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Abstract
Progress in genomic analytical technologies has improved our possibilities to obtain infor-

mation regarding DNA, RNA, and their dynamic changes that occur over time or in response

to specific challenges. This information describes the blueprint for cells, tissues, and organ-

isms and has fundamental importance for all living organisms. This review focuses on the

technological challenges to analyze the transcriptome and what is the impact of transcrip-

tomics on precision medicine. The transcriptome is a term that covers all RNA present in

cells and a substantial part of it will never be translated into protein but is nevertheless

functional in determining cell phenotype. Recent developments in transcriptomics have

challenged the fundamentals of the central dogma of biology by providing evidence of

pervasive transcription of the genome. Such massive transcriptional activity is challenging

the definition of a gene and especially the term “pseudogene” that has now been demon-

strated in many examples to be both transcribed and translated. We also review the

common sources of biomaterials for transcriptomics and justify the suitability of whole

blood RNA as the current optimal analyte for clinical transcriptomics. At the end of

the review, a brief overview of the clinical implications of transcriptomics in clinical trial design and clinical diagnosis is given.

Finally, we introduce the transcriptome as a target for modern drug development as a tool for extending our capacity for precision

medicine in multiple diseases.
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Introduction

Since the identification of the structure of proteins and
nucleic acids and the mechanisms of gene expression, the
central concept of biology has underpinned our under-
standing of gene function.1 According to this concept,
the information in the cell is from DNA to RNA and sub-
sequently translated into proteins. Therefore, the function
of genes should be analyzed only by their ability to produce
proteins and that proteins define phenotype. One field of
research, transcriptomics, has revolutionized this central
biological concept. Discovery of the abundance and com-
plexity of RNA dynamics and function dramatically
changed our understanding about the role of RNA,

apart from encoding proteins, and challenged gene-
centric approach to explain the function of genome.2

Transcriptome is a collective term describing all RNAs pro-
duced by a single cell, by a population of cells or tissue.3

Recent progress in analytical technologies has unveiled
the complexity of the regulation of the transcriptome.
The transcriptome is the primary product of the genome
and therefore analysis of the transcriptome provides prima-
ry information for functional genomics.

The human genome

One of original and the most remarkable results of the
human genome project was the discovery that only 1.2%

Impact statement
This review describes the impact of tran-

scriptomics on experimental biology and

its integration into medical practice.

Transcriptomics is an essential part of

modern biomedical research based on

highly sophisticated and reliable technolo-

gy. Transcriptomics can aid clinical prac-

tice and improve the precision of clinical

diagnoses and decision-making by com-

plementing existing clinical best practice.

The power of which will be increased when

combined with genomic variation from

genome wide association studies and next

generation sequencing. We are witnessing

the implementation of RNA-based tech-

nologies in clinical practice that will even-

tually lead to the establishment of tran-

scriptional medicine as a routine tool in

diagnosis.

ISSN 1535-3702 Experimental Biology and Medicine 2021; 246: 286–292

Copyright ! 2020 by the Society for Experimental Biology and Medicine

https://orcid.org/0000-0001-6087-6643
mailto:sulev.koks@perron.uwa.edu.au


of the human genome encodes proteins and was therefore
considered as functional and meaningful.4 This is also
reflected in the early search for genetic variation associated
with a specific disease focusing on DNA sequences solely
in exons. The number of genes, protein-coding elements,
was discovered to be around 30,000, a much smaller
number than predicted and similar to that found in several
other species.4 Based on these findings, the rest of the
genome was initially termed as junk DNA. However, addi-
tional studies have identified that most of the DNA has
function, not only for genome structure and packaging
but also to form the complexity of the molecular networks
underpinning the diversity of cell function. Early studies,
after the identification of individual chromosome sequen-
ces, indicated that genomic sequences were transcribed at
least as much as an order of magnitude more than
accounted for by the predicted gene models.2 Similarly,
the term “pseudogene” that implies that is not a real gene
and considered as a remnant of evolution or “genomic fos-
sil.”5 It is now demonstrated that most of the pseudogenes
are transcribed and translated into proteins challenging
that definition of “pseudogene.”6Cap-analysis gene expres-
sion (CAGE) technology enabled the identification of at
least 180,000 transcripts in the mammalian genome, and it
appeared that themajority of the genome is transcribed.7 At
least 60% of the genome has been described as a transcrip-
tional forest, where transcription is performed from both
strands of the same DNA region without gaps.7 The most
remarkable project in this field is known as an Encyclopedia
of DNA Elements or ENCODE for short. Based on
ENCODE findings, at least 80% of genome is actively tran-
scribed, and this number is considered to be conservative.8

Interpretation of such data requires changes in our view to
the functional regulation of genome and that is a prerequi-
site for successful clinical translation of the genomics.

