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Abstract
This review was conducted to present the main neuroblastoma (NB) clinical characteristics

and the most common genetic alterations present in these pediatric tumors, highlighting

their impact in tumor cell aggressiveness behavior, including metastatic development and

treatment resistance, and patients’ prognosis. The distinct three NB cell lineage pheno-

types, S-type, N-type, and I-type, which are characterized by unique cell surface markers

and gene expression patterns, are also reviewed. Finally, an overview of the most used NB

cell lines currently available for in vitro studies and their unique cellular and molecular

characteristics, which should be taken into account for the selection of the most appropriate

model for NB pre-clinical studies, is presented. These valuable models can be comple-

mented by the generation of NB reprogrammed tumor cells or organoids, derived directly

from patients’ tumor specimens, in the direction toward personalized medicine.
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Introduction

Neuroblastoma (NB) is an extracranial solid tumor in chil-
dren and comprehends 8% to 10% of all pediatric cancers.1

It is a heterogeneous disease that presents a broad spectrum
of clinical behaviors; in children aged 18months or older, it
is often unresectable or metastatic, requires intensive mul-
timodal therapy, and is associated with a survival rate
lower than 50%.2 On the other side of the spectrum, NB
with spontaneous regression without chemotherapy is
seen in low-risk subgroups.3

NB is derived from cells within the neural crest, likely
sympathoadrenal progenitor cells that differentiate to sym-
pathetic ganglion and adrenal catecholamine-secreting
chromaffin cells.4 The presentation and symptoms at diag-
nosis reflect the tumor location, commonly in the adrenal
medulla or anywhere along the sympathetic ganglia.

Metastases are present in about 50% of patients at diagno-
sis, with bone marrow metastases corresponding to 80% of
the cases. Metastases are also found in bones and regional
lymph nodes, while the involvement of the central nervous
system and lungs is rare.5

The International Committee of Pathology of
Neuroblastoma classifies NB tumors into distinct subtypes,
according to histological findings, which include the amount
of Schwannian stroma present in the tumor and the mitosis-
karyorrhexis index (MKI).6 Generally, the poorly differenti-
ated or undifferentiated histology confers a worse prognosis
to patients. Age is also an important prognostic indicator; in
<18-month-old patients, poorly differentiated NB is still
considered a favorable prognosis if the MKI is not high;
however, in patients aged>18months, poorly differentiated
NB is invariably unfavorable.7
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DNA or ploidy index, MYCN oncogene amplification
status, and specific segmental chromosomal aberrations
also influence NB prognosis,8 as it will be discussed later
in this review. Furthermore, nerve growth factor (NGF)
and other neurotrophins (NT) play important roles in the
survival, differentiation, and activity of NB cells, mediated
by tyrosine-kinase receptors (TrkA, TrkB, and TrkC).9

Favorable prognostic tumors usually express TrkA, the
NGF receptor, while unfavorable prognostic tumors, with
amplification of the MYCN oncogene, usually express
TrkB and the ligand brain-derived neurotrophic factor
(BDNF).10,11 The TrkB-BDNF signaling pathway seems to
function in an autocrine mode of action, increasing survival
in NB cells and resistance to chemotherapy, via both the
PI3K/Akt and the p44/42 MAPK signaling pathways,
according to the chemotherapy drug used.12

NB most common genetic alterations

Although NB is the most common embryonic malignancy
diagnosed during the first year of life,13 hereditary NB
tumors occur in less than 1% of cases,14 where a few inher-
ited mutations, such as the ones in ALK and PHOX2B
genes, were reported to confer tumor predisposition.15,16

In sporadic tumors, somatic mutations are not common17;
however, chromosome aberrations are frequent and were
shown to directly correlate with tumor aggressiveness and
progression.18 These aberrations, which are critical risk fac-
tors previously identified in primary NB, can involve
amplification of the MYCN oncogene, mutations of the
ALK receptor, allelic deletions on the 1p and 11q chromo-
some regions, whole chromosome gains, and gains on the
17q chromosome region.13,19–21

