 billion adults worldwide and is the leading global

risk factor for cardiovascular, cerebrovascular, and kidney diseases. There is emerging

evidence that extracellular vesicles participate in the development and progression of

hypertension. Extracellular vesicles are membrane-enclosed structures released from

nearly all types of eukaryotic cells. During their formation, extracellular vesicles incorporate

various parent cell components, including proteins, lipids, and nucleic acids that can be

transferred to recipient cells. Extracellular vesicles mediate cell-to-cell communication in a

variety of physiological and pathophysiological processes. Therefore, studying the role of

circulating and urinary extracellular vesicles in hypertension has the potential to identify

novel noninvasive biomarkers and therapeutic targets of different hypertension pheno-

types. This review discusses the classification and biogenesis of three EV subcategories

(exosomes, microvesicles, and apoptotic bodies) and provides a summary of recent dis-

coveries in the potential impact of extracellular vesicles on hypertension with a specific

focus on their role in the blood pressure regulation by organs—artery and kidney, as well as

renin-angiotensin-system.
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Introduction

Hypertension, a silent disease, affects approximately 1.13
billion adults worldwide in 2015 and continues to
increase.1,2 According to the American Heart Association,
nearly half of U.S. adults have hypertension that is uncon-
trolled in 45.6%. This scenario is perhaps worse in devel-
oping and third world countries. Uncontrolled
hypertension is the leading global risk factor for

cardiovascular, cerebrovascular, and kidney diseases.3–5

For those patients with truly drug-resistant hypertension,

nonpharmacological therapies with excellent tolerability
profiles may be needed.6,7 Extracellular vesicles (EVs),

one of small particles containing various molecules that
mediate cell-to-cell communications, have the potential to

be such new therapy. There is emerging evidence that
hypertension is associated with increased release of EVs
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and/or different cargoes sorted into EVs in the urine and
blood.8–13 Given this fact, EVs may serve as biomarkers for
the diagnosis and potential targets for therapeutic interven-
tion in hypertension. In this review, we briefly introduce
EVs classification, recipient cell interactions, and biological
functions, then discuss the evolving understanding of the
role of EVs in hypertension and summarize the current
knowledge of EV-mediated regulatory mechanisms. These
may advance our understanding of the pathophysiology of
hypertension and provide novel insights into the field of
translational medicine.

EVs classification

According to the International Society for Extracellular
Vesicles, EV is “the generic term for particles naturally
released from the cell that are delimited by a lipid bilayer
and cannot replicate, i.e. do not contain a functional nucle-
us”.14 These small membrane-enclosed structures are shed
from nearly all types of eukaryotic cells and carry informa-
tion from their parent cells, including membrane receptors,
soluble proteins, metabolites, nucleic acids, and lipids.
According to their sizes and site of origins, EVs can be
divided into three subcategories: exosomes, microvesicles,
and apoptotic bodies.10,15

Exosome

Exosomes are the smallest EVs with diameters from 40 to
160 nm.16,17 The formation of exosomes is multi-step- and
multi-mechanism-involved process, including endosomal
sorting complex-required transport (ESCRT)-dependent
and ESCRT-independent pathways. ESCRT-dependent

pathway is the most common pathway regulated by
ESCRT-0, -I, -II, and -III. Exosomes are formed when mem-
brane proteins are endocytosed by inward budding of the
cell membrane and transferred to early endosomes. Then,
the ESCRT-0 complex recruits ubiquitinated proteins and
ESCRT-I, -II, -III to invaginate early endosome to form
intraluminal vesicles. During the invagination, cytosolic
proteins, mRNAs and miRNAs, DNA fragments, and
metabolites are incorporated into the intraluminal vesicles.
Finally, ESCRT-III induces the fission of intraluminal
vesicles, resulting in the formation of multivesicular
bodies. When multivesicular bodies fuse with the plasma
membrane, intraluminal vesicles are released into the extra-
cellular space and are then referred to as exosomes.
Exosome release appears to be controlled by RAB GTPase
in the process of vesicular trafficking, endosome recycling,
and vesicular plasma membrane fusion.18 If the multivesic-
ular bodies fuse with lysosomes instead of the plasma
membrane, then multivesicular bodies undergo degrada-
tion (Figure 1).

