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Abstract

Long non-coding RNA (IncRNA) has increasingly been identified as a key regulator in pathol-
ogies such as cancer. Multiple platforms were used for comprehensive analysis of ovarian
cancer to identify molecular subgroups. However, INcRNA and its role in mapping the ovar-
ian cancer subpopulation are still largely unknown. RNA-sequencing and clinical character-
istics of ovarian cancer were acquired from The Cancer Genome Atlas database (TCGA). A
total of 52 IncRNAs were identified as aberrant immune IncRNAs specific to ovarian cancer.
We redefined two different molecular subtypes, C1(188) and C2(184 samples), in
“iClusterPlus” R package, among which C2 grouped ovarian cancer samples have higher
survival probability and longer median survival time (P <0.05) with activated IFN-gamma response, Wound Healing and Cytotoxic
lymphocytes signal; 456 differentially expressed genes were acquired in C1 and C2 subtypes using limma (3.40.6) package,
among which 419 were up-regulated and 37 were down-regulated, in TCGA dataset. Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes (KEGG) functional enrichment analysis revealed that these genes were actively involved in ECM-receptor
interaction, PI3SK-Akt signaling pathway interaction KEGG pathway. Compared with the existing immune subtype, the Cluster2
sample showed a substantial increase in the proportion of the existing C2 immune subtype, accounting for 81.37%, which was
associated with good prognosis. Our C1 subtype contains only 56.49% of the existing immune C1 and C4, which also explains the
poor prognosis of C1. Furthermore, 52 immune-related IncRNAs were used to divide the TCGA-endometrial cancer and cervical
cancer samples into two categories, and C2 had a good prognosis. The differentially expressed genes were highly correlated with
immune-cell-related pathways. Based on IncRNA, two molecular subtypes of ovarian cancer were identified and had significant
prognostic differences and immunological characteristics.

Impact statement

Long non-coding RNA (IncRNA) has
increasingly been identified as a key regu-
lator in pathologies such as cancer.
However, expressed INcRNA and its role in
mapping the ovarian cancer subpopulation
are still largely unknown. Based on
IncRNA, two molecular subtypes of ovarian
cancer were identified and had significant
prognostic differences and immunological
characteristics.
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Introduction there were about 52,100 women diagnosed with ovarian

Ovarian cancer is a prevalent malignant tumor of the fem-
inine reproductive system, and its mortality rate is the
highest of all gynecological malignant tumors'; 70% of suf-
ferers are diagnosed at an advanced stage due to hidden
disease, no obvious symptoms at early stage and effective
early diagnosis method.? Although some progress has been
made in surgical techniques, molecular targeted drugs, and
chemotherapy drugs, the efficacy of ovarian cancer is still
not satisfactory, with a five-year survival probability of not
exceeding 35%.° Due to the large population base in China,
the situation is more severe. A study in 2015 found that
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cancer, among whom about 22,500 died of ovarian
cancer.* Last few years, although many new treatment
methods have been discovered, the prognosis of ovarian
cancer cells has not been appreciably advanced.
Therefore, a thorough of the molecular behavior of malig-
nancy of ovarian cancer cells and its possible system has an
important theoretical basis.

Long non-coding RNA(LncRNA) is a term used to refer
to non-coding RNA whose nucleotide length is greater than
200.° Currently, investigation of IncRNA is still in the pri-
mary stage. With the progress of more and more researches
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on IncRNA, LncRNA plays an essential function in epige-
netic regulation, dose-compensation effect, cell differentia-
tion regulation, and cell cycle regulation, and has become a
research hotspot in genetics. More and more work suggest
that IncRNA can not only regulate innate immune
response, but also regulate more complex adaptive
immune response.®” In addition, IncRNA may be a key
regulator of tumor microenvironment (TME),*” forming a
complex and heterogeneous environment composed of
stromal cells and infiltrating immune cells.'"” In ovarian
cancer, elevated expression of IR155HG is tied to higher
infiltration of immune cell subsets." LncRNA HOTTIP
promotes the expression of PD-L1 in immune escape and
neutrophils, while suppresses T cell proliferation and
tumor immunotherapy.'> The engagement of IncRNA in
immune regulation is sophisticated, and plenty of pivotal
immunomodulatory IncRNAs as yet unidentified.
Therefore, there is an urgent need to find out novel
immune-associated IncRNAs and to characterize their
role in ovarian cancer.

