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Abstract
Alternative splicing of RNA is an essential mechanism that increases proteomic diver-

sity in eukaryotic cells. Aberrant alternative splicing is often associated with various

human diseases, including cancer. We conducted whole-transcriptome analysis of 18

osteosarcoma bone samples (paired normal—tumor biopsies). Using RNA-seq, we

identified statistically significant (FDR <0.05) 26 differentially expressed transcript var-

iants of leptin receptor overlapping transcript (LEPROT) gene. Some of the transcripts

were overexpressed in normal cells, whereas others were overexpressed in tumor

cells. The function of LEPROT is not completely understood. Herein, we highlight

a possible association between OS and aberrant alternative splicing events and its

interaction with the expression of LEPROT. We also discuss the role of LEPROT in

regulating growth hormone and its receptor, and the relationship with initiation and

progression of OS. This research study may help to understand the association of

alternative splicing mechanism in OS and in tumorigenesis more generally. Further, LEPROT gene can also be considered

as a potential biomarker of osteosarcoma.
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Introduction

Osteosarcoma (OS) is the most common primary tumor of
bone in children and adolescents, with a second peak in
incidence in people over the age of 50.1,2 OS is characterized
by the presence of malignant mesenchymal stem cells
(MSCs) producing immature bone matrix or osteoid.3 OS
commonly develops in long bones such as the distal
femur, proximal tibia, or proximal humerus.4 Patients usu-
ally present with pain and swelling. The diagnosis is con-
firmed by histology and staging studies such as MRI and
systemic radionuclide scans.5–7 Current treatment of OS, a
combination of surgery and chemotherapy (doxorubicin,

methotrexate, and cisplatin), has improved outcomes signif-

icantly, although this regime is still only successful in 90% of

patients.8 The precise underlying mechanism of OS remains

obscure in most individuals; however, the risk of developing

OS is influenced by bone turnover, age, environment (drug

or radiation therapy), other bone diseases (such as Paget’s

disease), genetic alterations and hormonal regulation of

puberty (such as growth hormone).9–13

RNA sequencing (RNA-Seq) technology is a powerful
tool to analyze the transcriptome of a cell.14 Gene expres-
sion studies have been traditionally carried out by northern
blot and quantitative polymerase chain reaction (qPCR),
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which are limited to single transcript expressions.15,16 The
RNA-seq technique provides higher resolution of the dynam-
ic nature of the transcriptome.15,17 Beyond measuring gene
expression, this technique facilitates the discovery of novel
transcripts, identification of alternative (differential) splicing
(AS) events in genes, and detection of allele-specific expres-
sion on a genome-wide scale.15–18 Consequently, RNA-seq is
a useful method for interpreting the functional elements of
the genome and also understanding the underlying mecha-
nisms of complex diseases in a species.19,20 AS is a crucial
mechanism that generates proteomic diversity in eukar-
yotes.19 It is mainly regulated by cis-acting elements and
trans-acting factors.21 Growing evidence suggests that more
than 90% of multi-exon genes undergo AS in humans.22,23

Deregulation of AS programming can produce a variety of
transcript isoforms with unique protein-coding and possibly
different or antagonistic biological functions from the same
gene.24,25 Predictably, abnormal splicing can disturb normal
cellular physiology and eventually lead to diseases, includ-
ing cancer.23–26 The involvement of AS in each of the widely
recognized and accepted hallmarks of cancer has been inves-
tigated.27 In particular, apoptosis and metastasis are directly
affected by AS.28 Moreover, it can also play an essential role
in invasiveness, angiogenesis, and chemo/radio-resistance to
therapy.28,29

Little is known about the underlying molecular mecha-
nism of AS in various cancer types, especially in OS. To
improve our understanding of the genetic mechanisms
involved in developing OS, we performed RNA-Seq tran-
scriptome analysis from 18 normal—tumor pairs of bone
biopsies by computational bioinformatics. Differential exon
usage was studied to highlight AS and transcription events
present between normal and tumor samples using the
DEXSeq package. Another aim of this study was to identify
potential molecular biomarkers and novel therapeutic target
candidates for the early detection and treatment of OS.