Microvesicles

Unlike exosomes, which are released following the exocy-
tosis of multivesicular bodies, microvesicles, with diame-
ters from 100nm to 1 lm,16,17 assemble at and are released
from the plasma membrane. Cellular stress, which results
in an increase in cytosolic calcium, induces specific mem-
brane changes and loosens the cytoskeleton, which leads to
the outward protrusion of the plasma membrane and the
formation of microvesicles. Lipidic proteins (myristoylated,
palmitoylated) in the lumen may play a role by promoting
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Figure 1. EV biogenesis and interaction with recipient cells. (a) Exosome formation starts with inward budding of the plasma membrane and transfer of early

endosomes. During early endosome invagination, cytosolic proteins, RNAs, enzyme, antigen, lipids, and other components are incorporated into the intraluminal

vesicles. When multivesicular bodies fuse with the lysosome, the protein contents get degraded. When multivesicular bodies fuse with the plasma membrane,

exosomes are released. (b) Microvesicles: external stress, e.g. oxidative stress, hypoxia, increases the cytosolic concentration of calcium to induce specific membrane

changes and loosen the cytoskeleton, which leads to outward protrusion of the plasma membrane and the formation of microvesicles. (c) Apoptotic bodies: These are

released during the late stage of programmed cell death. They contain several intracellular fragments and damaged cellular organelles, as well as other molecules

similar to those inside microvesicles. EVs mediate cell-to-cell communication through different mechanisms: (1) ligand-receptor interaction causes the accumulation of

EV contents, e.g. inflammatory cytokines, angiogenic factors, growth factors, and extracellular matrix proteins. (2) EV-plasma membrane fusion causes the release of

EV content into the recipient cell cytoplasm. 3) Receptor cell internalization causes the endocytosis of EVs to deliver their contents. EVs: extracellular vesicles.
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membrane curvature19; some ESCRT subunits, e.g. I/II/III,
participate in the assembly and budding of microve-
sicles.15,20 Microvesicle release is a scission step similar to
the final stage of cytokinesis. The activation of acidic sphin-
gomyelinase, leading to ceramide generation, is associated
with the plasma membrane release. Plasma membrane pro-
tein aggregation is another important factor for microve-
sicle release. Overexpression leading to higher-order
oligomerization in plasma membrane accelerates HIV
Gag budding/exosomal sorting and is sufficient to increase
protein targeting to microvesicles.21

Apoptotic bodies

Apoptotic bodies (100 nm–5 lm) are released during the
late stage of programmed cell death that is controlled by
caspase-mediated cleavage, and subsequent activation of
Rho-associated protein kinases.15,17,22 They contain several
intracellular fragments and damaged cellular organelles, as
well as other molecules similar to those inside microve-
sicles. Apoptotic bodies are smaller than cells and may pro-
vide an easier system for phagocytosis. However, the role of
apoptotic bodies in intercellular communication is current-
ly unclear. Therefore, the effect of apoptotic bodies in
hypertension is not covered here and the term EVs in this
review relate to exosomes and microvesicles.

After the release of exosomes and microvesicles into the
extracellular space, they bind and fuse similarly to their
recipient cells (Figure 1). In general, EVs communicate
with recipient cells via three different types of interactions:
(1) classical ligand-receptor interaction; (2) EV-plasma
membrane fusion; and (3) EV endocytic internalization.
EVs selectively bind to specific cell surface receptors locat-
ed on the plasmamembrane of cells.23 Such ligand-receptor
interactions likely account for many EV-secreted contents,
including EV-carried inflammatory cytokines, angiogenic
factors, growth factors, and extracellular matrix proteins
that activate immediate responses. EVs can directly fuse
with the plasma membrane of cells fusion and release the
contents into the cell.24 Exosomes produced by renal prox-
imal tubule cells can be taken up by cells distal to the prox-
imal tubule, such as the distal convoluted and collecting
duct cells.25 The receptor cell internalization of EVs by
endocytic mechanisms, includes clathrin-/caveola-mediat-
ed endocytosis, micropinocytosis, and phagocytosis. The
latter two interactions enable the delivery of RNAs or cyto-
plasmic proteins from EVs to recipient cells26–28 (Figure 1).

Preparation and characteristics of EVs

EVs can be isolated based on their physicochemical prop-
erties including buoyant density, shape, size, charge, and
surface composition. Therefore, multiple approaches have
been developed to isolate and purify EVs, such as ultracen-
trifugation, sucrose density gradient isolation, size-
exclusion chromatography, antibody-based affinity cap-
ture, ultrafiltration, and polymer-based precipitation.10,14

More and more investigators realized that each approach
has their own advantages and limitations; it is regrettable
that there is no technical standard available until now.

Researchers choose the appropriate isolation methods
mainly based on the type of samples and the forthcoming
application of the purified EVs. Generally, if EVs are used
as a source of diagnostic biomarker, getting maximal EVs is
the major concern. In case of EVs used as therapeutic
vehicles, their structure integrity and purification should
be the first-priority determinants.