In this work, we first produced a co-expression network
of immune-associated mRNA and IncRNA to acquire 52
immune-associated prognostic IncRNAs. We then built
two immune-associated molecular subtypes of IncRNA in
ovarian cancer samples. In addition, we performed an anal-
ysis of the characteristics of immune microenvironment
and functional enrichment. Finally, we examined whether
52 immune-associated IncRNAs could contribute to pre-
dicting the prognosis of patients with endometrial cancer.

Materials and methods

Data acquisition and processing

The latest expression data and clinical follow-up informa-
tion of ovarian cancer patient and endometrial cancer and
cervical cancer patient tissues were downloaded from the
TCGA GDC API" on 20 April 2020. For TCGA data set, the
expression spectrum was divided into IncRNA and mRNA
by gene annotation of GTF (V32 version) file in
GENECODE, and the Ensembl ID of these genes was con-
verted into Symbol form. For the TCGA-ovarian cancer
data set, in order to retain the gene set with biological sig-
nificance, we deleted the genes whose expression values
were all 0 in the samples, and obtained the expression pro-
files of 19,498 protein-coding genes and 13,630 IncRNAs.
The RNA-seq data of TCGA were processed in the follow-
ing steps:

1. Only tumor samples of solid tumors are retained.

2. Samples that do not express spectrum were removed.

3. Samples without clinical follow-up information were
removed.

. Samples without survival data were removed.

5. Samples without survival status were removed.

I

The work flow chart is shown in Figure 1.

Immune function-related pathways

In this study, the Immport database'® contains a large
number of immune-related genes, which are widely used
in immune-related research. A total of 17 immune
function-related pathways were obtained, including anti-
gen processing and presentation, antimicrobials, BCR sig-
naling, chemokines and chemokine receptors, cytokines
and cytokine receptors, interferons, interferon receptors,
interleukins, interleukins, natural killer cell cytotoxicity,
TCR signaling pathway, TGFb family members, TGFb
family members, TNF family members, and TNF family
members. All include 1811 related protein-coding genes.

Co-expression analysis

In order to explore the co-expression relationship of genes
in ovarian cancer samples, we used the Pearson correlation
method to calculate the correlation between mRNA and
IncRNA expression in the samples. First, we deleted
all genes whose TPM expression value was 0 in tumor
samples. At the same time, to ensure that the expression
value is close to the normal distribution, log2 conversion is
performed for the expression spectrum. Next, Pearson cor-
relation coefficients and significance P values of all mRNA
and IncRNA in the samples were calculated in R language.
Moreover, at the threshold of |R|>0.5 and P < 0.05, signifi-
cant co-expression relationships between all mRNA and
IncRNA were obtained in ovarian cancer samples.

Recognition of immune function IncRNA regulators

To explore the relationship between IncRNA and immune
function, Gene Set Enrichment Analysis (GSEA)"”method
was used to calculate the enrichment relationship between
IncRNA and 17 immune function-related pathways. The
expression correlation coefficient R value and P value of
mRNA and IncRNA in ovarian cancer and normal samples
were integrated to obtain the Score value representing the
correlation between the two genes. The formula is as fol-
lows: Score = —log10P x sign(R).

For each IncRNA, all mRNAs were sequenced from
small to large based on correlation scores, and the enrich-
ment significance and IncRES scores of each IncRNA and
each immune-functionally related pathway were calculated
using GSEA method." Under the condition of FDR < 0.05
and |IncRES|>0.995, IncRNA regulators of immune func-
tion in ovarian cancer samples were obtained.

