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Abstract
Transcriptomics in Parkinson’s disease offers insights into the pathogenesis of Parkinson’s

disease but obtaining brain tissue has limitations. In order to bypass this issue, we profile

and compare differentially expressed genes and enriched pathways (KEGG) in two periph-

eral tissues (blood and skin) of 12 Parkinson’s disease patients and 12 healthy controls

using RNA-sequencing technique and validation with RT-qPCR. Furthermore, we compare

our results to previous Parkinson’s disease post mortem brain tissue and blood results

using the robust rank aggregation method. The results show no overlapping differentially

expressed genes or enriched pathways in blood vs. skin in our sample sets (25 vs. 1068

differentially expressed genes with an FDR� 0.05; 1 vs. 9 pathways in blood and skin,

respectively). A meta-analysis from previous transcriptomic sample sets using either micro-

arrays or RNA-Seq yields a robust rank aggregation list of cortical gene expression changes

with 43 differentially expressed genes; a list of substantia nigra changes with 2 differentially

expressed genes and a list of blood changes with 1 differentially expressed gene being

statistically significant at FDR� 0.05. In cortex 1, KEGG pathway was enriched, four in substantia nigra and two in blood. None of

the differentially expressed genes or pathways overlap between these tissues. When comparing our previously published skin

transcription analysis, two differentially expressed genes between the cortex robust rank aggregation and skin overlap. In this

study, for the first time a meta-analysis is applied on transcriptomic sample sets in Parkinson’s disease. Simultaneously, it

explores the notion that Parkinson’s disease is not just a neuronal tissue disease by exploring peripheral tissues. The comparison

of different Parkinson’s disease tissues yields surprisingly few significant differentially expressed genes and pathways, suggesting

that divergent gene expression profiles in distinct cell lineages, metabolic and possibly iatrogenic effects create too much tran-

scriptomic noise for detecting significant signal. On the other hand, there are signs that point towards Parkinson’s disease-

specific changes in non-neuronal peripheral tissues in Parkinson’s disease, indicating that Parkinson’s disease might be a

multisystem disorder.
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Introduction

Parkinson’s disease (PD) has an appreciable rate of clinical
misdiagnosis. The diagnosis made by experienced

clinicians is �90% concordant with the following patholog-
ical diagnosis.1,2 Furthermore, PD is not a uniform disease
where next to causal monogenetic mutations (<10% of all
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PD patients), many low-risk loci account for much of the
genetic risk in sporadic PD.3 Although the effect size of
each locus is small, the combined effect increases the risk
of PD substantially.4 These loci change gene expression
levels rather than changing the coded protein qualities.5

Both monogenetic and sporadic changes in PD result in
pathognomic loss of neurons in substantia nigra (SN) and
in accumulation of misfolded a-synuclein in Lewy bodies.
The incidence of PD increases with aging, which reflects the
accumulation of changes caused by altered gene expres-
sion.6 Therefore, mapping differentially expressed genes
(DEGs) in PD is useful in discovering these multiple
changes and could offer diagnostic and prognostic markers
and possible treatment options.

However, there are substantial obstacles. PD is canoni-
cally thought to be a disease affecting a specific population
of neurons. Obtaining tissue for transcriptomic analyses
from brain has some limitations, since it is performed post
mortem on advanced PD patients. Another factor is that
RNA-molecule is instable and the length of post mortem
interval and RNA integrity must be considered. A possibil-
ity to bypass these obstacles is to sample peripheral tissues,
especially the blood, for gene expression. There is evidence
that blood gene expression profile does not differ signifi-
cantly from the brain.7,8 Thus, analyzing blood for easily
obtainable biomarkers in PD has become widespread.9–17

Another issue with gene expression studies in PD is the
lack of reproducibility of the findings. For example, from a
set of 22 DEGs identified with microarray from PD whole
blood by Scherzer et al.,18 only three were found overlap-
ping from 1367 DEGs in a subsequent study by Kauczynska
et al.9 Lack of reproducibility between datasets could come
from different analytic procedures and some from the
inherent genetic and transcriptional heterogeneity of PD.
PD has been associated with aberrant splicing19 and
using microarrays or polymerase chain reaction (PCR)
limits mapping this heterogeneity. Unlike arrays, RNA
sequencing (RNA-Seq) does not require probes but can
detect alternatively spliced or novel transcripts.20,21 RNA-
Seq has also been shown to be highly accurate for quanti-
fying expression levels and has less background noise. This
enables a smaller sample size, while still having more sta-
tistical power compared to microarrays.22,23