Isolation method

Ultracentrifugation

Among these approaches, differential centrifugation is the
most widely accepted method. The sequential centrifuga-
tions are initiated with low centrifugal force (g) to remove
cells and debris (<1500g), and subsequent higher centrifu-
gal force to remove aggregates of biopolymers and apopto-
tic bodies (<100,000g), and then ultracentrifuge force to
pellet large EVs (10,000–20,000g), and small EVs (100,000–
200,000g).29,30 However, contaminants with similar buoy-
ant density, such as fragments of apoptotic cells, lipopro-
teins, protein aggregates, or proteins, are always presented
to prevent the complete purification of EVs and disturb its
function.31–33 For example, during the isolation of urinary
EVs, contamination of uromodulin is very common.
Uromodulin is the most abundant protein in the urine,
which could form into polymers to shroud EVs, and influ-
ence EV purification and its function, such as the commu-
nication to the recipient cells.34 In order to remove the
unwanted uromodulin, adding the reducing agent dithio-
threitol or the zwitterionic detergent CHAPS to disrupt the
polymeric uromodulin is a commonly used method.34

Filtration

According to the varied EV size, different filtration meth-
ods are developed in the past years, including ultrafiltra-
tion, hydrostatic dialysis, and size-exclusion
chromatography. Currently, commercial kits with pores of
various diameters are available for EVs extraction process.
EVs could be purified by filtration alone or combination of
filtration with other methods. As an additional step of
ultracentrifugation, it can increase the purity of EVs and
save the isolation time. Size-exclusion chromatography
uses a gravity flow for separation, which maintains best
the vesicle structure, integrity, and biological activity of
EVs.35

The combination of ultracentrifugation and filtration
might be an ideal way to isolate and purify EVs. First,
both methods offer chemical-free handling, which elimi-
nate potential interference due to chemicals. Second, only
pipetting and gravity/gravitational force application pre-
serve the EVs’ structure and bioactivity function better.
Furthermore, taking the advantage of the ability to deal
with large volume, highly diluted samples, e.g. urine, can
be centrifugated then concentrated by filtration to a speci-
fied EV size. However, adding steps to EV preparation
means a loss of EVs and increased preparation time, opti-
mizing each step is necessary in order to obtain the best
result.
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Other preparation methods

Other EVs isolation methods such as utilizing the EV solu-
bility, aggregation, or affinity are also under intensive
investigations. It should be noted that a particular
method may influence the activity of EVs. By comparing
the impact of different methods on EV preparations,
Gámez-Valero et al. found that polyethylene glycol and
PRotein Organic Solvent Precipitation-based EV isolation
reduced recipient cell viability in vitro,36 probably due to
acetone interferes with the functional properties of vesicu-
lar membranes. Therefore, the technique using the organic
solvent needs further validation.

Characterization

EVs carry different cell type-specific marker proteins from
their parent cells, which are used to identify the origin of
EVs after isolation of EVs.37 For example, endothelial cell-
derived EVs are identified by the presence of CD105,
CD144, and CD62e proteins. CD3, CD4, and CD8 are
used to identify the lymphocyte-derived EVs. When an
enough marker protein is exposed, the cellular origin of
EV can be determined by using antibodies directed against
such cell-type specific surface antigens. Nevertheless, the
assessment of EV purification after isolation is technically
complicated because of their heterogeneity and various
sizes, as well as the difficulty to distinguish the impurities
due to nucleic acids, proteins, and lipid contamination.
Nanoparticle tracking analysis and nano-flow cytometry
are newly developed methods to characterize the proper-
ties of EV size distribution, particle concentration, purity,
and phenotype, which might be helpful to determine the
purity of isolated EVs.38,39

Biological functions of EVs

Increasing evidence supports the notion that EVs partici-
pate in a wide range of biological processes via cell-to-cell
communications, which delineates the most critical func-
tion of EVs. As stated earlier, EVs can transfer many cellular
components from the parent cell to recipient cell, and there-
fore are able to change the composition and function of the
recipient cells. Several databases, such as EVpedia (www.
evpedia.info), Vesiclepedia (www.microvesicles.org), and
ExoCarta (www.exocarta.org), have online resources that
index EV data, including proteomics and transcriptomics.
The known cargos of EVs participate in several physiolog-
ical processes, such as waste management, immune regu-
lation, and cellular homeostasis modulation.

Waste management

EVs were first observed to be released from activated pla-
telets in 1967 and thought to be inert cellular debris and
named as “platelet-dust”.40 Since then waste management
has become an essential biological function of EVs. EVs can
carry redundant intracellular components, thus acting as
cellular waste disposal bags by releasing them from the
cell. The inhibition of EV secretion results in the accumu-
lation of nuclear DNA fragments in the cytoplasm, which

leads to apoptotic cell death in human cells.41 EVs contain-
ing cellular waste are especially equipped to facilitate their
clearance. For example, apoptotic bodies are easy targets
for phagocytosis because of the externalized phosphatidyl-
serine and/or their cargos act as chemotactic signal.22,42,43

The spleen may play a role in accelerating the clearance of
EVs. The activity of breast carcinoma- or pancreatic cancer-
derived microparticles was detected 5min after their intra-
venous injection into mice, but the activity became unde-
tected 2 h after injection. The clearance of the microparticles
from circulation is delayed in splenectomized mice.43

However, the underlying mechanisms by which the
spleen participates in the clearance of EVs have not been
determined.