Enrichment analysis of candidate dysregulated immune
IncRNA and immune cells

To verify the role of dysfunctional immune IncRNA in
ovarian cancer, 24 immune cells (CD4_naive, CD8_naive,
Cytotoxic, Exhausted, Tr1l, nTreg, iTreg, Th1l, Th2, Th17,
Tth, Central memory, Effector_memory, NKT, MAIT, DC,
Beell, monocyte, macrophage, NK, neutrophil,
Gamma_delta, CD4_T, CD8_T) marker gene collection
were obtained from ImmuCellAl. Next, dysregulated
immune IncRNAs with significant correlation with
marker genes of 24 immune cells were extracted, and the
hypergeometric enrichment analysis method was used to
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Figure 1. Workflow.

identify the significant enrichment relationship between
candidate dysregulated immune IncRNAs and immune
cells. The hypergeometric calculation formula is as follows

Pij = MG CFM
N

Pij represents the marker gene enrichment significance
of IncRNA i and immune cell ], N represents the number of
significant correlation mRNAs of IncRNA i in ovarian
cancer samples, M represents the number of marker
genes contained in immune cell j, k represents the
number of significant correlation genes of IncRNA i and
immune cell j, and N represents the number of all
mRNAs, namely 19,498. In addition, when K is less than
3, the test results are considered to have no significance.
Based on this method, we calculated the expression corre-
lation and enrichment significance between each candidate
IncRNA and 24 immune cells, and identified the significant
enrichment relationship between all candidate dysregu-
lated immune IncRNA regulators and immune cells at the
threshold of P <0.05. Finally, we screened out ovarian
cancer-specific dysregulated immune IncRNAs that were
significantly enriched in at least 12 immune cells.

Identification of molecular subclasses

According to the expression values of dysregulated
immune IncRNAs in cancer samples, consensus clustering
was used to classify ovarian cancer samples and
endometrial cancer, that is, to use R-packets to unsuper-
vised clustering the samples and determine the number
of clustering.

GO and KEGG

—>| Compareof Clinical Features ]
—DI Compare with other subtype ]

Survival analysis of molecular subclasses

Survival analysis was conducted for the samples
according to the survival time (OS, DSS) and survival
status of different sample -categories. Kaplan-Meier
method was used to estimate the survival rate and
median survival time, and the difference between different
sample subclasses was obtained by comparing each group
based on the log-rank test.

Differential genes and functional enrichment analysis
of molecular subclasses

The differential genes among the molecular subtypes were
analyzed using the limma package,'® FDR<0.05 and
|[FC|, > 1.5 were used as thresholds for filtering, the genes
that met the conditions were used as the differential genes
for further analysis. For differential genes, we used the R
software package WebGestaltR (0.4.3)"” for functional
enrichment analysis of GO and KEGG, with FDR < 0.05 as
the threshold of significant enrichment.

Analysis of immunological properties of molecular
subclasses

In order to analyze the differences in biological character-
istics among different samples, various immunological fea-
tures of TCGA ovarian cancer samples were obtained from
published article,'® including important immunological
molecular features such as wound healing, IFN-gamma
response, and TGF-beta response. Meanwhile, the software
MCPcounter'® was conducted to calculate the immune
scores of 10 cells in the tumor samples. Wilcox rank sum
test was used to compare the biological characteristics and
characterization of subclasses of different samples.
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Validation of dysregulated immune IncRNA on
endometrial cancer dataset

In order to verify whether these 52 IncRNAs have immune-
related functions in different cancer species, TCGA-
endometrial cancer data set was used for verification.
The immune IncRNA gene was used to classify the
TCGA-endometrial cancer data, and then the differentially
expressed genes among different groups were compared
and analyzed by functional annotation of the differentially
expressed genes.

Results

Identification of ovarian cancer-specific dysregulated
immune IncRNAs

The correlation analysis of mRNA and IncRNA expression
showed that a total of 7135 IncRNAs were strongly corre-
lated with mRNA in ovarian cancer samples, and each
IncRNA was significantly correlated with 43 mRNA on
average. Based on GSEA method and enrichment results
of 17 immune function pathways, 10,792 significant
IncRNA-immune function pathway pairs were identified
in ovarian cancer samples, including 3084 IncRNA regula-
tors enriched in different immune function sets.