Transcriptome, transcriptomics, and
transcriptome profiling

Transcriptome is a collection of the RNAs (transcripts) that
single cell or tissue can produce, and it contains all types of
RNAs.9 Transcriptomics is the study of the transcriptome;
analyzing RNA and its different subcategories (mRNA,
micro-RNA, non-coding RNA, etc.) to identify changes in
expression and its functional impact. Although transcrip-
tomics focuses on content and transcript expression levels,
it also includes the analysis of transcriptional regulation.
The transcriptome can be studied by different methods;
however, the most common options are genechips (to mea-
sure gene expression on microarray platform) and RNA
sequencing (RNA-seq).9 Gene expression arrays initially
focused solely on polyA purified RNA that encode pro-
teins. Moreover, genechips also suffer from the requirement
to be pre-designed, i.e. the content on the array is based on
our pre-existing knowledge of predominantly exons that
can be easily identified in genome sequence data.10,11

Therefore, genechips give us a snapshot of the transcrip-
tional changes of mRNA, but this snapshot is rather limit-
ed. More recent arrays (transcript based and tiling arrays)
can give very comprehensive information about the

transcriptional changes, nevertheless the genechips are
inherently bound to pre-existing knowledge and do not
provide information about the sequences of the tran-
scripts.10,12 Only a few genechip versions are capable of
identifying alternative splicing and specialized chip
design is required to analyze such as micro-RNAs.12 But
the sequence information is lost in results files, and this is
where the RNA-sequencing has clear advantage allowing
for more detailed analysis to detect alternative splicing,
intron retention, and other events reflecting alterations in
transcriptome regulation and the other classes of RNA.
Therefore, RNA-sequencing has become the main technol-
ogy for transcriptome analysis.9,13

Sources of the transcriptome

Gene expression is both tissue specific and stimulus
inducible; therefore, a key question for transcriptome anal-
ysis is the source of the tissue or cell type for analysis. The
most common and easiest to justify is the primary tissue
that is affected by pathological processes. This is based
on the assumption that we know what tissue is affected,
and we have some preliminary understanding what the
timeline and mechanisms of the pathological changes are.
However, this assumption can be deceiving. For example,
with central nervous system disorders, it is difficult to
determine which region or cell type is involved and also
whether the pathological hallmarks of the disease were ini-
tiated by dysfunction in another brain regions, or periph-
ery, many years before. As brain tissue is only accessible as
postmortem tissue, the changes in the transcriptome could
arise from selective alteration of gene expression by the
postmortem time rather than in response to living with a
chronic age-dependent disease occurring over a long time
period.14–16 In case of neurodegenerative diseases, this may
mean that we miss the molecular pathological changes that
initiate the degenerative process. The same is similar for
other chronic age-dependent disease such as arthritis or
heart disease. The cells that are targeted by primary pathol-
ogy are often dead or have a significantly altered pheno-
type from those that represent the key pathological
transitions. Some of the problems of addressing transcrip-
tomics in the central nervous system are outlined below.

Firstly, recognized issues with the use of biobanked
tissue samples that would affect transcriptomics include
the heterogeneity of the samples, reliability of the diagno-
ses and variability in the quality control measures.17 The
most drastic example to illustrate reliability challenges
comes from the biobank having 12,000 samples available
for research and only 18 of them with the suitable informa-
tion and quality by the end.16 While the analysis of post-
mortem brain samples is still valid and informative from a
research point of view, the impact of these studies to
improve our understanding about neurodegenerative dis-
ease needs addressed in a broader context.16 It is difficult to
infer causative changes from the single time point that is
based on the analysis of the tissues where the pathogenic
processes are completed.

Secondly, subjects may have used drugs for a long time
and depending on the course of the disease the treatment
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schedules can be quite different between patients.17

Moreover, it is quite realistic to assume that the subjects
have had comorbidities and taken drugs for those symp-
toms as well. Drugs for heart disease and hypertension and
statins are quite common in the aged population, and there-
fore, analysis of the postmortem samples should most cer-
tainly take into account the drug history and comorbidities
as confounders. This is something we do not see very often
in studies using postmortem tissue samples.