In this study, we compare two peripheral tissues in PD—
whole blood and skin. We identified the DEGs using RNA-
Seq with subsequent validation with RT-qPCR. In addition
to describing DEGs, our second goal is to describe enriched
functional pathways in PD whole blood and skin. Thirdly,
we aim to compare our results with previous datasets from
central nervous system (CNS) and blood. The usage of dif-
ferent methods has limited comparing and integrating pre-
vious data and thus far enabled only descriptive reviews of
PD transcriptomics.24 Meta-analysis could possibly offer a
more reproducible set of DEGs or functional pathways for
PD, but the use of different methods, annotations, and the
publication of incomplete DEG lists hampers integrating
the results of previous work. In order to bypass this issue,
we use the robust rank aggregation method25 to analyze the
aggregated results from our study and previous datasets.
The aim here is to determine which DEGs and enriched

pathways are ranked the highest within a specific tissue
and whether CNS tissue changes overlap with those from
heterogenous peripheral tissue populations.

Materials and methods

Study subjects

The study was conducted in concordance with the
Declaration of Helsinki and approved by the local Ethics
Committee. All subjects gave their written consent to par-
ticipate in the study. The RNA-Seq from whole blood
included 12 patients with clinically diagnosed idiopathic
PD and 12 matched healthy controls (HC). Patient charac-
teristics chosen for skin RNA-Seq have been published pre-
viously.26 The inclusion of patients was based on: (1) a
diagnosis of idiopathic PD according to the QSBB criteria27;
(2) on standard medical treatment for PD; and (3) no other
severe diagnoses based on medical interview. The demo-
graphic data, history of disease, and clinical data were
documented, and a summary of participant characteristics
and comparison with the previously published skin dataset
is presented in Table 1. Clinical disease markers were
assessed using validated instruments including the
Movement Disorders Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS),28 the Hoehn and Yahr Scale (HY),29

the Schwab and England Activities of Daily Living Scale
(SE-ADL),30 and the Mini Mental State Examination
(MMSE).31

PD patients selected for the whole blood RNA-Seq had a
mean age of 72.2 (�10.0) years with a mean disease dura-
tion of 6.9 (�6.5) years and mean HY stage of 2.7 (�1). The
results were validated with qRT-PCR with further 59 PD
and 33 HC blood samples (including the 12þ 12 from RNA-
Seq), and a breakdown of clinical characteristics can be
found in Supplementary Table 1.

Sampling and RNA sequencing

At the time of the medical interview, venous blood of all
study subjects was collected into Tempus Blood RNATubes
(Thermo Fisher Scientific Inc., CA, USA) for the whole
blood RNA-Seq. The tubes were immediately frozen and
stored in liquid nitrogen at �80�C. The RNAwas extracted
applying Tempus Spin RNA Isolation Kit (Thermo Fisher
Scientific Inc., CA, USA) combined with DNase treatment
(RNase-Free DNase Set, Qiagen, Hilde, Germany), accord-
ing to the manufacturers’ protocols. The globin mRNAwas
removed from the extracted total RNA using GLOBINclear
Kit, human (Thermo Fisher Scientific Inc, CA, USA). The
lowest acceptable concentration of globin clear RNA was
36.5 ng/mL for PD patients and 39.5 ng/mL for the control
group; 50 ng of each RNA sample was amplified with
Ovation RNA-Seq System V2 Kit (NuGen Technologies
Inc., CA, USA) and the output double stranded DNA was
used to prepare SOLiD 5500W System DNA fragment
libraries according to the manufacturers’ protocols
(Thermo Fisher Scientific Inc, CA, USA). Barcoding adapt-
ers were applied, and the 12 libraries were pooled prior to
sequencing. Fragment (single-end) sequencing chemistry
was applied with SOLiD 5500W XL platform resulting in
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reads with length of 75 bp. Methods of skin RNA-Seq prep-
aration are described in detail in our previous paper.26

RNA sequencing data analysis

LifeScope software was used for aligning RNA-Seq reads to
the hg19 reference genome. The alignment was performed
with recommended default parameters. Gene-level read
counts were obtained from LifeScope alignment summary
statistics and DeSeq2 package in R32 was used to test the
differential expression of genes. Detected differential
expression of genes was considered statistically significant
at a false discovery rate (FDR) � 0.05. Followingly, a path-
way enrichment analysis was performed using the hyper-
geometric test implemented by ClusterProfiler in R33 and
KEGG pathway annotations and pathway results were con-
sidered significant at P-adjusted� 0.05. A reanalysis from
the previously published skin data26 was done with the
Clusterprofiler package for R (Input DEGs with an FDR
of �0.05, cut-off for pathways at P-adjusted �0.05).