In order to further ensure the immunomodulating role of
candidate IncRNAs in ovarian cancer, marker gene sets of
24 immune cells were collected from the literature. Under
the condition of P < 0.05, a total of 6718 significant IncRNA-
immune cell pairs were obtained, and we further screened
52 IncRNAs with significant enrichment relationships with
at least 12 immune cells as the dysregulated immune
IncRNAs specific to ovarian cancer (Figure 2).

Identification of molecular subtypes of ovarian cancer

Considering that the classification of molecular subclasses
of cancer samples is of great significance for personalized
treatment of ovarian cancer, 52 expression values of
immune IncRNAs specific to ovarian cancer were used
to classify the samples. Based on the method in
ConsensusClusterPlus of R package, ovarian cancer sam-
ples in TCGA are better divided into two categories, C1 and
C2 contain 188 and 184 samples, respectively (Figure 3(a)).
Further, survival analysis of TCGA ovarian cancer samples
showed significant differences in OS time and DSS time
between the two groups (P=0.0032, P=0.0042), among
which the C2 ovarian cancer samples had higher survival
rate and longer median survival time (Figure 3(b) and (c)).
The expression differences of 52 ovarian cancer-specific
immune-dysregulated IncRNAs in two molecular subtypes
were compared, and the results showed that 57.69%
(30/52) IncRNAs were significantly different in two sub-
types (P < 0.05) (Figure 3(d)).

Differential analysis of molecular subtypes in
immunology of ovarian cancer

In order to study the differences in immunological charac-
teristics between the two types of samples, we obtained the
TGEF-beta response, wound healing, IFN-gamma response,
and other important immune characteristics scores of
TCGA ovarian cancer samples from literature,'® and the
results showed that Cl patients had higher TGF-beta
response scores (Figure 4(a)) and lower IFN-gamma
response scores and wound healing scores (Figure 4(b)
and (c)) compared to C2 patients.
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Figure 2. Enrichment significance of dysregulated immune IncRNA and immune cells. (A color version of this figure is available in the online journal.)



The immune scores of 10 immune cells showed that the
scores of monocytic lineage, myeloid dendritic cells, endo-
thelial cells, neutrophils, CD8 T cells, and fibroblasts were
higher in C1 molecular subtype samples than in C2 molec-
ular subtype samples (Figure S1, P < 0.05), Tcells, B lineage,
NK cells, and cytotoxic lymphocytes have no differences
immune scores in C2 molecular subtype samples and C1
molecular subtype samples (Figure S1). To provide basis for
further immunotherapy for ovarian cancer, 47 immune
checkpoint genes® were extracted for the expression of
ovarian cancer to compare whether there are differences
in the two molecular subtypes. We found that the expres-
sion of 18 genes in C1 group was significantly higher than
that in C2 group (Figure 4(d)). The expression of five genes
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in C1 group was significantly lower than that in C2 group
(Figure 4(e)). We also tested the difference between the neo-
antigens in the molecular subtypes of ovarian cancer, and
the results showed no significant difference (Figure 4(f)).
There is no significant difference in clinical characteristics
between the two subtypes (Figure 5(a) to (d)).

Identification of differentially expressed gene analysis
and function in ovarian cancer

Limma (3.40.6) was used to calculate the differentially
expressed genes (DEGs) between C1 and C2 molecular sub-
types. After filtering by threshold FDR < 0.05 and |[FC| and
> 1.5, there were 456 differentially expressed genes, among
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Figure 3. Identification of molecular subtypes in ovarian cancer. (a) Unsupervised clustering of ovarian cancer samples. (b) OS survival curves of two types of ovarian
cancer samples. (c) DSS survival curves of two types of ovarian cancer samples. (d) The expression differences of 52 immune-related IncRNAs in molecular subtypes.
*P <0.05, **P < 0.01, ***P < 0.001. (A color version of this figure is available in the online journal.)
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distribution of C2 molecular subtypes identified by us in the four existing immune subtypes. (c) The OS KM curve of immune subtypes has been reported in the TCGA
dataset. (d) DSS KM curve of immune subtypes has been reported in the TCGA dataset. (A color version of this figure is available in the online journal.)

which 419 were up-regulated and 37 were down-regulated
(Figure 6(a) and (b)).

