
Minireview Highlight article

Histone deacetylases in modulating cardiac disease and their

clinical translational and therapeutic implications

Zhengke Wang1, Yu Tina Zhao2 and Ting C Zhao3

1Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA; 2University of

Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; 3Departments of Surgery and Plastic Surgery, Rhode Island

Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA

Corresponding author: Ting C Zhao. Email: Ting_Zhao@Brown.EDU

Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide.

Histone deacetylases (HDACs) play an important role in the epigenetic regulation of genetic

transcription in response to stress or pathological conditions. HDACs interact with a com-

plex co-regulatory network of transcriptional regulators, deacetylate histones or non-

histone proteins, and modulate gene expression in the heart. The selective HDAC inhibitors

have been considered to be a critical target for the treatment of cardiac disease, especially

for ameliorating cardiac dysfunction. In this review, we discuss our current knowledge of the

cellular and molecular basis of HDACs in mediating cardiac development and hypertrophy

and related pharmacologic interventions in heart disease.
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Introduction

Cardiovascular disease (CVD) is highly prevalent among
the general population and considered to be the leading
cause of mortality and morbidity in developed countries.
Many forms of heart disease lead to a progressive loss of
cardiomyocytes by apoptosis or necrosis, which may cul-
minate in cardiac dysfunction and death (reviewed in liter-
ature1–3). Identifying molecular mechanisms related to
epigenetic regulation might open new therapeutic strate-
gies for CVD prevention.4

Preclinical and clinical data have indicated that expo-
sure to environmental challenges could result in the mod-
ification of epigenetic marks. The epigenetic signature of
myocytes and other cardiac components endures profound
changes when the heart undergoes development, matura-
tion, and disease.5 The major epigenetic modifications

include histone modifications, the modulation of mRNA
stability, and translation through non-coding RNA. A com-
prehensive understanding of epigenetic regulation will
lead to new therapeutic approaches for specifically target-
ing CVD.6–11 For greater understanding of the relationship
between epigenetic modifications and CVD risk, we
respectfully refer the reader to seek excellent comprehen-
sive reviews.5,8,12–19 Major post-translational modifications
of histones include acetylation, methylation, phosphoryla-
tion, ubiquitination, sumoylation, or ADP-ribosylation of
distinct amino acids, which could lead to either activation
or suppression of gene expression.20–22 One of the most
important epigenetic regulatory machineries, lysine acety-
lation, is reversible and is controlled by the opposing
actions of acetyltransferase and deacetylase in vivo by his-
tone acetyltransferases (HATs) and HDACs in an opposing
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fashion to control the acetylation status of nucleosomal his-
tones. More general information on the biological function
of HDACs are included in various other reviews.23–27 In
this review, we focus on the latest developments in the
understanding of the biological function of HDACs in the
regulation of cardiomyocyte development and CVD.

HDAC classifications and domain
organization

Eighteen mammalian histone deacetylases can be subdi-
vided into four distinct classes (classes I, IIa, IIb, III, and
IV) based on phylogenetic analyses of protein sequence
homology, homology to yeast Rpd3 with yeast HDACs,
enzymatic activity, domain structure, and functional simi-
larities (Figure 1).

Class I, which is homologous to Rpd3 in yeast, including
HDACs 1, 2, 3, and 8, is ubiquitously expressed in human
tissues. Class I HDACs are closely related to several other
protein subunits, which includes Sin3 and N-CoR, to regu-
late histone deacetylation and transcriptional co-repres-
sion.24,28 HDAC1 and HDAC2 usually form a variety of
repressive complexes with different gene repressors to par-
ticipate in regulatory functions, which is highly distinct
from co-repressor complexes containing the Sin3-
HDAC1/2 complex.29

Class II is homologous to yeast HDA1, and its N-termi-
nal extension possesses conserved important domains for
protein-protein interaction. The six members of this class
are classified into two subclasses: IIa (HDAC 4, 5,7, and 9)
and IIb (HDAC 6 and 10), which have restricted expression
patterns unique to deacetylase activities acting as signal
transducers that shuttle between the cytoplasm and the
nucleus.30–33 Class II HDACs show tissue-specific expres-
sion such as in skeletal muscle, heart,34 and brain and shut-
tle between the nucleus and cytoplasm, indicating that their
regulation could be more complex as compared to the pre-
dominantly nuclear class I HDACs.35–37