Immune regulation

The role of EVs in immune regulation is under intense
investigation. EVs can impair or enhance immunity and
inflammation through their interchange among multiple
types of cells. EVs shed from sites of intestinal inflamma-
tion in patients with inflammatory bowel disease have
increased mRNA and protein levels of anti-inflammatory
IL-10, pro- or anti-inflammatory IL-6, and pro-
inflammatory IL-8, and TNF-a.44–46 These EVs increase
the translation of IL-8 in recipient colonic epithelial cells
and induce the migration of macrophages.44 Synovial
fluid of rheumatoid arthritis patients contains strong pro-
inflammatory and coagulant leukocyte-derived EVs, which
trigger autologous fibroblast-like synoviocytes to produce
and secrete inflammatory mediators, such as monocyte
chemoattractant protein-1, IL-8, IL-6, RANTES, ICAM-1,
and VEGF.47 Therefore, EVs can influence the release of
chemokines and cytokines and modulate synovial and
intestinal inflammation. EVs from TNF-a-induced inflam-
mation of endothelial cells have pro-inflammatory proteins,
such as ICAM-1, CCL-2, IL-6, IL-8, CXCL-10, CCL-5, and
TNF-a, which mediate inflammation and promote the
adhesion and migration of monocytes.48 EVs can also
directly modulate various immune cells. Tumor-derived
EVs inhibit natural killer cell function by decreasing the
activity of CD107a, NKG2D, TNF-a, and INF-c, and impair-
ing glucose uptake.49 Platelet-derived EVs can also activate
monocytes via the RANTES pathway inducing monocyte
migration and recruitment to sites of inflammation.50 It
should be emphasized that EVs modulate immune
responses not only by stimulating the pro-inflammatory
cytokines but also triggering the release of anti-
inflammatory mediators.48 Human neutrophil-derived
EVs have no pro-inflammatory activity on human macro-
phages but increase the release of transforming growth
factor beta 1 (TGF-b1), suggesting that EVs down-
modulate macrophage activation and can behave as anti-
inflammation effectors.51 However, TGF-b1 can be pro-
inflammatory by promoting the secretion of pro-
inflammatory cytokines such as IL-17.52 By contrast, the
anti-inflammatory interleukin, IL-10, contained in the
cargo of EVs derived from adipose tissue-derived autolo-
gous mesenchymal stem cells was found to localize and
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protect renal tubule cells from a porcine model of metabolic
syndrome and renal artery stenosis.53

Cellular homeostasis modulation

One aspect of cellular homeostasis is regulated by the bal-
ance of EV-associated cell proliferation, apoptosis, and
autophagy. EVs from the serum of healthy human volun-
teers increase the proliferation of H9C2 cardiomyocytes by
up-regulating miR-17-3p which inhibits TIMP3 expres-
sion.54 TIMP3, aka, tissue inhibitor of metalloproteinases
3, belongs to the TIMP family, which inhibits matrix metal-
loproteinases. Metalloproteinases promote cell prolifera-
tion, as a response to acute kidney injury, for example.55

Mesenchymal stem cell (MSC)-derived EVs enhance the
survival of cisplatin-induced acute kidney injury in a
mouse model by increasing the expression of anti-
apoptotic genes, such as Bcl-xL, Bcl2, and BIRC8, and
downregulating the expression of pro-apoptotic genes,
such as Casp1, Casp8, and LTA.56 Autophagy induced by
EVs also plays a role in cell survival. MSC-derived EVs
increase the expression of the autophagy marker LC3 and
beclin-1 but decrease the expression of mTOR and fibrotic
marker expression in renal tissue, mechanisms that are
involved in the improvement renal function and histology
of streptozotocin-induced diabetic nephropathy in rats.57

However, the ability of EVs to promote cell survival is not
beneficial in cancer because the release of EVs may support
tumor cell survival by reducing the chemotherapeutic drug
concentration within the tumor cell. Experiments show that
after treatment of cultured cancer cell lines with chemother-
apeutic agents such as cisplatin and doxorubicin, the cells
release EVs which contain the drugs.58,59 The shedding of
the EVs is a mechanism for getting rid of the drugs, result-
ing in drug resistance.

EVs have many other physiological functions which
cannot be fully covered in this minireview. In the following
sections, we highlight and discuss the recent studies on the
pathophysiological role of EVs in the progression of hyper-
tension, with emphasis on the artery and kidney.