Functional enrichment analysis of KEGG and GO was
performed on 456 differentially expressed genes by R soft-
ware package WebGestaltR (0.4.3), among which there
were 320 significantly different genes commented to BP
(FDR < 0.05) (Figure 6(c)), 51 significantly different genes
commented to CC (FDR < 0.05) (Figure 6(d)), and 31 signif-
icantly different genes commented to MF (Figure 6(e)).
KEGG enrichment results showed that there were 25
KEGG pathways with significant differences (FDR < 0.05)
(Figure 6(f)), among which the ECM-receptor interaction,
PI3K-Akt signaling pathway, pathways in cancer, proteo-
glycans in cancer and other pathways for tumor develop-
ment were significantly enriched.

Comparison with published immune subtypes

Six subtypes of immune infiltration were identified
from the literature, namely C1 (wound-healing), C2 (inF-
R predominated), C3 (inflammation), C4 (lymphocyte
depletion), C5 (immunologically silenced), and C6 (TGEF-
beta predominated).’® The samples of molecular subtype
C1 identified by us accounted for 24.43%, 41.22%, 2.29%,
and 32.06%, respectively, in the C1-C4 immune subtype
(Figure 7(a)). The samples of molecular subtype C2
accounted for 7.84%, 81.37%, and 10.78%, respectively, in
the C1, C2, and C4 immune subtypes (Figure 7(b)). Survival
analysis showed that among the four immune subtypes, C1
and C4 had a poor prognosis, while C2 had a good

prognosis (Figure 7(c) and (d)). Interestingly, C2 ovarian
cancer samples significantly increased in the C2 immune
subtype, accounting for 81.37%, which was associated with
a good prognosis. Our C1 subtype contains only 56.49% of
the existing immune C1 and C4, which also explains the
poor prognosis of C1.

Classification of immune IncRNA in endometrial
carcinoma and cervical cancer

In order to verify the functional effects of these 52 immune-
related IncRNAs, we used these 52 IncRNAs to classify
endometrial cancer samples and cervical cancer sample in
TCGA database, and divided TCGA endometrial cancer
samples into two categories, C1 and C2 containing 432
and 109 samples, respectively (Figure 8(a)). TCGA cervical
cancer samples were also divided into two categories, C1
(75 samples) and C2 (216 samples), respectively (Figure 8
(d)). In addition, survival analysis of TCGA endometrial
cancer samples was conducted based on this classification
information, and we found that there were significant sur-
vival differences in OS time and DSS time between the two
groups (P =0.039, P =0.021), among which the C2 endome-
trial cancer samples had higher survival rate and longer
median survival time (Figure 8(b) and (c)). Survival analy-
sis of TCGA cervical cancer samples showed that there
were significant survival differences in OS time and DSS
time between the two groups (P =0.036, P =0.039), among
which the C2 endometrial cancer samples had higher
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survival rate and longer median survival time (Figure 8(e)
and (f)).

Immunological differences in endometrial carcinoma
and cervical cancer subtypes

In order to study the differences in immunological proper-
ties between the two types of samples in endometrial car-
cinoma, we found that there was no difference in TGF-beta
response and IFN-gamma response scores in C1 patients
compared with C2 patients (Figure 9(a) and (b)), while C1
patients had significantly lower wound healing scores
(Figure 9(c)). The immune scores of the 10 immune cells
also showed that Tcells, B lineage, monocytic, myeloid den-
dritic cells, NK cells, neutrophils, CD8 T cells, and thirdly
cytotoxic lymphocytes were different in the two most lym-
phocytes molecular subtypes (P < 0.05) (Figure 9(d) to (m)).
In cervical cancer subtype, C2 had no difference in TGEF-
beta response, but obviously higher IFN-gamma response
scores and lower wound healing scores in comparison to

(b)

wilcon tests p=5.16-05
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C1 type (Figure 10(a) to (c)). The immune scores of the
10 immune cells showed that T cells, B lineage, monocytic
lineage, myeloid dendritic cells, NK cells, neutrophils, CD8
T cells, and cytotoxic lymphocytes were different in the two
most molecular subtypes (P < 0.05) (Figure 10(d) to (m)).