Class III or sirtuin, which is homologous to the silent
information regulator 2 (Sir2) family of proteins, includes
SIRT1-7.26 SIRT1 and 7 both are found to control cardiac
development and prevent stress- and/or aging-associated
cardiac dysfunction.38

Finally, HDAC11, the sole member of class IV, is homol-
ogous with both class I and class II HDACs. However,
because HDAC11’s sequence has limited homology to
class I and II HDACs, it has not yet been assigned to any
of the other three classes.39

HDAC mediates stem cell and cardiac commitments

During embryological cardiovascular system development,
a set of the mesodermal germ layer origin cells differentiate
into specific cell types and then merge to form the cardiac
tube. Epigenetic and chromatin modifications play a critical
function for embryonic and induced pluripotent stem cells
(ESCs and iPSCs), mediating both differentiation and de-
differentiation back to a pluripotent state. HATs and
HDACs recruit specific transcription factors to control the
evolution of cardiovascular development. Differentiation of
embryonic stem cells into specific cardiac lineage commit-
ments requires activation of multiple signaling pathways
and a distinct subset of cardiac-specific transcription fac-
tors, which are closely modulated by distinct HDACs.40,41

HDACs mediate stem cell and cardiac progenitor-derived
cardiac commitments (Table 1).

Class I HDAC

HDAC1 and HDAC2 are functionally redundant in cardiac
morphogenesis, cardiac growth, and development and
maintain cardiac phenotype and function. Global deletion
of HDAC1 in mice leads to embryonic lethality.42

Cardiomyocyte restricted knockout of this gene (under
the alpha-MHC promoter) has no effect on the phenotype.43

However, HDAC1 knockdown blunts differentiation and
the spontaneous contraction of mouse ESC cells.44

Embryoid body (EB) beating of HDAC1 knockdown ESCs
treated with BMP2 or over-expression by Sox-17 showed an
almost identical presentation to wild type cells.45 During
the early stage of cardiomyocyte differentiation in the
murine P19CL6 embryonic carcinoma cells, WNT promot-
ed cardiac transcription factor NKX2.5 expression and early
cardiomyogenesis through the suppression of HDAC1.46

Inhibition of HDAC activity elicited cardiac differentiation
in association with an increased expression of
cardiac-specific genes related to cell cycle arrest. Over-

Figure 1. Eighteen mammalian histone deacetylase that are subdivided into four distinct classes based on phylogenetic analysis, enzymatic activity, domain structure

and biological roles. HDAC: histone deacetylases. (A color version of this figure is available in the online journal.)
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Table 1. HDACs mediates cardiac development and cardiogenesis.

HDAC Model Biological functions and phenotypes in the heart Refs

HDAC1 Deficient mice embryo lethality before E9.5 because of proliferation defects 42,43

Deletion in myocardium no apparent cardiac defects 43

Knockdown mouse ESCs suppresses cardiac differentiation and beating ability 44,47

iPSC deficiency impairs differentiation and electrophysiological properties of cardiomyocytes. 44

P19CL16 cells WNT signaling promotes the cardiac transcription factor NKX2.5 expression

and early cardiomyogenesis via downregulation of HDAC1

46

Deletion in bone marrow

mesenchymal cells

promotes the directed differentiation of bone marrow-derived mesenchymal

stem cells into cardiomyocytes

51,52

HDAC2 Knockout mice perinatal lethality with severe cardiac defects that appear to reflect a non-

myocyte-autonomous

43

Knockout mice Proliferation rates of cardiac myocytes in HDAC2 knockout mice were elevated 55

HDAC3 Transgenic mice postnatal cardiac myocyte proliferation, thickening of ventricular myocardium 54

HDAC3 Deletion in cardiac

progenitor cells

precocious cardiomyocyte differentiation, severe cardiac developmental

defects, embryonic lethality

56

HDAC4 P19 cell over-expression suppresses cardiomyogenesis 49

SIRT1-7 Stem cell and cardiac progenitor cells differentiation to cardomyocyte remains unclear.

HDAC: histone deacetylases.

Table 2. The physiological role of HDACs in cardiac genesis, development and heart diseases.