Validation with RT-qPCR

In a larger group of 59 PD patients and 33 controls (including
the RNA-Seq samples), validation top DEGs of whole blood
RNA sequencing data with RT-qPCR was conducted. Total-
RNA was converted to cDNA using random primers and
High Capacity cDNA Reverse Transcription Kit with an

RNase Inhibitor (Applied Biosystems). TaqMan Gene
ExpressionAssaywithVIC-labelwas used as the housekeep-
ing gene (Actin) and FAMas the geneof interest. The samples
were prepared using the TaqManVR Gene Expression Master
Mix (Applied Biosystems). The genes that statistically had
the largest change in gene expression were OGT; UBE2J1,
KIR2DL3, LCE5A, ENOSF1, FAM219B, CTSL, IL8R1, MIAT,
SBSN, ETV1, SPRRE2, CTSD, KRTDAP, and S100A2.
Followingly, duplex quantitative real-time PCR (qRT-PCR)
analysis was performed in three replicates to minimize tech-
nical errors. The datawere analyzed using the 2�DCTmethod.

Meta-analysis of previously published gene expression
datasets from blood, cortex, and SN

For the comparison of our work with previously published
transcription studies’ results, a search was conducted on
PubMed. Minimal criteria for including these gene expres-
sion results in our analysis were: (1) the list of DEGs is
openly accessible (2) the list is original data, (3) list did
not contain selectively presented gene expressions, lists
with statistical significance cut-offs were allowed, (4) idio-
pathic PD vs. control comparison, (5) there are enough lists
per tissue type for further analysis. The search yielded three
lists from cortex,34–36 five from SN,37–41 and five from
blood.13,16,42–44 Details of the input lists can be found in
Supplementary Table 2. The meta-analysis of the gene

Table 1. Clinical characteristics of blood and skin RNA-Seq patients.

Subj. no

Gender

(% of males) Agea
Disease

onset agea
Duration of

diseasea

1st degree

relatives

with PD (%) HYa SE-ADLa MMSEa MDS-UPDRSa

Blood RNA-Seq patients

1 M 73 65 9 No 3 80 30 77

2 F 82 74 9 No 4 60 26 79

3 M 67 50 17 No 4 70 28 103

4 M 69 68 1.2 No 3 80 30 56

5 F 85 70 15 No 2.5 60 23 44

6 M 85 67 18 No 4 40 27 159

7 F 68 65 3 Yes 1.5 100 30 26

8 F 71 66 5 No 3 70 24 73

9 F 48 47 1.1 No 1.5 90 30 33

10 F 69 67 2 No 2.5 80 29 72

11 M 76 75 1.7 No 2 90 25 36

12 M 73 72 1 No 1 95 29 22

Total 50% 72.2 (�10.0) 65.5 (�8.6) 6.9 (�6.5) 8% 2.7 (�1) 76.3 (�17.2) 27.6 (�2.5) 65 (�38.7)

Skin RNA-Seq patients

1 M 60 46 14 No 2.5 80 28 83

2 F 82 74 9 No 4 60 26 79

3 F 77 68 9 No 3 70 30 68

4 M 63 58 4 No 2.5 90 30 40

5 F 76 73 3 No 3 80 27 77

6 M 81 80 1 No 2.5 90 30 43

7 M 67 64 3 No 2 90 29 65

8 F 68 65 3 No 1.5 100 30 26

9 M 75 64 11 No 4 70 30 105

10 F 69 67 2 No 2.5 80 29 72

11 F 80 76 4 No 2 95 25 28

12 F 65 55 10 No 4 60 30 114

Total 42% 71.9 (�7.5) 65.8 (�9.6) 6.1 (�4.3) 0% 3.1 (�0.9) 80.4 (�13.2) 28.7 (�1.8) 66.7 (�28.1)