Functional analysis of differentially expressed genes in
endometrial carcinoma and cervical cancer subtypes

The differentially expressed genes (DEGs) between endo-
metrial cancer and cervical cancer C1 and C2 molecular
subtypes were calculated by limma (3.40.6). After filtering
by the TCGA data set with threshold FDR < 0.05 and |FC]|
and > 1.5, a total of 685 differentially expressed genes were
found, among which 399 were up-regulated and 286 were
down-regulated in endometrial cancer (Figure 11(a) and
(b)). KEGG and GO functional enrichment analysis
showed that there were 260 significant differences in anno-
tation to BP (FDR < 0.05) (Figure 11(c)), 14 significant differ-
ences in annotation to CC (FDR <0.05) (Figure 11(d)),
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Figure 10. Immunological analysis of cervical cancer molecular subtypes. (a) Differences in TGF-beta response between molecular subtypes of cervical cancer. (b)
Differences in FN-gamma response between molecular subtypes of cervical cancer. (c) Differences in wound healing between molecular subtypes of cervical cancer.
(d) Differences in T cells scores between cervical cancer molecular subtypes. (e) Differences in B lineage scores between ENDOMETRIAL CANCER molecular
subtypes. (f) Differences in monocytic lineage scores between cervical cancer molecular subtypes. (g) Differences in myeloid dendritic cells scores between cervical
cancer molecular subtypes. (h) Differences in endothelial cells scores between cervical cancer molecular subtypes. (i) Differences in NK cells scores between cervical
cancer molecular subtypes. (j) Differences in neutrophils scores between cervical cancer molecular subtypes. (k) Differences in CD8 T cells scores between cervical
cancer molecular subtypes. (|) Differences in cytotoxic lymphocytes scores between cervical cancer molecular subtypes. (m) Differences in fibroblasts scores between
cervical cancer molecular subtypes. (A color version of this figure is available in the online journal.)



556 Experimental Biology and Medicine Volume 246 March 2021

31 significant differences in annotation to MF (FDR < 0.05)
(Figure 11(e)). There were 29 KEGG pathways with signif-
icant differences (FDR < 0.05) (Figure 11(f)), among which
immune-related pathways such as natural killer cell-
mediated cytotoxicity, T cell receptor signaling pathway,
Th17 cell differentiation, Th1l and Th2 cell differentiation,
and NF-Kappa B signaling pathway are significantly
enriched. There are also 734 differentially expressed genes
that were found, among which 158 were up-regulated and
576 were down-regulated in cervical cancer (Figure 12(a)
and (b)). KEGG and GO functional enrichment analysis
showed that there were 687 significant differences in anno-
tation to BP (FDR < 0.05) (Figure 12(c)), 73 significant differ-
ences in annotation to CC (FDR < 0.05) (Figure 12(d)), 68
significant differences in annotation to MF (FDR < 0.05)
(Figure 12(e)). There were 43 KEGG pathways with signif-
icant differences (FDR < 0.05) (Figure 12(f)), among which,
Th1 and Th2 cell differentiation, cytokine-cytokine receptor
interaction, Th17 cell differentiation, and natural killer cell-
mediated cytotoxicity signaling pathway are significantly
enriched.