Thirdly, we need to consider what regions of the tissue
are to be analyzed. Again, in the case of the brain, regional
changes in gene expression can be enormous.17 It is a com-
plex tissue and choosing the right regions for comparison is
often the most important decision for the analysis. For
example, in the case of targeted mutation mouse models
generated by homologous recombination the changes in the
transcriptome of the brain are regionally very different.18–20

Targeted mutant mouse lines allow exclusion of all con-
founding factors and careful matching of the study subjects
for the genetically engineered mutations. However, even
after the perfect matching for confounders, the deletion
of the single gene induced enormously different changes
in transcriptome in the different regions of the brain.20 Only
the lack of the expression of the deleted gene was the sim-
ilar result between the different brain regions.20 In addition
to the regional difference in the brain tissue, genomic locus
of the gene has also to be considered. We have analyzed the
transcriptome of the Wolfram syndrome mutant mice with
the deletion of the Wfs1 gene and identified significant
confounding effect from the genomic locus of the targeted
gene.18 This locus-specific or genomic context effect means
that even a single-gene targeting or deletion can induce the
complex changes in the transcriptome that are not caused
by the function of the gene, but by its location. Mouse
models enable controlling for gender, age, and environ-
mental differences, providing the ideal study design con-
ditions, but cannot avoid genomic background effect,
“congenic footprint.”21 This effect needs to be taken into
account and with appropriate adjustment the functionally
meaningful differences can be identified.22 All this illus-
trates how diverse the transcriptome is in different brain
regions, and therefore, it is challenging to design studies
with multiple brain regions involved as it is not trivial to
differentiate between the normal regional and pathological-
ly relevant differences. In summary, by analyzing postmor-
tem brains, we struggle to obtain the relevant information
about the mechanisms of the disease, and this information
does not always help us to design better diagnostic tools
or drugs.

However, analysis of the diseased tissues is important
when it is possible during the pathogenesis of the disease.
Repeated sampling during the course of the disease allows
us to use the time-dependent causative interaction models.
Longitudinal studies are therefore the best way to follow
disease progression but severely limit the choice of tissue or
component that can be measured to such as blood, skin,
urine, and microbiome. This also enables the monitoring
of changes in the transcriptome during treatment and to
compare different therapeutic options.23 In more limited
cases, surgical removal of tissue during medical procedures

is another option to access samples for transcriptomic anal-
ysis. The latter option is the most common for oncological
samples and is potentially applicable for any surgically
treated conditions. If we plan to perform longitudinal
transcriptome analysis with samples from different time-
points, then almost the only viable option is blood
sampling. Skin sampling can also be alternative for some
cases and diagnoses. We have shown that skin and blood
are useful alternatives even for neurodegenerative diseases
like Parkinson’s disease.24–26 Both blood and skin showed
clear transcriptome differences in the case–control design,
and these tissues could be used for the diagnosis or mon-
itoring the progression of the disease. Similarly, urine
can be used as a source for transcriptome analysis.27,28

However, as usually the cellular content in urine is low,
the RNA level is also low and that reduces potential of
urine or other body fluids as a source for transcriptomics.28

Whole blood versus PBMC transcriptome

Blood is a useful and easy to access surrogate tissue for
transcriptome analysis, but the use of blood requires a
few basic decisions. For example, it is possible to analyze
whole blood or a particular fraction of blood cells.
Peripheral blood mononuclear cell (PBMC) separation has
been one very popular method to isolate cells from the
blood and to prepare them for RNA analysis. However,
the PBMC fraction contains only lymphocytes and mono-
cytes, while all granulocytes like basophils, eosinophils,
and neutrophils are depleted. From all white cell count,
neutrophils constitute 55% to 75% indicating that using of
PBMC for transcriptome analysis would not give the full
picture.29 Isolation of PBMCs covers only 20% to 50% of the
cellular heterogeneity of the blood. Moreover, PBMC sepa-
ration itself is a procedure that adds an extra uncontrollable
variation to the analysis, and this should be avoided.
Several studies have shown significant differences between
the transcriptome profiles between PBMC and whole
blood.30 It is reported that over 2000 genes were differen-
tially expressed with more than two-fold difference
between PBMC and whole blood from the same individual
at same time.31 Therefore, for transcriptome analysis, the
whole blood RNA samples have a substantial advantage
over PBMC or other fractionation.