P-value 0.70 0.95 0.93 0.71 0.33 0.75 0.51 0.24 0.91

aAverage (� standard deviation).
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expression datasets published by the authors of this paper
and other previously published PD gene expression studies
was conducted using the Robust rank aggregation (RRA)
method by Kolde et al.25 This method summarizes the
ranked DEGs lists reported by the authors of these studies
by assigning significance scores for the genes that appear
more frequently in the top of the ranked lists of differen-
tially expressed genes. This method allows for incomplete
ranked gene lists to be included as well, therefore we also
included gene rankings where only DEGs with significant
P-values were published or a fold change threshold was
applied. We conducted the meta-analysis separately in
each type of tissue (three in total: cortex, SN, and blood).
All gene identifiers were converted to Entrez IDs prior to
analysis with RRA. The N parameter was calculated as N(i)
þ N(avg. u), where N(i) denotes the number of genes pre-
sent on all the different microarray chips used by the stud-
ies included in our meta-analysis and N(avg. u) denotes the
average number of genes per microarray that were not
included in the intersected N(i). The N was calculated sep-
arately for each set of ranked gene lists in different tissues.
DEGs were considered statistically significant at
FDR� 0.05. For pathway analysis that was conducted
with ClusterProfiler KEGG package for R DEGs with a
score/P-value �0.05 were included and the results were
considered statistically significant at FDR� 0.05.

Results

Differential expression of genes and pathways
in PD blood

The RNA-Seq yielded 21.4� 3.3 million reads (mean� SD)
per sample, out of which 73.6� 0.8% aligned to the genome
at least once. No cut-offs to reads were applied;>20 million
reads per sample in a 12-sample set should provide optimal
statistical power for this analysis. Sequencing deeper than
10M reads and having a sample size >12 does not signifi-
cantly improve statistical power and precision for detecting
DEGs.45–47

Raw data were subjected to differential expression testing
with DeSeq2. Differential expression testing of whole blood
RNA-Seq data resulted in 25 DEGs between control and PD
samples (Table 2). Most of DEGs in blood are upregulated,
but notably UBE2J1 (also known as HIP2) is downregulated,
with a foldchange of 0.63. Significantly upregulated genes
include A2M, LINC00612, FAM219B, KIR2DL3, OGT,
ENOSF1, MIAT, IL18R1 and the only other downregulated
gene CUTALP. Pathway analysis from PD blood shows one
enriched pathway–cholesterol metabolism.

Differential expression of genes and pathways in PD
skin and comparison with blood

Skin RNA-Seq yielded 1068 DEGs (data available upon
request). A clear pattern of global downregulation appears,
with 874 of total DEGs being downregulated.26 Nine
enriched pathways from PD skin were detected (Table 3).
If blood and skin gene expressions are compared using the
standard cut-off values for significance, no overlap in DEGs
or pathways is to be found (Figure 1.)

Results of the meta-analysis

When five previously published sets of DEGs from PD
blood13,16,42–44 and the current work were integrated into
an RRA list, only one gene remained significant: IL18R1. It
is an interleukin receptor linked with proinflammatory
responses that belongs to the immunoglobulin superfamily.
Pathway enrichment analysis of the top 163 DEGs from
blood RRA list found two enriched KEGG pathways: hema-
topoietic cell lineage (FDR¼ 0.001) and prion diseases
(FDR¼ 0.037).

Thereafter, we decided to investigate how these findings
from peripheral tissues in PD correlate to transcriptomic
profiles from CNS. In order to do that, aggregated ranked
gene list was created based on the results of three previous
studies on the genes expression in cortex34–36 and five stud-
ies on SN37–41 (Figure 2). In case of differentially expressed
genes in the cortex of PD patients, RRA resulted in 43 sig-
nificant genes (data available upon request) despite differ-
ences in the location and exact cell composition of cortical
samples. Topmost significant DEG is PENK, which is ele-
vated in the brain during oxidative stress.48 Furthermore,
heat shock proteins HSPA1B, HSPA6, and SERPINH1 and
growth factors BDNF, VGF, and CSF3 were elevated. KEGG
pathway analysis based on 475 DEGs yielded one enriched
pathway: legionellosis. In the case of differentially
expressed genes in the SN of PD patients, RRA yielded
two significant genes: LMO3 and RIMS3. LMO3 is an onco-
gene predominantly expressed in the brain, while RIM3 is
involved in vesicle trafficking. Pathway analysis from the
390 DEGs yielded four KEGG pathways to be enriched:
calcium signaling pathway, synaptic vesicle cycle, proteo-
glycans in cancer and dopaminergic synapse.