Subtype Model Phenotype and disease functions in the heart Refs

HDAC1 P19 cells Suppression of HDAC1 activity stimulated cardiac differentiation Liu et al.46

Knockout mice Embryo lethality before E9.5 because of proliferation defects Montgomery et al.43

Embryonic stem cell differentiation Dovey et al.47

Cardiac-specific deletion No apparent cardiac defects, HDAC2 functions redundantly with

HDAC1 in the myocardium.

Montgomery et al.43

HDAC2 Knockout mice Resistant to cardiac hypertrophy when hearts exposed to

hypertrophic stimuli.

Trivedi et al.55

Increase in proliferation at P1, Lethality after P1 Montgomery et al.43

Cardiac-specific deletion No apparent cardiac defects, HDAC2 functions redundantly with

HDAC1 in the myocardium.

Montgomery et al.43

Transgenic mice Cardiac hypertrophy Trivedi et al.55

HDAC1 & HDAC2 Cardiac-specific deletion Neonatal lethality, accompanied by cardiac arrhythmias, dilated

cardiomyopathy.

Montgomery et al.43

HDAC3 Knockout mice Lethality by E9.5 Montgomery et al.72

Cardiac-specific deletion 3–4 months of lifespan, massive cardiac hypertrophy

Transgenic mice Thickening of ventricular myocardium, reduction of both ven-

tricular cavities in newborn

Trivedi et al.54

HDAC4 Knockout mice Die prenatally, premature ossification of developing bone Vega et al.83

Transgenic mice Died prematurely

Transgenic mice Died prematurely or lacked germline transmission Ago et al.86

C667/669S mutant mice Significantly greater left ventricular, cardiac hypertrophy in

response to reactive oxygen species stimuli

HDAC5 Knockout mice Enlarged hearts in response to pressure overload Chang et al.57

Contraction of cardiac muscle Chang et al.57

HDAC7 Knockout mice Lethality at E11.5, severe hemorrhage from leaky and dilated

blood vessels

Chang et al.97

HDAC9 Knockout mice Cardiac hypertrophy Zhang et al.74

SIRT1 Knockout mice Lethality at birth, small size, heart valve defects Cheng et al.99

Over-expression in

myocardium

High SIRT1 over-expression triggers cardiac hypertrophy and

apoptosis. Low/moderate SIRT1 over-expression reduces

cardiac hypertrophy and apoptosis

Alcendor et al.100

SIRT3 Knockout mice Cardiac hypertrophy and interstitial fibrosis at 8 weeks of age Sundaresan et al.105

Over-expression in

myocardium

Resistant to stress-induced cardiac hypertrophy

SIRT7 Knockout mice Shortened lifespan, extensive cardiac hypertrophy, fibrosis, and

inflammatory cardiomyopathy

Vakhrusheva et al.115

HDAC: histone deacetylases.
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expression of HDAC1 inhibited cardiomyocyte commit-
ments and downregulated the expression of transcriptional
factors Gata4 and Nkx2.5. Activation of the WNT pathway
attenuated HDAC1 expression, which was accompanied by
the upregulation of Nkx2.5 expression. Both WNT3a and
WNT3 are demonstrated to mitigate the expression of
HDAC1, which is in contrast with the effect of SFRP2 and
GSK3beta. In addition, co-transfection of beta-catenin and
lymphoid enhancer-binding factor 1 (LEF1) resulted in a
marked reduction of the expression of HDAC1.

Global knockout of HDAC2 led to perinatal lethality
with severe cardiac defects, which displays a non-
myocyte-autonomous function of HDAC2, because specific
deletion of either HDAC1 or HDAC2 alone has not dis-
played a discernible effect on heart function. However,
cardiomyocyte-specific knockout of both HDAC1 and
HDAC2 led to the development of dilated cardiomyopathy
and neonatal lethality, which is also accompanied by the
upregulation of skeletal muscle-specific myofibrillar pro-
teins and calcium channels.43 Embryonic stem cells defi-
cient in either HDAC1 or HDAC2 were still capable of
developing EBs, allowing cells to undergo differentiation
into the three primary germ layers. However, deficient EBs
showed a strikingly abnormal development, spontaneous
rhythmic contraction, and augmentation of cardiomyo-
cytes.47 During the ES cell differentiation into cardiomyo-
cytes, acetylated GATA-4 had an increased DNA binding
ability. Acetylation of GATA-4 as well as of histones is
involved in the differentiation of ES cells into cardiac myo-
cytes.48–50 HDAC2 interacts with Hop and subsequently
deacetylates Gata4 and downregulates cell cycle genes,
thereby suppressing cardiomyocyte proliferation.