Discussion

In our work, a grand total of 52 IncRNAs were recognized
as aberrant immune IncRNAs specific to ovarian cancer.
We redefined two different molecular subtypes, C1(188)
and C2(184 samples), among which C2 grouped ovarian
cancer samples have higher survival probability and a
longer median life expectancy (P <0.05) with activated
IFN-gamma response, wound healing, and cytotoxic lym-
phocytes signal; 456 differentially expressed genes were
recognized in C1 and C2 subtypes, among which 419
were up-regulated and 37 were down-regulated, in TCGA
dataset. Functional enrichment analysis implied that these
genes were actively plunge into an ECM-receptor interac-
tion, PI3K-Akt signaling pathway interaction KEGG path-
way. Compared with the existing immune subtype, the
Cluster2 sample showed a significant increase in the
proportion of the existing C2 immune subtype, accounting
for 81.37%, which was associated with good prognosis.
Our C1 subtype contains only 56.49% of the existing
immune C1 and C4, which also explains the poor prognosis
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of C1. Furthermore, 52 immune-related IncRNAs were
used to assign the TCGA-endometrial cancer data set into
two categories, and C2 had a good prognosis. The differen-
tially expressed genes were highly correlated with
immune-cell-related pathways.

With the advances in large-scale sequencing technology
and bioinformatics methods, IncRNAs have been revealed
to be engaged in carcinogenesis and cancer development.!
The molecular atlas shows that ovarian cancer is a complex
and heterogeneous disorder with unique molecular subsets
and clinical characteristics. Many works have also proved
the importance of IncRNA in ovarian cancer, encompassing
its role as a driver of tumor inhibition and carcinogenic
property, microrRNA competitors, and diagnostic bio-
markers.”>* In the near future, the engagement of
IncRNAs in immune regulation has been broadly charac-
terized.?*2° Hence, we hypothesized that immune-related
IncRNAs could be applied to investigate various immune
types and characterize their mechanisms in ovarian cancer.
In our work, 52 immune-associated prognostic IncRNAs
were obtained, and two immune-related IncRNA clusters,
C1 (188) and C2 (184), were constructed using 392 ovarian

cancer samples from TCGA. Further, significant survival
differences were found between the two groups.
Fascinatingly, we found two clusters of ovarian
cancer cases on the basis of immune-related IncRNAs,
which differed significantly in immunological characteris-
tics. It has been reported that IncRNA may also play a
key role in transcriptional regulation of gene expression
during innate immune response.’® LncRNA EGFR activates
T-regulatory cells differentiation, thereby contributing
to immune evasion from hepatocellular carcinoma.”
shMALAT1 treatment in diffuse large B cell lymphoma
decreased PD-L1 level and inhibited apoptosis of CD8+ T
cells.”® We analyzed immune characteristic score and
immune cell types in two clusters. The results showed
that the cluster 1 had higher TGF-beta response score,
and lower IFN-gamma response and wound healing
score than the cluster 2. Monocytic lineage, myeloid den-
dritic cells, endothelial cells, neutrophils, CD8 T cells, and
fibroblasts score had significantly difference in two molec-
ular subtypes (P<0.05). The above results show that
in ovarian cancer samples, the two groups of molecular
subtypes have significant immunological differences,
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which may lead to significant differences in the prognosis
of the two groups.

Strong robustness is necessary for the classification of
molecular subtypes to be applied in clinical practice. In
this study, in order to prove the robustness of 52
immune-related IncRNAs, we applied these IncRNAs to
TCGA endometrial carcinoma samples and also divided
them into two categories, among which C1 had a poor
prognosis and C2 had a good prognosis. Differential
genes are highly correlated with immune-cell-related path-
ways, which also prove the importance of these immune-
related IncRNAs from the side.

There are several limitations that need to be noted
in the study. First, IncRNA should be studied in further
experiments, which may provide new therapeutic targets
for ovarian cancer. Secondly, due to data limitations,
immune-related IncRNAs were only validated in an inde-
pendent patient data set, and more patient data sets are
expected to validate the performance of immune-related
IncRNAs to accelerate clinical application. In future research,
we will continue to study and solve these problems.

Conclusions

In summary, our study identified immune IncRNA-
mediated molecular subtypes associated with clinical out-
comes in patients with ovarian cancer.
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