Table 2. Differentially expressed genes from PD blood.

Gene P-adjusted

UBE2J1 0.002456533032969

OGT 0.004525065433154

C15orf17 0.005583830092225

LUC7L3 0.005583830092225

C12orf33 0.008624302294215

STAT4 0.008624302294215

PTPN4 0.008624302294215

A2M 0.00966346623602

ENOSF1 0.011203502577878

MIAT 0.012084815414542

CD36 0.016921618832212

IL18R1 0.018943723956247

PYHIN1 0.018943723956247

PPT1 0.018943723956247

LOC253039 0.018943723956247

SYTL2 0.023012888462431

EPM2AIP1 0.02323506201148

PCGF3 0.025439081994619

PKM2 0.025439081994619

ZNF767 0.032474874139179

RAB32 0.037059204955581

PRPF4B 0.037487943308261

STARD9 0.038488470301337

AGPAT4 0.048712754929204

GMPPA 0.048712754929204
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Comparing the DEGs from three different tissues (blood,
cortex, and SN) yielded no overlap (Table 4). Also, reanal-
ysis of enriched pathways from these tissues using KEGG
database yielded no overlapping pathways (Table 5). When
comparing all RRA lists with the currently only skin DEGs
list, only two genes overlap between cortex and skin: G0S2
and C6. No statistically significant pathway was found
comparing four different tissues in PD.

Discussion

RNA-seq results from blood and skin yielded very different
number of significantly changed DEGs (25 vs. 1068), but no

overlap. In the blood, a gene was found which has previ-
ously shown to have altered expression in PD venous
blood—UBE2J19,18,49 The protein encoded by this gene is
a ubiquitin-conjugating enzyme located in the membrane
of the endoplasmic reticulum. UBE2J1 is involved in
ubiquitin-proteasome system, which targets proteins for
degradation.50 In PD, the ubiquitin-proteasome system is
impaired and contributes to aberrant protein degradation.
UBE2J1 is also linked with HD, where it ubiquitinylates
aberrant protein huntingtin.51 Another gene, A2M encodes
for a protease inhibitor and cytokine transporter that is
linked with AD where it contributes to the degradation of
A-beta.52 The only statistically significant pathway in the
blood was cholesterol metabolism. Interestingly, epidemio-
logical studies demonstrate an association between higher
levels of cholesterol and lower risk of PD.53 A study show-
ing higher plasma levels of (S)24-OH-cholesterol, a metab-
olite possibly reflecting brain cholesterol metabolism, was
linked to lower odds of having PD.54 In the PD brain, aber-
rant alpha-synuclein impacts cholesterol metabolismwhich
neurons depend on in synapse formation. Altered levels of
cholesterol in neuronal cultures lead to impaired formation
of synapses and less neurotransmitter release.55 DEGs in
the skin reflect the PD-related dermal changes.26 A reanal-
ysis of this data yielded three KEGG pathways that were
associated with neurodegeneration. Huntington disease
(HD) pathway contains genes that are involved in vesicular
transport, Ca2þ signaling and (through disrupted Ca2þ
signaling), mitochondrial dysfunction. Notably, a study56

compared post mortem brain tissues between PD and HD
and found an overlap of 25% of DEGs. The second neuro-
degenerative pathway enriched in PD skin was
Alzheimer’s disease (AD) pathway which contains genes
that increase in the production of amyloidogenic A-beta
peptides or affect posttranslational processing of proteins.
Lastly, KEGG Parkinson’s disease pathway itself, which
characterizes the intracellular accumulation of alpha-
synuclein and impairedmitochondrial function, is enriched
in PD skin. The fact that major neurodegenerative path-
ways are mapped in a peripheral tissue in PD suggests
two things. Firstly, that there are global pan-
neurodegenerative mechanisms involved in PD. Secondly,
these pan-neurodegenerative mechanisms are detectable

Table 3. Enriched KEGG pathways from PD skin.