EVs and hypertension

Recent clinical studies revealed that circulating and urinary
EVs are associated with increased blood pressure, suggest-
ing that EVs may be biomarkers and also involved in the
pathogenesis and progression of hypertension.13,60–64

Circulating EVs are derived from the endothelium, plate-
lets, and immune cells, whereas urinary EVs are derived
from the kidney and urinary tract. Patient with severe
hypertension and even hypertensive patients with well-
controlled blood pressure have increased circulating endo-
thelial and platelet microparticles.13,61 Urinary endothelial
microparticles are increased in essential and renovascular
hypertensive patients, relative to normotensive controls.64

By contrast, endothelial microparticles in renal vein and
systemic levels were not different between subjects with
essential or renovascular hypertension and normotensive
subjects.64 Three months after treatment of renovascular
hypertension with or without stenting, the urinary levels

of peritubular capillary endothelial microparticles correlat-
ed inversely with renal function. The authors suggested
that urinary capillary endothelial microparticles may
reflect renal microcirculation injury and serve as bio-
markers of intrarenal capillary loss.64

In 2018, Otani et al. reported that plasma exosomes can
modulate systemic blood pressure in a rat model of hyper-
tension.65 They showed that the intraperitoneal injection of
plasma exosomes from spontaneously hypertensive rats
(SHRs) increased systolic blood pressure of normotensive
Wistar-Kyoto (WKY) rats. By contrast, WKY-derived
plasma exosomes decreased the blood pressure of SHRs.
Abnormal increase of endothelial EVs in SHRs is associated
with endothelial dysfunction and arterial stiffness.66 Good
et al. observed that circulating EVs from WKY rats reduced
vasodilation of isolated WKY mesenteric arteries but had
no effect on SHR mesenteric arteries. However, EVs from
hypertensive SHRs failed to reduce vasodilation from both
WKYand SHRs.67 These data support the idea that a blood
pressure regulating effect of EVs changes after the devel-
opment of hypertension.

Mechanisms of EV-mediated regulation of
blood pressure

EVs and artery

Increased peripheral vascular resistance, a key feature of
hypertension, is due to vasoconstriction, impaired vasodi-
lation, and vascular remodeling.68–71 Arteries are classified
into: (1) large, elastic, conducting arteries; (2) medium-
sized, muscular, distributing arteries; and (3) arterioles.
All arteries have three distinct layers: an innermost single
layer of endothelial cells; layers of vascular smooth muscle
cells (VSMCs); and an outermost layer of connective tissue,
primarily comprised of collagen and elastin fibers.
Endothelium-dependent vessel dilation and vascular
remodeling play important roles in the pathogenesis and
maintenance of hypertension.68,71

EVs and endothelium. Endothelial dysfunction, mainly
caused by impaired production of endothelial nitric oxide
(NO) and increased production of superoxide, is associated
with the development and progression of arterial hyperten-
sion.71,72 Hypertensive individuals have high levels of
endothelial EVs, and endothelial EV levels correlate posi-
tively with systolic blood pressure, arterial diameter, and
pulse wave velocity and inversely with wall shear stress
and microvascular dysfunction.13,61,62,73,74 The arterial vas-
cular endothelium is one of the primary targets of circulat-
ing EVs, specifically platelet- and leukocyte-derived EVs.
EVs can impair NO release, trigger endothelial inflamma-
tion, and alter endothelial cell survival and angiogenesis, to
influence arteriolar reactivity.75 EVs from platelets and leu-
kocytes can affect both proinflammatory and anti-
inflammatory processes in endothelial cells. In vitro, leuko-
cyte or platelet microparticles release cytokines IL-1b, IL-6,
and IL-8, and increase the expression of ICAM-1, VCAM-1,
and E-selectin. These factors activate endothelial cell
adhesion molecules with/without ERK1/2- and
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NF-jB-dependent pathways, promoting inflammatory
responses in endothelial cells.76,77 However, neutrophil
microparticles also contain anti-inflammatory proteins,
such as annexin-1, and may attenuate vascular contrac-
tion.78 Microparticles from human monocytes cause hyper-
tension and endothelial dysfunction in rats by impairing
angiotensin 1–7-mediated vasodilation in mesenteric arter-
ies, which is aggravated by EVs from lipopolysaccharide-
treated monocytes. These effects are associated with
reduced endothelial NO phosphorylation andMas receptor
expression, via dysregulation of monocyte miRNA-27a.79

Thus, the ability of EVs to increase endothelial inflamma-
tion synergizes with the decreased production of NO and
endothelial cell proliferation, increasing blood pressure.