MYCN

Amplification of the proto-oncogene MYCN (MNA) is pre-
sent in about 20%–25% of NB tumors, especially in high-
risk patients.22 MNAwas described in the early 1980s as a
tumor aggressiveness factor,23 and it is still considered the
most widely used genetic marker for NB clinical progno-
sis.22,24 MYCN is located on chromosome 2p24 and encodes
a phosphoprotein of the MYC family of transcription fac-
tors, which binds to specific promoter sequences, favoring
cell proliferation.25 MYCN targets the proto-oncogene
MDM2, a ubiquitin protein ligase which directly regulates
the p53 protein26; the TP53 tumor suppressor gene is rarely
mutated in NB27; however, the inhibition of the p53 path-
way may occur through MYCN amplification, which can
lead to the high expression of MDM2 protein.
Overexpression of the ALK gene, also located on chromo-
some 2, in association with MNA, may also be found in
sporadic NB driven by mutations, which are often identical
to those identified in familial NB.16,28

Chromosome 1p. Chromosome 1p deletions occur in 23%
to 46% of NB tumors and are associated with poor progno-
sis and metastatic disease.24,29,30 The commonly deleted
region is on 1p36, which contains many genes associated
to NB malignant behavior, including CHD5, TNFRSF25,

CAMTA1, AJAP1, ERRFII, PIK3CD, RBP7, and
TARDBP.31–33 Among these, CHD5 was shown to be the
most critical tumor suppressor gene in this chromosome
region.34 A high CHD5 expression is associated with a
favorable prognosis; however, deletion or low expression
of CHD5 is frequently observed in high-risk tumors.35

CHD5 is a member of the chromatin remodeling gene
family, encoding a protein with chromatin-remodeling,
helicase, and DNA-bindingmotifs (CHD), with preferential
expression in neural tissues, directly associated with ner-
vous system development.36 It controls cell proliferation,
apoptosis, and senescence through p19 and p53 pathways
regulation35,37 and can be upregulated by the treatment
with retinoic acid (RA), inducing cell differentiation via
NGF/TrkA signaling.38 RA is a well-known differentiating
agent reported to reduce stemness characteristics39 and
treatments based on RA are currently used for high-risk
NB.14,40

Chromosome 11q. Deletions on chromosome 11q
(del11q-q25) are present in 17% to 48% of NB tumors,
depending of the cytogenetic method used for its detec-
tion.24,29,41–43 The main consequence of this aberration is
the increase of genetic instability, leading to gene mutations
and deregulation of the cell cycle.44 Its presence is also
related to a less favorable outcome and with an increased
probability of disease recurrence, even in patients with
localized tumors.45 This poor outcome reinforces the rele-
vance of the inclusion of the 11q chromosome status as one
of the criteria for NB risk classification.

Although several molecular studies have concentrated
on the identification of cancer driver genes on the 11q
region, which includes CADM1, ATM, H2AFX, PHOXA2,
SDHS, CCND1, NCAM, and CHK1 genes, the specific tar-
gets of this region that present key relevance to NB are still
largely unknown.43,46,47 The CADM1 gene (also known as
TSLC1, NECL-2, IGSF4, and SynCAM1), located at 11q23.3,
for example, is a suppressor gene altered in multiple types
of cancer.48 The CADM proteins family is reported to be
involved in cell-cell adherence, potentially playing a role
in epithelial–mesenchymal transition (EMT)-like processes
and tumor progression.49 In NB, the hypermethylation of
CADM1 was correlated with reduced levels of mRNA and
protein expression, in association with lower event-free and
overall survival.50 On the other hand, the overexpression of
CADM1 in NB cells was shown to impair cell proliferation
and viability as well as colony formation.51

Chromosome 17q. Gains on chromosome 17q are the
most frequent chromosome aberrations in NB tumors,52

with a frequency that varies from 23% to 70%, often asso-
ciated with age at diagnosis and advanced stages of the
disease.20 Although the accurate frequencies and bound-
aries of the chromosomal copy number variations on 17q
and the molecular targets affected, have yet to be identi-
fied,21 gains extending from 17q23.1 to 17qter region have
been described as promoting tumor progression.52 In addi-
tion, gains on 17q are positively correlated to MNA,53,54

and combined with mutations in the PHOX2B gene, are
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considered to be critical for the acquisition of NBmetastatic
potential.55

NB cell lineages phenotypes

In 1947, Murray and Stout described the common charac-
teristics of neuroblasts derived from eight pairs of primary
and metastatic tumors and their morphological changes in
two-dimensional culture.56 The cells, also referred to as
sympathicoblasts, produced neurites of varying lengths,
some of which begun to branch, acquiring a filamentous
shape after four days in culture. It is now known that
NB-derived cells are, in fact, heterogeneous and, when
cultivated in vitro, represent populations with distinct
morphological and tumorigenic properties, which reflect
the biological and genetic specificities of original neuro-
blasts.57,58 At least three different NB cellular phenotypes
have been identified: neuroblastic (N-type), flat or substrate
adherent (S-type), and intermediate (I-type), each of them
presenting particularities that can be identified by specific
molecular markers (Table 1).