ID Description GeneRatio BgRatio P value P. adjust q value Count

hsa05016 Huntington disease 44/434 193/7528 9.3451827163023e-16 2.68206743957876e-13 2.59697709168822e-13 44

hsa04932 Non-alcoholic fatty

liver disease (NAFLD)

36/434 149/7528 6.6323638782285e-14 9.5174421652579e-12 9.21549507290697e-12 36

hsa05012 Parkinson disease 33/434 142/7528 2.46947683273819e-12 2.36246616998621e-10 2.28751538190485e-10 33

hsa00190 Oxidative phosphorylation 31/434 133/7528 1.07724856969573e-11 7.72925848756688e-10 7.48404269472824e-10 31

hsa03010 Ribosome 31/434 153/7528 4.8176225916021e-10 2.38471885093517e-08 2.3090620819618e-08 31

hsa05010 Alzheimer disease 33/434 171/7528 4.98547494969025e-10 2.38471885093517e-08 2.3090620819618e-08 33

hsa04714 Thermogenesis 36/434 231/7528 3.27933904006457e-08 1.34452900642647e-06 1.30187294222112e-06 36

hsa04723 Retrograde

endocannabinoid

signaling

24/434 148/7528 3.35738799540263e-06 0.000120446294335069 0.000116625056682407 24

hsa04260 Cardiac muscle

contraction

13/434 78/7528 0.000458898234034117 0.0146337547964213 0.0141694893315798 13

Figure 1. A schematic comparison of the original RNA-Seq data from

Parkinson’s disease blood and skin samples visualizing the differences in

number of DEGs and KEGG pathways and showing no overlap.

588 Experimental Biology and Medicine Volume 246 March 2021
...............................................................................................................................................................



from a peripheral tissue. A group of enriched pathways
emerge from skin that are linked to metabolic changes in
PD, for example oxidative phosphorylation pathway,
which is another key player in neurodegenerative dis-
eases.57 Non-alcoholic fatty liver disease (NAFLD) is a
pathway of lipid accumulation which is affected by insulin
resistance and leads to elevated oxidative stress though
mitochondrial beta-oxidation of fatty acids in the liver.
NAFLD has already been linked to AD,58 the implication
in PD needs to be investigated. Another pathway related to
lipid metabolism affected in PD skin is thermogenesis path-
way in which chemical energy is converted into heat in
brown adipose tissue that is controlled by sympathetic ner-
vous system. This has also been shown to be implicated in
murine models of HD,56 a key regulator in this pathway is
peroxisome proliferator-activated receptor-c coactivator 1a
(PGC1a) was upregulated in PD skin samples.26 Its activa-
tion was demonstrated to improve the phenotype in mouse
models of PD.59 Retrograde endocannabinoid signaling
pathway affects synaptic plasticity and neurotransmission
in the brain. It is suggested dyskinesias in PD might be
caused through disrupted endocannabinoid signaling
among other effectors.60,61 Initially, it was thought that
endocannabinoids are exclusive to the CNS, but further
research has described their involvement in peripheral tis-
sues. In the skin, changes in endocannabinoid system are

linked to melanoma,62 which is interesting considering the
epidemiological bidirectional link between PD and
melanoma.63

When comparing our sample sets from skin and blood it
is clear that skin yields more significant changes. Low DEG
count from blood might be due to higher number of differ-
ent cell lineages, metabolic, and possibly iatrogenic effects
that create too much transcriptomic noise for detecting sig-
nificant signal. The lack of overlap between results of skin
and blood lead us to investigate comparability with previ-
ous studies. As the output of individual experiments can be
noisy, data integration could increase the signal and lessen
false positive findings. Therefore, we performed meta-
analysis using the RRA method25 of the lists of DEGs
from previously published open-access studies and the pre-
sent study in hopes of finding robust PD-specific changes
(Figure 3). Another significant reason that lead us to per-
form this meta-analysis was to allow for a comparison
between tissues of different origin (especially the CNS
and the periphery).

In a descriptive review of transcriptomic studies of PD,
whole blood shows significant changes in pathways
involved in inflammation, mitochondrial function,
immune function, protein chaperones, RNA processing,
and programmed cell death.24 In our analysis using the
RRA method, the only significant DEG in blood was

Figure 2. A schematic overview of previously published cortex and substantia nigra RNA-Seq and microarray studies showing the number DEGs in each single study,

overlapping DEGs and KEGG pathways in the RRA analysis.
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IL18R1. It is an interleukin receptor linked with proinflam-
matory responses of the immunoglobulin superfamily. PD
is characterized by a dysregulated inflammatory environ-
ment. In a PD model of MPTP-treated mice, GM-CSF
administration induced IL18R1, which was argued to be
due to GM-CSF induced neuroprotective mechanisms.64