HDAC1 suppresses differentiation of bone mesenchy-
mal stem cells (BMSCs) into cardiomyocytes. Thus, the
expression of HDAC1 was found to be decreased in
BMSCs during their differentiation into cardiomyocytes.
HDAC1 is a negative regulator in cardiac cell differentia-
tion derived from BMSCs. Compared with control BMSCs,
the expression of cardiomyocyte-specific transcriptional
levels was significantly upregulated in HDAC1 deficient
stem cells. Deletion of HDAC1 promoted the directed dif-
ferentiation of bone marrow-derived mesenchymal stem
cells into cardiomyocytes.51,52 Like 5-azacytidine (5-aza, a
DNA methylation inhibitor), treatment with a histone
deacetylase inhibitor, SAHA, stimulates BMSC differentia-
tion into cardiomyocytes and transcription of
cardiomyocyte-specific transcription factors such as
GATA4, NKx2.5, and Mef2c.53 Following the inhibition of
HDAC1 or HDAC2 by small interfering RNAs, BMSCs
exhibited a tendency towards cardiac linage commitment,
which was accompanied by enhanced histone 3 and histone
4 acetylation at gene loci.52

HDAC3 over-expression in cardiomyocytes resulted in
ventricular thickening, which especially occurs in the inter-
ventricular septum, and significantly reduced the ventric-
ular cavity.54 The increased thickness of myocardium in
HDAC3 over-expression transgenic (HDAC3-Tg) mice
results from enhanced hyperplasia in cardiomyocytes
(postnatal cardiac myocyte proliferation) without cardiac
hypertrophy. HDAC3 over-expression attenuates several

critical cyclin-dependent kinase inhibitors, including
Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, and Cdkn2c. Unlike
previously reported HDAC2-Tg mice,55HDAC3-Tg mice
did not develop cardiac hypertrophy at 3months of age.
Furthermore, HDAC3 over-expression did not augment
isoproterenol-induced cardiac hypertrophy when com-
pared to wild-type littermates. Mouse cardiac progenitor
cells lacking HDAC3 displayed precociously differentiated
cardiomyocytes, severe cardiac defects, and upregulation
of Tbx5 as well as embryonic lethality.56 HDAC3 physically
interacts with Tbx5 and regulates Tbx5 acetylation that
results in the repression of Tbx5-dependent expression of
cardiac lineage-specific genes, revealing that HDAC3 plays
a key role to regulate early cardiogenesis.

Class II HDAC

During the differentiation of P19 mouse embryonic carci-
noma stem cells into cardiomyocytes, HDAC inhibitor tri-
chostatin A induces the entry of mesodermal cells into
cardiac muscle lineages through upregulation of Nkx2-5,
MEF2C, GATA4, and cardiac alpha-actin.49Over-
expression of HDAC4 suppresses cardiomyogenesis, as
illustrated by the downregulation of cardiac specific
genes. Class II HDAC activity can be suppressed by phos-
phorylation by calcium/calmodulin-dependent kinase
(CaMK). Enhanced expression of an activated CaMKIV in
P19 cells largely increased the transcriptional levels of
Nkx2-5, GATA4, and MEF2C, stimulated cardiac muscle
growth, and activated MEF2-regulated genes.49

Additionally, HDAC activation also modulates the specifi-
cation of mesoderm cells into cardiomyoblasts by the sup-
pression of GATA4 and Nkx-2.5 cells in a stem cell model.
The observations fromOlson’s laboratory indicated that the
hearts of both HDAC5–/– and HDAC9–/– mice showed a
normal development, but most HDAC5 and HDAC9
double knockout mice died as a result of heart defects, indi-
cating a role for class II HDACs in the control of heart
development and growth.57 However, during the earliest
stage of class II HDAC-induced regulation, cardiogenesis
remains uncharacterized.

SIRT (1–7)

The biological function of Sirts on stem cell and cardiac
progenitor cell differentiation to cardiomyocytes remains
unclear.