The origin of these different phenotypes is still contro-
versial, but there are two hypotheses. The first and most
accepted hypothesis is known as transdifferentiation
theory, which suggests that NB cells are capable of sponta-
neously interconverting from one phenotype to another.59

According to this hypothesis, S-type and N-type cells orig-
inate from the undifferentiated I-type cells,59–61 which
could explain the appearance of S-type cells during the cul-
ture of N-type cell lines, or vice-versa, when I-type cells are
still present. The clonal expansion theory, on the other
hand, considers that both N and S-type cells could co-
exist in culture, and that, under certain conditions, the
less-aggressive S-type could dominate the cell population
over the more aggressive N-type cells.62,63

Regardless of the theory, it is clear that an NB cell lineage
can contain a mixture of cell types, even if one is more
predominant than the others. It is also important to consid-
er that culture conditions can lead to new interactions
between these cell types and contribute to distinct
responses to a given tested stimuli or treatment. The acti-
vation of NOTCH pathway61 and hypoxia factors,64 for
example, have recently been described to be involved in

the differentiation processes of these NB cells, although
others may exist as well.

N-type cells

N-type cells are characterized as immature nerve cells, pre-
cursors to the neural crest sympathoadrenal lineage. In cul-
ture, they are small and rounded, with thin and long
neurofilaments and a scant cytoplasm.65–67 Although they
present a high proliferation rate, form cell aggregates, and
adhere weakly to the substrate,68–70 their tumorigenicity is
moderate.

b-tubulin heterodimer, a component of microtubules in
neuronal cells, has been used as a specific marker for the
highly proliferative N-type cells (Table 1).67 The dynamic
microtubule structures of this component are involved in
cell movement and maintenance of cell shape, intracellular
trafficking, and cell mobility during mitosis and meiosis.71

In the context of cancer, tubulin proteins are targets for
tubulin-binding chemotherapeutics, which leads to mitotic
arrest and cell death.72,73 Changes in microtubule stability
and expression of their isotypes have been correlated with a
poor prognosis and chemotherapy resistance in several
cancer types, including NB.74,75

Neurofilaments represent the main structural compo-
nent of the cytoskeleton in mature neurons, determining
axon caliber and conductivity for proper neuronal func-
tion.76 They are highly present in tumors of neuronal
origin, and therefore, are largely used to characterize
N-type cells,65,66,77 even considering that they present a
higher expression in benign or differentiated tumors than
in malignant and less differentiated tumors of neuronal
lineage.77–81

Dopamine b-hydroxylase (Db-H) is another highly
expressed marker in N-type cells with low expression in
the S- or I-types.66,82–84 Db-H is an enzyme that character-
izes the neuronal differentiation of neuroblasts83 and is
involved in the conversion of dopamine to norepinephrine,
released with other vesicular contents during synaptic
transmission.85

S-type cells

S-type cells are multipotent precursors to melanocytes,
Schwann, and central nervous system glial cells that repre-
sent the neural crest non-neuronal components. They are
characterized as non-tumorigenic and present a large and
flat morphology with extensive cytoplasm, few and short
neurofilaments, and a large cytoplasmic/nuclear ratio.66,86

In culture, S-type cells are slow-growing, grow in a mono-
layer, and are specially characterized by their strong
ability to adhere to the substrate.69 The high expression of
b-integrin, which provides a strong attachment to extracel-
lular matrix (ECM) components, along with low levels
of insulin-like growth factor receptor, may contribute to
the less tumorigenic and less migratory phenotype of
these cells.87

CD44 is another cell surface receptor commonly used as
marker of the NB S-type cells.88 It binds to hyaluronic acid
and many other ECM components and acts as a co-receptor

Table 1. Main phenotype markers for neuroblastoma cell lineages.