Materials and methods

Samples collection

The study was investigated and approved by the Ethics
Review Committee on Biomedical Research of Hue
University of Medicine and Pharmacy. The participants
and patient representatives signed and dated the informed
consent forms before surgery.

Normal and cancerous bone samples were collected
directly after surgery (limb sparing or amputation) from
18 Vietnamese patients who, previously, had histological
confirmation of OS. The collected biopsies were replaced
on dry ice and stored at �80�C until processed for RNA
extraction.

Total RNA isolation from bone biopsies

Approximately 50 mg of bone sample was ground with
liquid nitrogen in a pestle and mortar and pre-TRIzol treat-
ment was performed (Invitrogen Corp., Carlsbad, CA,
USA). RNeasy Fibrous Tissue Mini Kit (Qiagen Inc.,
Valencia CA, USA) was used to isolate total RNA from
bone tissue following the manufacturer’s protocol.

Isolated RNA was completely dissolved in RNase-free
water and stored at �80�C. The quality of total RNA was
determined by Agilent 2100 Bioanalyzer system and the
RNA 6000 Nano Kit (Agilent Technologies Inc., CA, USA).

Fifty nanograms of total RNA was amplified using
Ovation RNA-Seq System V2 (NuGen, Emeryville, CA,
USA) and the resulting cDNAs were pooled in equal
amounts. The pooled cDNA was used to prepare the
DNA fragment library using SOLiD System chemistry
(Life Technologies Corp, Carlsbad, CA, USA). Sequencing
was done by SOLiD 5500W platform and DNA sequencing
chemistry (Life Technologies Corp., Carlsbad, CA, USA).
Raw data (75 bp) were color-space mapped to the human
genome hg38 (GRCH38) reference through the mapping
algorithm implemented in the LifescopeTM Genomic
Analysis software (Life Technologies Corp.). The mapping
confidence had been noted as higher than 90 due to the
quality threshold was set to 10. The reads scores below
than 10 were filtered out. Mapping quality was at average
of 30. Annotation of the reads based on the gencode v22
files.30

Statistical data analyses were performed through the
DEXseq package for R.31 DEXseq is a Bioconductor package
specifically designed to find differential exon usage (DEU)
based on RNA-seq data. DEU describes the relative usage
of exons induced by the experimental conditions.32

More details on data pre-processing can be found here
(https://bioconductor.org/packages/release/bioc/vignettes/
DEXSeq/inst/doc/DEXSeq.html). The DEXseq package also
performs sample comparison and adjusts the P-value to
overcome multiple testing problems.33–35 Through
DEXseq package, the Benjamini–Hochberg procedure
used to control the false discovery rate (FDR).36

Results

Patient characteristics

Paired samples (normal—tumor) of surgical biopsies of
bone were collected from 18 Vietnamese OS patients.
Diagnosis was confirmed by a pathologist by examination
of the biopsies. Tumor sites were located in the femur
(55.56%), tibia (33.33%), and humerus (11.11%). Patient
age ranged from 7 to 52 years (mean¼ 18 years) and there
were 7 females and 11 males. Patients’ demographic and
clinical characteristics are listed in Table 1.

Validation of differential exon usage of LEPROT in
patient samples

A mean-average (MA)-plot of the log2 fold change of all
transcripts (over 4075 transcripts) expressed in normal and
tumor samples is presented in Figure 1. Red points indicate
the log fold change versus average normalized count per
exon (FDR< 0.05), whereas red triangles represent exons
expressed with log2-fold change greater than 2 or less
than �2.

The purpose of the study was to investigate AS events
between 18 paired normal-tumor OS samples by RNA-seq.
As shown in Figure 2(a), statistically significant (FDR< 0.05)
changes in expression levels of leptin receptor overlapping

1438 Experimental Biology and Medicine Volume 245 October 2020
...............................................................................................................................................................

https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html


transcript (LEPROT) exons were observed between normal
and tumor samples. Most of the exons are expressed in
normal tissue, while expression in the tumor sample
remained low. However, DEXseq removes the exon level
changes in expression to highlight differential exon usage
of the gene. The exons shown in purple presented with
significant differential exon usage (bottom panel, bin E014,
E040, and E042), suggesting potential AS events (Figure 2
(b)). The comparisons of each exon expression between
tumor and normal samples were performed by normaliza-
tion counts, as shown in Figure 2(c).