IL18R1 has also been associated with neuroinflammation
in multiple sclerosis.65 Altered levels of IL18R1 found in
PD blood underline the relevance of neuroinflammatory
processes in neurodegeneration. In the enrichment analysis
of PD blood, RRA lists two pathways which were signifi-
cant: hematopoietic cell lineage and prion diseases path-
way. Hematopoietic cell lineage pathway is a part of the
immune system, and changes in this lineage have previous-
ly been published in PD.44,66 Prion diseases pathway is

possibly linked to PD prion-like propagating qualities.67

In order to compare the transcriptomic profiles in PD of
our current peripheral tissues and the aggregated results
from peripheral blood with previous transcriptomic results
from CNS, aggregated lists of these sample sets needed to
be made. The two specific localizations in the CNS that had
enough transcriptomic sample sets for an RRA analysis—
SN and cortex showed no overlap in DEGs or pathways.
There were multiple DEGs in cortex RRA list (Table 4) with
only two (G0S2 and C6) showing an overlap with the skin
RNA-Seq results. G0/G1 switch gene 2 (G0S2) is a major
regulator of lipid metabolism in adipocytes.68 Complement
component 6 (C6) is a protein in the lytic membrane attack
complex (MAC) macromolecule C5b-9. The MAC inserts
itself into foreign cells, causing lysis. It has been shown

Table 4. Significantly changed gene expressions from blood, cortex, substantia nigra after RRA analysis.