CELL MARKERS N S I

S-type

Vimentin � þ �/þ
CD44 �/þ þ �/þ
Fibronectin �/þ þ �/þ
Dopamine beta-hydroxylase þ � �/þ

N-type

Neurofilaments þ � �/þ
b-tubulin þ � �/þ

I-type

CD-133 � � þ
c-KIT � � þ

Note: (þ) High expression; (�/þ) Moderate to low expression; (�) Rare

expression.
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for growth factors and cytokines.89 Tumors of epithelial
origin express CD44 in multiple isoforms, which has been
associated with a role in regulating the EMT process and in
conferring adaptive plasticity to cancer cells.90,91 In NB,
CD44 expression has been correlated with a favorable prog-
nosis, being reported with low or absent expression in
advanced stage tumors.92

The high expression of ECM components also character-
izes this cell phenotype.66 Fibronectin is a secreted glyco-
protein that is found in a soluble form circulating in the
plasma, but also in an insoluble fibrillar form in the ECM,
acting as a critical substrate for cell adhesion and migra-
tion.93 In cancer cells, dysregulation of fibronectin cell
adhesion and migration has been implicated in tumor
development and metastasis, pointing out fibronectin as a
cancer biomarker of EMT reversion and substrate-
adherence cellular differentiation.94,95

Vimentin, one of the cytoskeleton main intermediate fil-
aments, is present in normal mesenchymal cells and is
responsible for maintaining the cellular integrity, stress
resistance, and the migration of cancer cells that have
undergone EMT.96,97 This protein is initially expressed by
early neuronal precursors and is essential for neuritogene-
sis, as it is gradually replaced by neurofilaments.98

Immature and motile glial cells also produce vimentin,
whereas mature glial cells cease its expression and begin
to express the glial fibrillar acidic protein (GFAP).99 The
overexpression of vimentin has been reported in many
cancer types, in association with cell growth and invasion,
reinforcing its role in cancer cells as a marker of the EMT
process.100 In NB, vimentin is mainly expressed in S-type
cells, although it can also be expressed in I-type cells.66,67

As the S-type cells do not express GFAP, it was suggested
that they represent an embryonic neural crest precursor
that may undergo terminal differentiation toward a glial,
meningeal, or melanocytic phenotype.59

I-type cells

I-type cells, firstly described as an intermediate phenotype,
have been recently described as a progenitor of the N- and
S-type cells, capable of self-renewal and bidirectional
differentiation.66 I-type cells present an intermediate mor-
phology and mixed properties of N- and S-type cells, being
flat-shaped with prominent nuclei and moderate amounts
of cytoplasm, possibly presenting neurofilaments.67,101

Differently than the S-type cells, which attach strongly to
the underlying substrate and do not mound, or the N-type
cells, which attach weakly to the substrate, the I-type cells
adhere both to the substrate and to each other, mounding
and forming multiple layers of cells.69

Seven different antigens have been tested positively as
specific markers to identify I-type cells: GPRC5C, LNGFR,
TRKB, NOTCH1, PIGF2, CD133, and CD117.65,66,102 CD133
is a transmembrane glycoprotein associated to progenitor
cells and to tissue regeneration and cell differentiation pro-
cesses in normal tissues. It was first described as a marker
of primitive hematopoietic and neural stem cells,103,104 and
it has been used extensively as a marker of stem-like cells in
NB.105–107 CD133 is over-expressed in several NB cell lines,
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where it acts to repress neural differentiation and elonga-
tion, accelerating cell proliferation and colony formation.108

The investigation of the clinical significance of CD133
expression in NB tumors has shown its association to a
poor outcome109 and chemoresistance.110–112

CD117, also called c-KIT, is another marker mostly used
to characterize I-type cells in NB. It is a tyrosine kinase
receptor of the class III subfamily.113 The binding of its
ligand, stem cell factor (SCF), and SCF/c-KITsignaling con-
tributes to both tissue development and homeostasis,
including the maintenance of the stemness status of precur-
sor cells in several adult tissues.114 In NB, it was described
as a marker of tumor-initiating cells, involved in cell
growth and differentiation,101 clonogenic capacity, and
drug resistance.115 c-KIT expression in NB cell lines was
found to be induced under hypoxic conditions,116 which
suggests that c-KITþ cells represent an aggressive entity
of NB, whose growth may be influenced by the tumor
microenvironment.