We identified 27 novel transcript variants of the LEPROT
gene (Table 2), 26 of those transcripts have statistically sig-
nificant (FDR< 0.05) different exon usage. This suggests
that different isoforms use the exons differently. One tran-
script (E037) identified as having different exon usage was
subsequently shown to be non-significant (FDR> 0.05,
highlighted in red in Table 2).

As visualized in Figure 2(a) and listed in Table 2, 5 tran-
scripts of LEPROT demonstrated overexpression in the
tumor samples, while 22 transcripts (21 significant/1 non-

significant) presented with overexpression in the normal
samples. Decrease expression of LEPROT transcripts in
tumor samples eventually downregulates general
LEPROT expression in tumor samples.

Discussion

The limiting factor in improving treatment for OS is a lack
of understanding of the molecular mechanism of the dis-
ease, which leads to an inability to diagnose and treat OS at
an earlier stage, or to develop more effective therapies.
RNA-seq can be a potentially powerful method to identify
differential exon usage in OS and allow identification of
potential biomarkers of the disease.27 Differential usage of
exons produces different transcripts from the same gene.18

Cancerous cells can have alternate patterns of exon usage
within individual genes compared to normal cells, suggest-
ing that ASmay play a key role in shaping the phenotype of
the tumor.23

In this study, we have investigated AS events in 18
paired normal – tumor OS samples. Interestingly, our
results showed that the LEPROT gene underwent AS and
identified 26 statistically significant (FDR< 0.05) novel
transcripts. These transcripts showed different expression
levels between tumor and normal tissues, suggesting there
is a potential functional association between AS of LEPROT
and cancer progression.

A genome-wide expression analysis has suggested an
association between LEPROT regulation and apoptosis
pathway.37 Unfortunately, the study did not explain the
association further. However, the manifestations of
LEPROT gene mutations have not been extensively stud-
ied, resulting in an incomplete understanding of the func-
tion or dysfunction of this gene in cancer metabolism.38

LEPROT is expressed widely in many human tissues,
but does not appear to be expressed in tumors.39

Therefore, loss or frequent downregulation of LEPROT
expression could be associated with tumor formation. The

Figure 1. Mean-average (MA)-plot of normalized mean expression versus log2-

fold change. The red marks represent the log of fold change versus average

normalized count per exon that are significant (FDR <0.05). The red triangles

represent exons with log2-fold change greater than 2 or less than �2. The grey

marks and triangles represent non-significant results. (A color version of this

figure is available in the online journal.)

Table 1. Characteristics of osteosarcoma patients in the present study (n¼ 18).

Patient code Gender Age Site of tumor Stage Metastasis Chemotherapy

OSVN001 Female 16 Femur I No Yes

OSDN001 Male 23 Tibia III Yes Yes

OSVN003 Male 13 Femur I No Yes

OSVN004 Female 16 Femur I No Yes

OSVN005 Male 18 Femur I No Yes

OSVN006 Male 18 Femur I No Yes

OSVN008 Male 52 Femur I Yes No

OSHN008 Female 24 Tibia I No Yes

OSHN009 Male 16 Femur I No Yes

OSHN010 Female 20 Femur I No Yes

OSHN011 Male 7 Tibia I No No

OSHN012 Male 11 Humerus I No No

OSHN013 Male 17 Femur I No Yes

OSHN014 Female 16 Tibia III No Yes

OSVN015 Male 15 Tibia I No Yes

OSHN015 Female 8 Tibia I No Yes

OSHN016 Male 20 Femur I No Yes

OSHN017 Female 23 Humerus I No Yes
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cause of downregulation of the LEPROT gene in cancer
cells remains unknown. One study has suggested that AS
can downregulate overall gene expression by tagging spe-
cific transcripts for degradation through the nonsense-
mediated mRNA decay (NMD) surveillance pathway.40