EVs and VSMCs. Numerous studies have documented
increased thickness of smooth muscle layers and media-
to-lumen ratio of arteries in hypertension,68,80,81 which
may be the result of maladaptive alterations in VSMCs
and the components of the adventitia.82,83 EVs are involved
in the thickening of vascular smooth muscle layers and
altering of components of the adventitia by different mech-
anisms that may be related to their different cellular ori-
gins.84–89 For example, platelet-derived EVs exert a strong
immunomodulatory activity by increasing monocyte adhe-
sion to VSMCs and interacting with increased CD40- and P-
selectin, inducing a switch towards a pro-inflammatory
phenotype, stimulating VSMC proliferation and migra-
tion.89 Tong et al. showed that arterial adventitial
fibroblast-derived exosome from SHRs promoted VSMC
migration by transferring angiotensin-converting enzyme
(ACE) to VSMCs. ACE knockdown in adventitial fibro-
blasts reduced ACE contents and activity in its exosome
and inhibited the migration of VSMCs.90 Recently, Ren
et al. found that miR155-5p is involved in the function of
aortic adventitial fibroblast-derived EVs. EVs from SHRs,
relative to those from WKY rats, had decreased miR155-5p
but increased ACE contents. Aortic adventitial fibroblast-
derived EVs were able to transfer miR155-5p and ACE at
the same time. WKY-EVs or miR155-5p attenuated while
SHR-EVs promoted VSMC proliferation, vascular remodel-
ing, and hypertension in both SHRs and WKY rats.84

EVs and kidney

The kidney plays a very important role in the regulation of
blood pressure. Besides the role of renal macrovessels and
microvessels (afferent and efferent arterioles, vasa recta),
renal tubules maintain fluid and electrolyte balance to
keep the blood pressure in the normal range.68,83,91,92

After a first discovery of EVs in urine in 2004,93 the interest
in urinary EVs in the pathogenesis and diagnosis of hyper-
tension has grown exponentially. In focal segmental glo-
merulosclerosis and diabetes patients, urinary exosomal
Wilms’ tumor-1 was significantly increased.94,95 In animal
models with podocyte damage (streptozotocin-treated
mice, OVE26, and Akita mice), urinary podocyte extracel-
lular vesicles were significantly increased and correlated
with the severity of the glomerular injury. The increased
biomarkers result from an increased amount of urinary

extracellular vesicles and/or increased contents in each
vesicle.94,96

Urinary EVs are secreted by various cells of the urinary
tract. These EVs contain cell-specific marker proteins from
every segment of the nephron. For example, sodium/
hydrogen exchanger type 3 (NHE3) and aquaporin-1
from the proximal tubule, sodium potassium chloride
cotransporter (NKCC) from the thick ascending limb,
sodium chloride cotransporter (NCC) from the distal con-
voluted tubule, aquaporin-2 from the collecting duct, podo-
calyxin, podoplanin, and WT-1 from podocytes were all
detected in the urinary EVs.9,97 Naþ-Kþ/ATPase is not
expressed in intestinal epithelial exosomes.98 However,
Naþ-Kþ/ATPase b1 subunit has been reported in urine
from healthy human volunteers.93,99 Extracellular vesicles
can be filtered in functional nephrons and are found in the
urine in healthy subjects due to their small sizes. Since
extracellular vesicles circulating in a dynamic process and
the lack of effective technology to monitor EV fate, it is
difficult to determine to what extent EVs undergo glomer-
ular filtration. Other urinary exosome proteins found in
healthy human volunteers can be found in the ESBL uri-
nary exosome protein database （https://hpcwebapps.cit.
nih.gov/ESBL/Database/Exosome/）.

EVs and sodium transporters. Urinary EVs have been
analyzed in various hypertensive disorders and mostly
focused on NCC, the sodium chloride cotransporter in
the distal convoluted tubule. Urinary total and phosphor-
ylated NCC is increased in EVs of patients with hyperten-
sion due to pseudo hypoaldosteronism type II (Gordon’s
syndrome) and post-kidney transplant patients taking
tacrolimus.100–102 Over-activated NCC leads to the
increased renal tubular reabsorption of sodium chloride
and subsequently hypertension. Studies have determined
whether the abundance of sodium transporters in urinary
EVs correlates with sodium reabsorption under physiolog-
ical conditions. For example, Zachar et al. reported that in
healthy humans, total and phosphorylated NCC are pre-
sent in urinary EVs but not affected by sodium intake.103

Another study also found that the excretions of NCC and
NKCC2 in urinary EVs are not associated with the increase
in blood pressure in a small number (n¼ 6) of salt-sensitive
humans.104 In rats (strain not given), urinary excretion of
exosomal NKCC2 and NCC correlated with their renal
abundance. The urinary EVs in women with pre-
eclampsia contain NKCC2 with increased phosphorylation
at the activating S130 site, and NCC with decreased phos-
phorylation at the activating T60 site.105 NKCC2 in urinary
exosomes has also been reported to be increased in patients
with renal dysfunction and American cutaneous
leishmaniasis.106