HDAC in cardiac hypertrophy

Cardiac hypertrophy can occur in response to a variety of
extrinsic and intrinsic physiological stimuli, while myocar-
dial infarction, hypertension, myocyte death, remodeling,
heart failure, and vascular disease can elicit maladaptive
hypertrophy resulting in dilated dysfunction and conges-
tive heart disease. At the cellular level, cardiomyocyte
hypertrophy is characterized by an increase in cardiomyo-
cyte size, enhanced protein synthesis, and heightened sar-
comere organization. At the molecular level, the genetic
programs progressing into cardiac hypertrophy are gener-
ally known to be diverse and complex. In response to
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hypertrophic stimulation, cardiac transcription factors are
profoundly associated with the production of cardiac
hypertrophy or protective effects from cytotoxic stress.58

Pathological hypertrophy is characterized by the re-
induction of gene expression programs at the fetal stage,
which results in the modulation of cardiac contractility and
calcium handling and a down-regulation of their adult iso-
forms.18,40,41 The studies from HDAC knockout mouse
models have revealed the functional role of HDACs in
development and hypertrophy.59

Class I HDACs

HDAC1 and HDAC2. HDAC1-null mice die in utero
before embryonic day 10.5 with proliferative defects and
developmental retardation, possibly stemming from
increased levels of cyclin-dependent kinase inhibitors
p21WAF1/CIP1 and p27KIP1.60 Mice lacking HDAC2 survived
until the perinatal period, but manifested a broad spectrum
of cardiac defects such as obliteration of the lumen of the
right ventricle, apoptotic myocytes, and abundant hyper-
plasia.43 HDAC1 and HDAC2 show redundant functions
for modulating cardiac gene transcription and cardiomyo-
cyte differentiation.43 As cardiac-specific knockout of either
HDAC1 or HDAC2 did not elicit a cardiac phenotype, such
mutant mice survived to adulthood. However, cardiac-
specific deletion of both genes led to neonatal lethality, in
association with cardiac arrhythmias and dilated
cardiomyopathy.

Similar to mice lacking cardiac HDAC1 and HDAC2,
mice that over-expressed a dominant-negative form of
REST, known as the neuron-restrictive silencer factor
(NRSF), which is identified to recruit class I and class IIa
HDACs, also developed dilated cardiomyopathy, ventricu-
lar arrhythmias, and sudden death.61 Therefore, the com-
bined losses of HDAC1 and HDAC2 may lead to inability
of REST to repress the fetal genetic program associatedwith
impaired calcium handling and contractility, thereby
resulting in myocardial arrhythmia and heart failure.
Furthermore, class I HDACs function as signal-dependent
repressors of cardiac hypertrophy via inhibition of the gene
encoding dual-specificity phosphatase 5 (DUSP5) DUSP5, a
nuclear phosphatase that negatively regulates pro-
hypertrophic signaling by ERK1/2.62

HDAC2 is regulated by serine phosphorylation, lysine
ubiquitylation, tyrosine nitration, and cysteine nitrosyla-
tion. The hypertrophic stimuli selectively targets cardiac
HDAC2 through the induction of heat shock protein 70
(Hsp70) that is physically associated with HSP70.63 In addi-
tion, when cardiomyocytes were infected with an
acetylation-mimicking mutant of HDAC2, the antihyper-
trophic effect of either nuclear tethering of HDAC5 with
leptomycin B or HDAC5 over-expression was significantly
attenuated.64 Hypertrophic stimuli provokes casein kinase
2 translocation into the nucleus, which induces the conse-
quent phosphorylation of HDAC2 at serine 394 (and other
targets), ultimately leading to cardiomyocyte growth.65

Krüppel-like factor 4 (KLF4) is a novel anti-hypertrophic
regulator. Over-expression of KLF4 inhibits three key fea-
tures of cardiomyocyte hypertrophy. In contrast,