NMD frequently controls the translation stage and
degrades the transcripts if they contain a premature termi-
nation codon (PTC), which can arise from genetic muta-
tions or AS.41,42 Truncated proteins cannot function

properly or could even be toxic to the body; therefore, the
synthesis of truncated proteins can contribute to various
cancer types.43 We therefore encourage further investiga-
tion of the regulation of LEPROT gene expression in
normal and tumor cells. Our analysis highlighted
LEPROT transcripts as being significantly under-
expressed in 21 out of 26 tumor samples. Decrease expres-
sion of LEPROT transcripts in tumor samples, eventually
can lead to reduction of total LEPROT expression level. The
five overexpressed transcripts (absolute value of log2 fold-
change> 1) can be considered as the noise from overall
downregulation of LEPROT gene in OS. Therefore, it can
be argued that they are not specific to OS initiation and
progression. LEPROT is encoded by LEP receptor (LEPR)
gene and they share the first two 50-UTR exons.44

Unsurprisingly, we previously identified significant down-
regulation of LEPR in OS.30

Several studies have discussed the association between
LEPROT expression level and growth hormone (GH) activ-
ity.44 GH stimulates the development of bone and cartilage
in children and adolescents.45 It also has been associated
with induction of insulin-like growth factor 1 (IGF-1) and
IGF-1 receptor (IGF-1R) gene expression, alterations in glu-
cose metabolism, and modulation of cell proliferation
genes.46–48 IGF-1 is produced in the liver, stimulated by
GH, and plays a main role in tissue growth and develop-
ment.49–52 Higher circulating levels of IGF-1 have a pro-
found impact on cell proliferation, differentiation,
promotion of cellular longevity, and inhibition of apopto-
sis.53,54 Consequently, overexpression of IGF-1/IGF-1R has
been implicated in tumor formation, angiogenesis, and
metastasis in various human cancer types, including
OS.46–48,53 According to one study, LEPROT is directly
involved in a receptor-mediated cell signaling pathway
by regulating cell surface expression of growth hormone
receptor (GHR) at the molecular level. The same study
also suggested that silencing of LEPROT increases cell-
surface expression of GHR in a mouse model.55 Thus,
increasing GHR expression level will lead to higher circu-
lating levels of IGF-1 and may eventually result in tumor-
igenesis.47–49,53,55

Dysregulation of LEPROT is associated with various
bone inflammation diseases in humans through the key
inflammatory cytokines such as tumor necrosis factor
alpha (TNF a) and interleukin 6 (IL-6). Several studies
have highlighted that bone inflammation is a frequent pre-
cursor to initiation and progression of OS.56 Further, OS
cells promote local inflammation and this leads to activa-
tion of local immune responses.57 Not surprisingly, upre-
gulation of IL-6 and TNF-a has been observed in human OS
cells.58,59 In addition, IL-6mediates tumor-host interactions
that facilitate lung colonization of metastasis-initiating by
OS cells.60,61 Consequently, LEPROT may be implicated in
OS initiation and metastasis through upregulating expres-
sion of IL-6 and TNF-a.

In conclusion, our data provide strong evidence that AS
events of the LEPROT gene may be a risk factor for OS, and
downregulation of LEPROT can be associated with tumor-
igenesis in bone. These results may facilitate a better under-
standing of the underlying molecular mechanism related to

Figure 2. DEXseq analysis on RNA-Seq data. The x-axis shows individual exons

within LEPROT gene, whereas the y-axis represents exon expression (a), exon

usage (b), and normalization counts (c). The bars below the x-axis represent

exons. The lines between the exons are introns. The numbers at the bottom are

genomic locations of LEPROT. A highlights the fitted expression values of each

of the exons of LEPROT gene for normal (red) and tumor (blue) samples. B

visualizes exon usage in the gene. The exon in purple (E014, E040 and E042) and

26 purple lines between the bars and exon names indicate a significant differ-

ential exon usage (FDR< 0.05), whereas E037 revealed insignificant splicing

(FDR>0.05). C shows the comparison of exon expression between the samples.

(A color version of this figure is available in the online journal.)
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the initiation and progression of OS, thereby allowing iden-
tification of effective novel molecular target candidates for
the treatment of the disease.
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Table 2. Differently spliced transcript variants of LEPROT.