Tissue Gene ID Score FDR SYMBOL

Blood 8809 1.28802794373959e-05 0.050954385454338 IL18R1

Substantia nigra 55885 3.93808672219532e-06 0.00859806402721747 LMO3

Substantia nigra 9783 5.21727186117565e-06 0.00859806402721747 RIMS3

Cortex 5179 2.27636804825777e-05 0.026952197691372 PENK

Cortex 4548 4.8484098221707e-05 0.0274016611662194 MTR

Cortex 56261 6.94298847117046e-05 0.0274016611662194 GPCPD1

Cortex 1440 0.00016460604283402 0.0324822591192467 CSF3

Cortex 29102 0.00016460604283402 0.0324822591192467 DROSHA

Cortex 3310 0.00016460604283402 0.0324822591192467 HSPA6

Cortex 3627 0.000329206064413617 0.0389772851187413 CXCL10

Cortex 50486 0.000329206064413617 0.0389772851187413 G0S2

Cortex 8289 0.000329206064413617 0.0389772851187413 ARID1A

Cortex 627 0.000392790400009593 0.0389772851187413 BDNF

Cortex 203523 0.00043728447392925 0.0389772851187413 ZNF449

Cortex 54431 0.000441864529348627 0.0389772851187413 DNAJC10

Cortex 23332 0.000493800064848919 0.0389772851187413 CLASP1

Cortex 3303 0.000493800064848919 0.0389772851187413 HSPA1A

Cortex 57822 0.000493800064848919 0.0389772851187413 GRHL3

Cortex 3315 0.000658388044250058 0.041505605825661 HSPB1

Cortex 729 0.000658388044250058 0.041505605825661 C6

Cortex 7874 0.000658388044250058 0.041505605825661 USP7

Cortex 57542 0.000683883429288061 0.041505605825661 KLHL42

Cortex 151613 0.000701108206514544 0.041505605825661 TTC14

Cortex 486 0.000822970002727162 0.0423650644882157 FXYD2

Cortex 6401 0.000822970002727162 0.0423650644882157 SELE

Cortex 85369 0.000822970002727162 0.0423650644882157 STRIP1

Cortex 23704 0.000987545940390364 0.0449713228239304 KCNE4

Cortex 283742 0.000987545940390364 0.0449713228239304 FAM98B

Cortex 7425 0.000987545940390364 0.0449713228239304 VGF

Cortex 3304 0.00115211585734979 0.0470381094862812 HSPA1B

Cortex 5304 0.00115211585734979 0.0470381094862812 PIP

Cortex 5469 0.00115211585734979 0.0470381094862812 MED1

Cortex 58517 0.00123118103210076 0.0472408735878559 RBM25

Cortex 4009 0.00131667975371558 0.0472408735878559 LMX1A

Cortex 6415 0.00131667975371558 0.0472408735878559 SELENOW

Cortex 6539 0.00131667975371558 0.0472408735878559 SLC6A12

Cortex 126308 0.00144191115876224 0.0473996041471313 MOB3A

Cortex 4922 0.00148123762959785 0.0473996041471313 NTS

Cortex 871 0.00148123762959785 0.0473996041471313 SERPINH1

Cortex 96610 0.00148123762959785 0.0473996041471313 BMS1P20

Cortex 2168 0.00164578948510674 0.0487153687591595 FABP1

Cortex 3337 0.00164578948510674 0.0487153687591595 DNAJB1

Cortex 91748 0.00164578948510674 0.0487153687591595 ELMSAN1

Cortex 51116 0.00181033532035238 0.0498473725417957 MRPS2

Cortex 54541 0.00181033532035238 0.0498473725417957 DDIT4

Cortex 56116 0.00181033532035238 0.0498473725417957 PCDHB@
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immunohistochemically in the brains of AD and PD69

where its abundant staining is one of the signs of active
neuroinflammation in neurodegeneration. The only signif-
icantly enriched pathway in the cortex of PD was legion-
ellosis pathway; how this relates to PD remains to be
known. A component of this pathway TLR/MYD88 signal-
ing has previously been associated with neurodegenerative
diseases.70 In the RRA of SN, four enriched pathways were
significant: calcium signaling, synaptic vesicle cycle, pro-
teoglycans in cancer, and dopaminergic synapse pathway.
Genes that give rise to PD have a known causal role in
Ca2þ homeostasis which is regulated in the calcium signal-
ing pathway.71 Synaptic vesicle cycle pathway has already
been associated with PD previously.72 Proteoglycans in
cancer pathway might be altered in PD due to

neuroinflammation, modulating the fibrotic process in the
extracellular matrix as previously reported in neurodegen-
eration.73,74 Enriched dopaminergic synapse pathway in an
RRA list from SN describes the pathognomonic changes of
PD.

Due to the novelty of using RRA in analyzing transcrip-
tome data, the optimal number of studies that need to be
integrated for the results to be relevant still needs to be
determined. If feasible, integrating studies with small num-
bers could be an alternative to increasing sample size per
study in obtaining more reproducible and robust results.
Another aspect that should be considered in future tran-
scriptomic studies of PD that might yield more reproduc-
ible results, is dividing PD patients into endophenotypes.
Also, in the current work and, indeed, in many of the

Figure 3. A schematic overview of the studies involved in RRA analysis (51/39 is the number of Parkinson’s disease patients and healthy controls in the original study

respectively), the output DEGs and KEGG pathways, and the overlap between the investigated studies.
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previous studies, the effects of dopaminergic medication
and natural disease course remain undistinguishable, as
most of the samples are from patients already receiving
dopaminergic therapy. However, so far it is not been clearly
shown that therapy naı̈ve patients have very different tran-
scriptomic profiles.9

Taken together, the differential expression of very few
genes remained significant in direct comparison between
PD blood and skin and in ranked aggregation lists and
there was virtually no overlap between tissues. There are
multiple pathways that lead to the pathognomonic sign
of dopaminergic neuron death in PD, for an example
alpha-syn aggregation and mitochondrial stress. There is
a possibility that changes in adjacent DEGs in a pathway
that converge into having the same metabolic effect is why
transcriptomic studies so far have failed to yield robust
reproducible results. Reproducing the exact DEGs even in
the same tissue type has proven to be difficult and thus the
comparison between tissues of different origin is ham-
pered, especially when taking the current meta-analysis
into regard. However, there are signs that point towards
changes in non-neuronal tissues in PD, indicating that PD
might be a multisystem disorder.

Key points:

• RNA-Seq analysis from PD whole blood and skin
yielded very different results, blood being a lot
more heterogeneous. There were no exact overlap-
ping DEGs or enriched KEGG pathways.

• Integrating previous studies from blood, cortex, and
SN into robust ranked aggregation lists yields virtu-
ally no significantly changed DEGs and no overlap
between tissues. Notable exceptions are IL18R1 from
blood, LMO3 and RIMS3 from SN, PENK from cortex
and G0S2, and C6 from cortex and skin.

• Since the DEGs show great interstudy variability,
there are also only a few significantly enriched path-
ways and no direct overlap between tissues in PD.

• Peripheral tissues should be used in transcriptomic
studies of PD, because of their accessibility in vivo
and moderate comparability to PD specific changes
in CNS.

• Of the two peripheral tissues we investigated, skin
shows more PD specific changes. The epidemiologi-
cal link between PD and melanoma indicates that
there might be some pathomechanistic similarities
in these diseases. This warrants more transcriptomic
studies from PD skin.
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