Epithelial sodium channel (ENaC) is responsible for the
reabsorption of sodium through the apical membrane of
the connecting tubule and the collecting duct. Patients
with diabetic nephropathy and hypertension have
increased proteolytically cleaved c-ENaC in their urinary
EVs.107 In the aforementioned women with pre-eclampsia,
their urinary EVs have decreased phosphorylation of the
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activating T60 site in NCC.105 Dietary sodium restriction in
hypertensive patients or acute aldosterone infusion in
healthy humans similarly significantly increased urinary
EVs with cENaC, whereas NCC and a-ENaC concentra-
tions were unchanged. Thus, cENaC concentration in EVs
may be a useful biomarker of ENaC activation.108 Urinary
exosomal miRNA has also been reported to be correlated
with an individual’s response to sodium intake.109 Several
of these miRNAs, i.e. hsa-miR-4516, are involved in signal-
ing pathways that regulate renal sodium transporters, such
as NCC and ENaC.110,111

NHE3 is the major apical sodium exchange in the renal
proximal tubule. In Caucasian males and post-menopausal
women with type 2 diabetes mellitus, their urinary phos-
phorylated NHE3 in EVs were higher with glucagon-like
peptide receptor agonist, lixisenatide, than insulin glulisine
treatment.112 Patients with American cutaneous leishman-
iasis, mentioned above, also have increased excretion of
urinary exosomes with NHE3.106

EVs and RAS. Abnormalities in sodium and water han-
dling caused by the renin-angiotensin system (RAS) is a
common pathophysiology of hypertension.113,114 The RAS
is now classified into the classical pathway and the non-
classical or counter-regulatory pathway.115,116 The classical
pathway starts with angiotensinogen, its conversion to
angiotensin I by renin, and conversion of angiotensin I to
angiotensin II by angiotensin-converting enzyme. This
pathway causes vasoconstriction and stimulation of renal
sodium transport. In the non-classical or counter-
regulatory pathway, angiotensin-converting enzyme 2 con-
verts angiotensin II from the classical pathway to angioten-
sin 1–7 or alamandine from angiotensin A and in general,
opposes the effects of the classical pathway. There are three
angiotensin II receptors: AT1R, AT2R, and AT4R, and two
angiotensin 1–7 receptors, MrgD and Mas. AT1R is a vaso-
constrictor, while AT2R, AT4R, MrgD, and Mas are vaso-
dilators. Components of the RAS can be transferred by
EVs and affect the activity in the recipient cells. As men-
tioned earlier, ACE contents, but not angiotensin II and
AT1R, in adventitial fibroblast EVs are much higher in
SHRs than in WKY rats.84,90 The increased ACE in EVs
from SHRs increased angiotensin II levels, activated
AT1R, and promoted VSMC migration. Biomechanical
stress, like osmotic stretch or cardiac pressure overload,
induces secretion of AT1R-enriched exosomes.117 AT1R-
enriched exosomes traffic to cardiac and skeletal myo-
cytes, and resistance vessels in AT1R knock-out mice to
restore Ang II-induced blood pressure response. Other
components of the RAS, such as angiotensin 1–7 and
Mas receptor, have also been studied. For example, in
vivo tail injection of EVs from monocytes to rats impairs
angiotensin 1–7-mediated vasodilation in mesenteric
arteries, accompanied by decreased Mas receptor expres-
sion and eNOS phosphorylation in the endothelium.79

The RAS per se functions as potent stimuli to increase
the formation of EVs. Burger et al. found that angiotensin
II increased microparticle formation in endothelial cells in
vivo and in vitro, accompanied by increased NADPH

oxidase-derived ROS generation and Rho kinase activi-
ty.118 Endothelial microparticles are enriched in lipid
rafts/caveolae, which themselves contribute to generation
of new microparticles. These studies indicate that EVs
carry the information from RAS into the recipient cells
to mediate the known actions of RAS. In turn, the
action of RAS increases the formation of EVs. EVs can
increase VSMC proliferation, renal sodium reabsorption,
vascular remodeling, and finally results in the develop-
ment of hypertension (Figure 2).