cardiomyocyte-specific knockout of KLF4, a target of
HDAC2, increases cardiomyocyte sensitivity to transverse
aortic constriction and imposes high mortality rates.66 In
cardiomyocytes, KLF4 represses Nppa transcription, and
thereby attenuates cardiac hypertrophy.67 The phosphati-
dylinositol 3-kinase- (PI3K)-Akt-Gsk3b signaling pathway
is a pivotal controller of cardiomyocyte growth in cardiac
development. HDAC2-null mice are resistant to hypertro-
phic stimuli due to the activation of glycogen synthase
kinase 3 b (GSK3b), whereas HDAC2-Tg mice are sensitive
to hypertrophic stimuli.55 In contrast, HDAC2 transgenic
mice over-expressing HDAC2 in the heart had augmented
hypertrophy which is associated with inactivated
GSK3beta. Furthermore, Inpp5f over-expression in mice
blunted hypertrophy, whereas hypertrophy was intensified
in Inpp5f knockout mice.68 Exercise induces physiological
hypertrophy and benefits the diabetic myocardium.
Mammalian switch-independent 3A (mSin3A) and
HDACs 1 and 2 modulate hypertrophic genes in associa-
tion with REST and O-linked beta-N-acetylglucosamine
transferase (OGT). Diabetes and exercise affect interactions
in an opposite way between pro-hypertrophic transcription
factors.69 Cardiac hypertrophy is associated with an
increase in human B-type natriuretic peptide (BNP)
gene.70 HDAC2 regulates BNP gene promoter activity in
neonatal rat ventricular myocytes by the transcription
factor YY1,71 indicating that YY1 interaction with HDAC2
is related to BNP promoter transcriptional activation.

HDAC3. Unlike HDAC2-transgenic mice, over-expression
of cardiac HDAC3 did not show spontaneous cardiac
hypertrophy or increased sensitivity to hypertrophic stim-
uli.54 Mice with myocardium-specific deletion of HDAC3
survive until 3 to 4months of age with severe cardiac
hypertrophy and fibrosis.72Cardiac-specific deletion of
HDAC3 mice led to intensive myocardial hypertrophy
and upregulation of genes related to the metabolic modu-
lation of fatty acid uptake, fatty acid oxidation, and electron
transport/oxidative phosphorylation in association with
cardiac lipid accumulation and enhanced triglyceride
content.

Class II HDAC

The class IIa HDACs include HDAC4, HDAC5, HDAC7,
and HDAC9, which are expressed in the heart (14–3-3). In
addition, class II HDAC can directly bind to other pro-
hypertrophic transcription factors including
GATA4,49,50MADS-box family member serum response
factor (SRF),73 MEF2,30,74,75 and NFAT76 to repress their reg-
ulated genes. In response to stress, the heart hypertrophies
in association with MEF2 activation and reprogramming.
Class IIa HDACs, which repress the function of MEF2,
serve as substrates for a stress-responsive kinase specific
for conserved serines that modulate the interplay between
MEF2 and HDAC. Signal-resistant HDAC mutants lacking
these phosphorylation sites were found to be refractory to
hypertrophy and inhibit hypertrophy.74 The N-terminal
regulatory domain of class II HDACs regulates the inter-
play between transcription factors, co-activators, and co-
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repressors. The N-terminal regions of class II HDACs also
have two conserved CaMK phosphorylation sites.77–79

Phosphorylation of class II HDACs by CaMK and other
kinases abrogate their tight interaction with MEF2 that
result in the depression of transcriptional activity.
HDAC5 phosphorylation mutants at serines 259 and 498
were found to be resistant to the PKC-induced signaling
pathway and to attenuate the magnitude of cardiac hyper-
trophy.80 Phosphorylation of HDAC5 by PKC or PKD
causes this protein to specifically form a complex with
14–3-3 protein, which subsequently leads to the nuclear
export of HDAC5.81

HDAC4. HDAC4 plays a global role in the regulation of
gene transcription in different cell types, such as skeletal
muscle, cardiomyocytes, chondrocytes, osteoblasts, and
nerve cells.82 HDAC4 knockout and transgenic mice stud-
ies demonstrate that HDAC4 mediates chondrocyte hyper-
trophy by interacting with Runx2 (Runt related
transcription factor 2) during the development of the skel-
eton.83 Hypertrophic stimuli induces HDAC4 oxidation,
while thioredoxin 1, a small protein antioxidant, modulates
it.72,84,85 HDAC4 oxidation is induced by hypertrophic
stimuli, thioredoxin1, a 12-kDa antioxidant.86