Group ID: Exon ID Normala Tumora
log2(fold-change)
normal/tumor P value padj

Genomic
data start

Genomic
data end

Genomic
data width

ENSG00000213625.7þENS-

G00000116678.17: E014

71.55 214.78 �1.59 3.03E-13 4.07E-08 65431803 65431920 118

ENSG00000213625.7þENS-

G00000116678.17: E015

88.50 242.77 �1.49 2.74E-10 9.22E-06 65431921 65432064 144

ENSG00000213625.7þENS-

G00000116678.17: E027

45.21 28.69 0.66 3.32E-09 4.25E-05 65608753 65608901 149

ENSG00000213625.7þENS-

G00000116678.17: E032

46.70 27.21 0.78 4.39E-09 4.73E-05 65617964 65618146 183

ENSG00000213625.7þENS-

G00000116678.17: E016

498.02 1229.84 �1.30 1.01E-08 7.57E-05 65432065 65436007 3943

ENSG00000213625.7þENS-

G00000116678.17: E022

21.01 13.80 0.61 8.97E-09 7.57E-05 65596448 65596593 146

ENSG00000213625.7þENS-

G00000116678.17: E036

17.21 10.89 0.66 1.10E-08 7.57E-05 65622906 65622981 76

ENSG00000213625.7þENS-

G00000116678.17: E021

21.80 12.71 0.78 9.81E-09 7.57E-05 65592657 65592865 209

ENSG00000213625.7þENS-

G00000116678.17: E019

33.89 20.33 0.74 1.29E-08 8.44E-05 65570473 65570802 330

ENSG00000213625.7þENS-

G00000116678.17: E040

586.05 394.12 0.57 1.75E-08 0.00010921 65633152 65635409 2258

ENSG00000213625.7þENS-

G00000116678.17: E009

6.97 19.68 �1.50 2.13E-08 0.00011916 65425303 65425378 76

ENSG00000213625.7þENS-

G00000116678.17: E028

51.71 31.11 0.73 3.28E-08 0.00013701 65609947 65610106 160

ENSG00000213625.7þENS-

G00000116678.17: E023

27.34 17.71 0.63 1.37E-07 0.00037999 65598660 65598804 145

ENSG00000213625.7þENS-

G00000116678.17: E024

78.79 53.17 0.57 3.83E-07 0.00072278 65601392 65601682 291

ENSG00000213625.7þENS-

G00000116678.17: E031

53.74 33.47 0.68 3.83E-07 0.00072278 65616008 65616224 217

ENSG00000213625.7þENS-

G00000116678.17: E012

45.95 125.95 �1.45 4.18E-07 0.000759 65429931 65430048 118

ENSG00000213625.7þENS-

G00000116678.17: E034

31.50 20.95 0.59 3.14E-06 0.00236337 65619940 65620023 84

ENSG00000213625.7þENS-

G00000116678.17: E035

30.34 19.92 0.61 3.24E-06 0.00240758 65621353 65621458 106

ENSG00000213625.7þENS-

G00000116678.17: E042

17.90 10.30 0.80 5.92E-06 0.00325498 65636191 65637102 912

ENSG00000213625.7þENS-

G00000116678.17: E029

27.13 19.09 0.51 6.46E-06 0.00347045 65610214 65610268 55

ENSG00000213625.7þENS-

G00000116678.17: E033

14.09 9.19 0.62 6.61E-06 0.00352845 65619928 65619939 12

ENSG00000213625.7þENS-

G00000116678.17: E020

15.80 10.90 0.54 9.26E-06 0.00429905 65572326 65572449 124

ENSG00000213625.7þENS-

G00000116678.17: E025

26.93 15.93 0.76 1.14E-05 0.00479061 65601843 65601960 118

ENSG00000213625.7þENS-

G00000116678.17: E026

47.90 32.81 0.55 1.19E-05 0.00490364 65605038 65605237 200

ENSG00000213625.7þENS-

G00000116678.17: E018

8.83 4.67 0.92 1.83E-05 0.00607585 65565546 65565605 60

ENSG00000213625.7þENS-

G00000116678.17: E030

21.85 15.65 0.48 4.28E-05 0.00984627 65610269 65610296 28

ENSG00000213625.7þENS-

G00000116678.17: E037

11.05 5.21 1.08 0.000784 0.05035195 65622982 65623384 403

aNormalized counts.
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