Prognostic and therapeutic potential of EVs
in hypertension

The prognostic and therapeutic potential of EVs have
gained interest because of their special characteristics.
First, as biomarkers for prognosis, EVs can be obtained by
noninvasive (urinary EVs) or minimally invasive (circulat-
ing EVs) methods and inform the clinician about the pos-
sible cause of the hypertension (EVs carry components
from their parent cells). EVs are suggested to be surrogate
biomarkers for endothelial dysfunction, vascular damage,
and increased activity of renal sodium transporters/
exchangers in hypertension.9,13,61,62 Moreover, EVs can be
used as biomarkers of improved vascular endothelial func-
tion. Hypertensive patients on hemodialysis treated with
aliskiren, a direct renin inhibitor, for 12weeks show
improved levels of platelet-derived EVs and flow-
mediated dilation.119 Subsequent studies aim to analyze
the whole spectrum of EVs, including the functional bio-
molecules within EVs. Proteomic analysis of circulating
EVs in albuminuric hypertensive patients showed that
two proteins, kalirin and chromodomain-helicase-DNA-
binding protein 7, increased with RAS suppression.120

Because expression of these proteins in circulating EVs pos-
itively correlates with the endothelial activation marker E-
selectin, it is used to monitor the vascular condition of these
patients. EV RNA cargo in hypertension is another area of
intensive studies. miRNAs are enriched in the urinary EVs
of essential hypertensive subjects.109 Kidney nephron-
derived exosome miRNAs may be associated with renal
sodium transport, and therefore regulation of blood pres-
sure. Low miR-146a expression in EVs is associated with
the presence of albuminuria and high miR-27a in EVs may
cause hypertension.79,121 Urinary exosome miRNA can be
linked to salt sensitivity or inverse salt sensitivity; the latter
is a state in which blood pressure is increased by a low salt
diet.109

EVs have advantages as therapeutic agents. EV-based
therapies have a potential to bypass many hurdles of cell-
based therapies because EVs have low immunogenicity.122

EVs are relatively easy to isolate and when frozen are stable
over a long period of time, making them available as off-
the-shelf products. EVs are able to deliver multiple bioac-
tive molecules that may or may not act synergistically,
which allows the tailoring of the method of delivery to
optimize their therapeutic effects.123 There are extensive
studies reporting the use of EVs in cardiovascular dis-
eases.16,124 In addition, the inhibition of exosome secretion
not only has some physiological consequences,41 but also
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may have some effects to certain diseases. For example, in
cancers, tumor cells secrete vast amounts of immune inhib-
itory exosomes that hinder anti-cancer immune responses.
Removal circulating tumor EVs is proposed to inhibit dis-
ease progression.125 However, to the best of our knowledge,
there is no report that tries to block exosome production in
any model of hypertension, which needs to be studied in
the future. It should be noted that the therapeutic potential
of EVs in hypertension is still in its early phase. An ex vivo
study demonstrated plasma-poor circulating EVs from
WKY and SHRs can differentially modulate vasoreactivity
of isolated mesenteric vessels.67 There is one animal study
that demonstrated the potential of plasma EVs to regulate
systemic blood pressure with beneficial effect on end-organ
damage in hypertension.65 Future studies will shed more
light on EV-mediated therapeutics on blood pressure
regulation.

Conclusion and prospects

Hypertension is a strong and independent predictor of
risk and future incidence of cardiovascular, cerebrovascu-
lar, and kidney diseases.3–5 In resistant hypertension, an
increasing number of patients are unable to achieve ade-
quate control of their blood pressure despite taking more
than three antihypertensive drugs.7 As discussed in this
review, EVs play an important role in the development
and progression of various hypertensive disorders. The
underlying mechanisms include EV-mediated vascular
dysfunction, renal sodium and water transporters abnor-
malities, and RAS disorder. Distinct EVs cause different
blood pressure outcomes, which depend upon their
origin and stage of disease. Studies are needed to uncover
the role of EVs in pathogenesis of hypertension and find
EV components that regulate blood pressure, prevent or

treat hypertension, and to find out suitable biomarkers,
which could be used to detect the early onset of hyper-
tension before the development of target organ damage.
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Velot É, Verweij FJ, Vestad B, Vi~nas JL, Visnovitz T, Vukman KV,

Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber

V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener

Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yá~nez-M�o M,
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Isakson BE, Erdbrügger U. Circulating extracellular vesicles in nor-

motension restrain vasodilation in resistance arteries. Hypertension

2020;75:218–28

68. Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-

Krott MM, Hall JL, Le TH, Isakson BE. Vascular smooth muscle

remodeling in conductive and resistance arteries in hypertension.

Arterioscler Thromb Vasc Biol 2018;38:1969–85
69. Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A,

Arner A, Montezano AC. Vascular smooth muscle contraction in

hypertension. Cardiovasc Res 2018;114:529–39
70. Rosenblum WI. Endothelium-dependent responses in the microcircu-

lation observed in vivo. Acta Physiol 2018;224:e13111
71. Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelium-

dependent contractions and endothelial dysfunction in human hyper-

tension. Br J Pharmacol 2009;157:527–36
72. Vásquez-Vivar J, Kalyanaraman B, Martásek P, Hogg N, Masters BS,
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