Preanalytical considerations

Due to the complexity and the volume of the transcriptom-
ics data, preanalytical conditions have significant impact on
the outcome of the analysis. The inadvertent variations can
be introduced with the sampling of the tissue, during the
storage and transportation or by the differences in the
extraction methods. In addition, as addressed in previous
sections, the sources for RNA can be variable ranging from
blood and other body fluids to the tissue biopsies, cellular
smears, and to single-cell sorting. All these different
approaches require standardized protocols to ensure repro-
ducibility and high quality of the analysis. The testing and
guidelines on how to prepare and purify different clinical
samples are vital for the further implementation of the

288 Experimental Biology and Medicine Volume 246 February 2021
...............................................................................................................................................................



transcriptomic analysis in clinical practice. RNA extraction
can be notoriously complicated with variable options avail-
able that all can lead to different results.32 Similarly, storage
conditions have been shown to impact the quality of RNA
and snap-frozen samples detect significantly more genes
than formalin-fixed paraffin-embedded (FFPE) samples.33

This effect was not dependent on the time to fixation.
Interestingly, miRNA expression was not affected by the
fixation method, and it was comparable between frozen
or FFPE samples.33 In addition, purification of the liquid
biopsy samples requires an extra effort and a complex
workflow.34 As RNA can be purified from different sam-
ples, validation studies are required to develop standard-
ized protocols that would enable robust and reproducible
analysis of transcriptome for various clinical conditions.

Practical utility of transcriptome analysis

The transcriptome is a snapshot of molecular events in
the cell reflecting the functional activity of the genome at
a given moment of time and requires a combination of ana-
lytical tools to describe these molecular changes. Currently,
the majority of genomic tools used in clinical genomics
only consider targeted DNA sequencing and not the tran-
scriptome. However, there are several examples of how
transcriptomic information improves the precision of the
genomic analysis.

The early studies to analyze transcriptomics used
variable differential cloning technologies based on cDNA
library preparation and comparative analysis.35 One of
these methods, cDNA representational difference analysis
(cDNA-RDA), was used to identify differential expression
in pancreatic cancer.36cDNA-RDA was proven to be a
highly efficient and reproducible method that has been
used in various models and organisms.37,38 While the
method itself was laborious and difficult to use for
larger sample numbers, it clearly had its advantage as a
hypothesis-free approach to observe transcriptional
changes.39 As the method did not require specific equip-
ment or expensive preparations like gene microchips,
the method gained popularity and was applied to study
variable pathologies or physiological responses.40 At the
same time, cDNA microarray technology was also devel-
oping and provided various in-house products. These
microarrays were based on the cDNA clone collections,
their amplification, and printing (spotting) on to glass
slides.41 This technology required substantial infrastructure
to run and it was not widely accessible. Nevertheless, initial
studies demonstrated the suitability of this technology in
pathology and particularly in cancer diagnostics where
tumour material is available. These studies indicated that
breast cancers can be classified by their gene expression
patterns into subtypes that were not identifiable with his-
tological methods alone.42 The gene expression pattern was
not only helpful to identify the molecular subtypes of the
breast cancers but also to predict the clinical course and
outcomes of breast cancer.43 These early reports fuelled a
myriad of similar studies to determine the transcriptional
pattern of other tumors to identify potential diagnostic or
prognostic biomarkers. Gene microarrays became

standardized for transcriptional studies. The main advan-
tage was the high-throughput analysis of the cDNA librar-
ies, and as the technology was scalable, it was possible to
increase sample sizes and the power of studies. However,
gene arrays still suffered from a biased capture of targets
which as stated previously were based on exon data or a
limited number of non-coding RNAs. The latter was par-
tially resolved when next generation sequencing (NGS)
technologies become easily accessible to enable parallel
whole genome sequencing (WGS) and RNA-sequencing
(RNA-seq). Clinical genetics analysis rapidly expanded
from exome sequences to a complete RNA analysis.
RNA-seq is the first technology that enabled complete tran-
scriptome analysis covering all different types of RNA sub-
classes with complete sequence information and enables
detection of complex profiles from various pathologies.9

Several examples support the value and the utility of
transcriptomics in the complex analysis of clinical samples
for association to disease. We have analyzed the transcrip-
tional profiles of osteosarcoma samples from fresh tumors
in a paired study design and identified several new candi-
dates involved in the development of osteosarcoma.23

Moreover, with similar technology, we were able to analyze
archived FFPE samples that gave us the possibility to eval-
uate the effect of chemotherapy on the transcriptional pro-
file. The same data-set provided data regarding repetitive
elements that were differentially expressed in the malig-
nancy.44 Repetitive elements can only be efficiently ana-
lyzed using the RNA-seq technology rather than genechips.