Genetic regulators of NB phenotypes

Transcriptional plasticity in cancer cells can control cellular
fates by regulation of transcriptional factors that can bind to
promoters, enhancers, and super-enhancers, thus forming
interconnected auto-regulatory loops that constitute the
core regulatory circuitry (CRC).117 Distinct CRCs have
also been shown to identify cell lineage phenotypes in
NB. Boeva et al. identified three different identities in NB
cell lineages118: the non-neuronal neural crest cells pheno-
type, driven by a CRC module containing the AP-1 tran-
scription factor; the sympathetic noradrenergic phenotype,
defined by a CReC module that includes the PHOX2B,
HAND2, and GATA3 transcription factors, and a third phe-
notype consisting of a mix of both CRCs. Another profile
was defined by Groningen et al.,119 which named two sub-
sets of phenotypes in NB: the adrenergic lineage (ADRN),
characterized by the CRC, including PHOX2a, PHOX2b,
and DBH transcription factors; and the mesenchymal line-
age (MES), characterized by the CRC that includes the
SNAI2, VIM, and FN1 transcription factors. Later, the
MES and ADRN populations were shown to be able to
transdifferentiate into one another by a feedforward loop
controlled by the NOTCH signaling pathway.61

MicroRNAs (miRNAs) can also differ in NB phenotypes.
miRNAs are a class of non-coding endogenous RNA mol-
ecules that have been identified to play a critical role in
cancer, regulating several target genes associated with
aggressive tumor phenotypes, such as the ones that pro-
mote metastatic development and treatment resistance.
In NB, the expression of miR-21, miR-221, and miR-335
was exclusively observed in non-neuronal cells, while the
expression of miR-124 and miR-375 was only observed in
neuroblastic cells.86 The regulatory role of miR-335 in non-
neuronal cells was described in the modulation of the
expression levels of the neural differentiation modulators
HAND1 and JAG1,86 and in the suppression of cell inva-
sion and metastasis by regulation of the TGF-b pathway.120

Global miRNAs expression profiles were also shown to be
distinct in NB tumors with diverse prognosis.121,122

The most used NB cell lines as in vitro models

Cancer-derived cell lines have been widely used for
research and proven to be useful models to understand
the multiple and diverse processes in cancer, as well as
for discovering and evaluating the efficacy of treatment;
their unique molecular and phenotype characteristics
should be taken into consideration when choosing the
most appropriate one as an in vitro model.

During the preparation of this manuscript, the PubMed
database was searched for human NB cell lines citations
from the last 10 years. Sixteen cell lines were found (some
of them sublines) that were cited at least five times on this
defined period (Table 2). All of them were isolated from
high-risk NB patients, classified as being in stage 4, accord-
ing to the International Neuroblastoma Staging System,123

except for cell line IMR-32, which was derived from a
patient with an unknown stage. Most of the cell lines are
derived from bone marrow metastases from patients that
underwent several lines of treatment.

The SH-SY5Y cell line and its parental line, SK-N-SH,
represent the most frequently cited NB cell lines, found
over 5000 times in the mentioned searched period. SK-N-
SH represents an I-type cell line used to subclone a few
different cell lines in 1978 by Biedler, including SH-SY5Y
and SH-EP. In the above study, neuroblast-like cells from
SK-N-SH were subcloned using metal cylinders isolation
and single-cell culture. The first clone was called SH-SY,
which was further subcloned into the SH-SY5, and finally
into SH-SH5Y. Similarly, the epithelial-like cells from the
SK-N-SH were also subcloned into SH-EP and SH-FE.124

Therefore, the SH-SH5Y is an N-type cell line, although
some studies demonstrate that it is also composed of
S-type cells,67 while the SH-EP represents a predominant
S-type lineage. Both of these cell lines, however, present the
same profile of genetic alterations, with no amplification of
MYCN and no chromosome abnormalities on 1p and 11q,
but with gains on 17q.42,125,126 The SH-SY5Y and SK-N-SH
are extensively used for the study of neuronal diseases,127

as they can be differentiated into a more mature neuron-
like phenotype with neuroblast-like morphology that is
characterized by neuronal markers like tyrosine hydroxy-
lase (TH) and DbH, characteristics of catecholaminergic
neurons.60

Contrary to the above described NB cell lines, others
were collected at diagnosis, before any treatment. The
IMR-32 and SMS-KCN represent the most frequently
used ones; both are N-type cells with MYCN amplification
and functional p53, along with the loss of chromosome
1p.125,128,129 The SMS-KCN/SMS-KCNR, CHLA-15/
CHLA-20, and SK-N-BE(1)/SK-N-BE(2) are paired cell
lines, each pair obtained from the same patient before
and after treatment (Childhood Cancer Repository –
accessed at www.cccells.org/cellreqs-nbl), valuable for
evaluating the effects of treatment agents at baseline and
at different stages of treatment.