Transcriptome analysis can stratify patients who would
otherwise be grouped as the same disease and this enables
biomarker-driven clinical trials to improve their efficacy.
Several meta-analyses have shown substantial improve-
ment in study outcomes by using the biomarker-driven
stratification in the study designs.45 Personalized medicine
approaches involving biomarkers in study design
improved response rates from 5 to 30 percent demonstrat-
ing the improvement that can be achieved by using a geno-
mics driven approach.45 For example, the Winther trial
based on 303 patients utilized genomic-matching to person-
alize their cancer therapy.46 The study had two arms: one
was based only on DNA data and the other only on RNA
data. This trial introduced several innovative paradigm
shifts showing an improved therapeutic response with
the integration of transcriptomic profiling. Most important-
ly, the transcriptomic arm identified the most suitable
solutions for the patients with various solid tumors pro-
spectively from the large database of therapies.46 This
trial considered patient therapy options at an individual
level based on the features of person’s tumor and not on
the results obtained from the aggregation of trials on large
patient populations. Therapeutic guidance based only on
the transcriptomic data resulted in the stabilizing of disease
in 30% of patients.46 While not statistically superior from
the DNA-only approach (26%), it is was a remarkable suc-
cess considering that the study subjects all had advanced
cancers with several previous therapies that were unsuc-
cessful. Transcriptomic-guided therapy was considered
because the DNA analysis alone does not often reveal
actionable variants or mutations and RNA analysis could

Koks et al. Transcriptomic medicine 289
...............................................................................................................................................................



indicate the functional consequences. RNA-sequencing
served here as an additional analytical tool to describe the
functional changes in cancer that was in turn used in the
therapeutic decision pipeline.

NGS technologies have also changed the ways we ana-
lyze Mendelian diseases and made whole-exome sequenc-
ing (WES) or WGS accessible to identify disease-causing
variants. However, the success rate for detecting causal
changes ranges only from 20% to 30%.47 In a recent study,
the use of RNA-seq analysis yielded diagnostic rate of 35%
on previously unsolved cases by WGS analysis indicating a
marked improvement.48 The main advantage of RNA-seq
is its ability to detect aberrant splicing or disruptive
changes in the transcriptional regulation that are not detect-
able with WGS or WES.48 This is the evidence to support
the power of RNA-seq analysis also for Mendelian diseases
and shows its clinical applicability in this space.

A recent example for the applicability of transcriptome
analysis or RNA-based diagnostics can be found from the
COVID-19 pandemic caused by the RNA-virus SARS-
CoV2. The virus is only 29,900 bp long and contains 10
genes with gene 5 and 7 being functionally bicistronic.49

Infection is based on the infectious transcriptome and
can be viewed as a transcriptome infection. Maybe the effi-
cient therapy for viral infections lies in the targeting of the
transcriptome to affect their transcriptional capacity.
Transcriptome-based therapies are already available for
human diseases like Duchenne Muscular Dystrophy or
amyloidosis showing the potential of the transcriptome-
based therapeutics.50–52Transcriptome-based therapies
offer a real systematic opportunity for personalized medi-
cine, and it requires complex transcriptome analysis as
input.53 This therapeutic approach can turn the information
in the transcriptomics into therapeutic options.

Conclusions

Transcriptomics is currently a rapidly evolving field with
new data to either stand alone or integrate with other clin-
ical information to expand and modify the future of health
care. While current applications are mostly limited to
experimental projects, a growing number of studies indi-
cate the practical utility of transcriptomics for diagnostics,
genomics-driven trial design, and personalized drug devel-
opment. Larger clinical validation of such experimental
hypothesis will allow for accepted clinical usage, indeed
blood samples can be taken in general practice and sent
off for analysis and interpretation centrally before transmis-
sion to the clinician. Transcriptomics has revealed the vast
complexity of the transcriptome, and we are just beginning
to understand the principles of how this translates to func-
tion, pathophysiology, and therapeutic opportunities.
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