Almost 20 years ago, Thiele published a comprehensive
review with an extensive data collection of over 100 NB cell
lines.130 Those are listed in tables based on the clinical fea-
tures of patients from whom they have been derived, along
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with their chromosome and specific genetic alterations, bio-
logic characteristics, and the effects of differentiation
agents. In the same year, Keshelava et al. analyzed the
drug resistance of 17 NB cell lines established from patients
at different therapy stages.131

Future perspectives

Extraordinary advances were and are still obtained in basic
and clinical cancer research with the use of “conventional”
NB cell lines, established directly from patient cells immor-
talized in vitro. The use of these models provides the under-
standing of several phases of the tumorigenic process,
including tumor progression and therapeutic resistance.
Limitations, including the inability to reflect the natural
biology of the patients’ tumor and the genetic intra- and
interpatient heterogeneity, exist. These limitations can be
overcome or reduced by the use of immortalization meth-
ods of specimens directly obtained from the cancer patients
that reflect their in vivo tumor behavior and intrinsic molec-
ular characteristics. One of these methods includes the con-
ditional reprogrammed cells (CRCs) method, which allows
the cells to be isolated directly from patients to surpass
senescence when cultivated in the presence of irradiated
mouse fibroblasts and the compound Y-27632, an inhibitor
of the enzyme kinase Rho.144,145 This technology has been
used in the study of pancreas, prostate, lung, and bladder
cancers.146,147 A study conducted by Mahajan et al., in
breast tumors, has shown that CRCs maintain their original
cellular and genomic signatures when compared to their
original cells.148 More recently, CRCs were also established
from murine NB cell lines from TH-MYCN mice, which
were shown to preserve the cellular heterogeneity observed
in in vivo.149

Induced pluripotent human stem cells (hiPSCs) are
based on the reprograming of differentiated adult cells of
somatic origin that reach the stage of cell undifferentiation
and pluripotency in vitro.150,151 Due to the plasticity of the
hiPSCs regarding the differentiation into various types of
cells and tissues, they are widely used for the reconstruc-
tion of tissues or organs of patients with a variety of dis-
eases. In cancer, as the CRC cells, they can be widely used to
study several tumors phenotypes in a patient-specific
model.152,153

Patient-derived tumor xenografts, which are generated
by transplanting fresh tumor tissues from patients into
immunodeficient mice, can retain tumor heterogeneity
and genomic stability, as well as reproduce complex
cancer–stroma and cancer–matrix interactions, better pre-
dicting drug responses.154,155 However, their application in
medicine can be limited, due to its high cost and long proc-
essing time.155,156 More recently, patient derived tumor
organoids (PDTO) have been promising superior models,
as they comprehend three-dimensional in vitro cellular
structures derived from cancer stem cells that present
self-renewal and self-organization capabilities, while also
retaining the characteristics of their source tumor.156,157

Beyond the lower cost and processing time, PDTOs
enable easily accessible therapeutic effects in both health
and tumoral organoids from the same patient, as well as

CRISPR-Cas9 approaches for identification of key driver
mutations.158 Protocols to produce PDTOs from different
pediatric solid tumors, including NBs, have already been
developed and showed to be efficient for maintaining gene-
expression profiles and epigenomes from tumors.159 NB
heterogeneities, such as phenotype markers and chromo-
somal aberrations, were also retained in PDTOs.160

As these technologies of cancer organoids and tumor
cells reprogramming evolve, enabling and facilitating
their routine use in laboratories is necessary, as they will
become essential tools for the generation of patient-derived
cell lines that can subsequently be used for the discovery of
novel predictive progression markers, and drug-screening
toward personalized-medicine strategies.

Conclusions

One of the most critical and current challenge in NB is the
treatment of high-risk patients, whose mortality rates have
not decreased in the last four decades. The high rate of
treatment failure is largely due to the high degree of cellular
and genetic heterogeneity of these tumors, which leads to
diverse mechanisms of treatment resistance. Although the
current models of NB immortalized cell lines present lim-
itations, they are still fundamental and valuable in vitro
models for the understanding of such mechanisms. Their
cell lineage diversity allows to address a variety of clinical
processes, such as the response to differentiation-inducing
agents and cytotoxic drugs, and the rapid progression from
a primary tumor to metastasis. The availability and the
choice of the most appropriate NB cell line, or NB cell
line panel, based on its distinct cellular and genetic pheno-
typic profile is of utmost importance for clinical research,
which may be complemented by the generation of NB
reprogrammed tumor cells.
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