Nicotinamide adenine dinucleotide phosphate oxidase 4
(Nox4) regulates HDAC4 cysteine oxidation in the control
of myocardial hypertrophy in response to phenylephrine
and pressure overload.85 CaMKII induced-
phosphorylation of HDAC4 enhances hypertrophic
growth, which was blocked by a signal-resistant HDAC4
mutant.87 Cyclic AMP-dependent protein kinase A (PKA)
induces an N-terminal HDAC4 cleavage that could over-
come the role of CaMKII in cardiomyocyte hypertrophy.88

Several microRNAs regulate cardiomyocyte hypertrophy
by binding 3’UTR of HDAC4. In miR-22-null mice, cardiac
miR-22 was found to be essential for hypertrophic growth
by directly targeting HDAC4.89 Additionally, HDAC4 was
also found to modulate myofilament contractile activity
through mediating muscle LIM protein deacetylation.90

HDAC5 and HDAC9. HDAC5 knockout mice develop car-
diac hypertrophy during the progression to ageing in
response to pressure overload and calcineurin signaling.57

In contrast, deletion of HDAC9 manifests a normal cardiac
size and function at an early stage but become sensitized to
hypertrophic signals and exhibit stress-dependent cardio-
megaly with advanced age.74 HDAC5 or HDAC9 knockout
mice could survive to adulthood in the absence of apparent
myocardial defects. However, mice in which both HDAC5
and HDAC9 are deleted show embryonic or early perinatal
lethality with variable penetrance.57 Mice lacking both
HDAC5 and HDAC9 show a severe cardiac hypertrophy
and display a propensity for thin-walled myocardium and
lethal ventricular septal defects. Calmodulin and CaMKII
both phosphorylate class IIa HDACs and are involved in
cardiac hypertrophic signaling by forming a complex with
14–3-3 and inducing interaction with MEF2.77,91

Calmodulin binding transcription activator 2 (CAMTA2),
an indispensable transcription co-activator of hypertrophy,

is activated by dissociation from HDAC5 and promotes
transcription of genes responsible for cardiac hypertrophy.
Cardiac development in response to neurohumoral signal-
ing and pressure overload are defective in mice with a
homozygous mutation in the CAMTA gene, and mice
with HDAC5 deletions are sensitized.92 In the adult ven-
tricular myocyte model, the hypertrophic agonist
endothelin-1 was found to result in HDAC5 phosphoryla-
tion and activated nuclear export of HDAC by triggering
nuclear envelope Ca2þ release via inositol 1–4,5-trisphos-
phate receptor activation.93 HDAC5 interacts with tran-
scription factor Yin Yang 1 (YY1) in cardiomyocytes and
plays an anti-hypertrophic role in myocardial hypertro-
phy.94 In addition, HDAC5 was phosphorylated by protein
kinase A, which prevented its nuclear export and led to the
inhibition of gene transcription and cardiac
hypertrophy.95MEF2-interacting transcriptional repressor
(MITR) is considered to be a predominant splice variant
of HDAC9 expressed in the myocardium. MITR could effi-
ciently attenuate the activity of MEF2 through the recruit-
ment of other co-repressors. Disruption of these specific
phosphorylation sites of mutants of MITR serve as signal-
resistant repressors of cardiac hypertrophy.96

HDAC 6, 7, 10. Knockout of HDAC7 in mice produces
vascular defects which culminate in embryonic lethality
at E11.5 due to severe hemorrhage.97 In these mice, the vas-
cular structures, including the dorsal aorta and cardinal
veins, were dilated and leaky, with sparse vascular
smooth muscle. HDAC6 is dispensable for cardiovascular
development, as HDAC6 knockout mice develop normally
and grow to adulthood despite some immune response
abnormalities. HDAC6 catalytic activity increases in the
stressed heart but not in physiologic hypertrophy.98

However, little is known about the role of HDAC10 in car-
diac hypertrophy.

SIRT (1–7). SIRT1 and SIRT3 activation negatively regu-
lates cardiac hypertrophy. SIRT1 deacetylates p53, prevent-
ing p53 from triggering cellular senescence and apoptosis
in response to DNA damage and stress. Deletion of SIRT1
in mice results in mouse death perinatally, which is accom-
panied by significant neurological and cardiac malforma-
tions in atrial septal, ventricular septal, and heart valve
defects.99 SIRT1 was dramatically elevated in response to
pressure overload and oxidative stress. The moderate
expression of SIRT1 retards the progression towards
aging of the heart, whereas a high dose of SIRT1 triggers
the development of cardiomyopathy.100

SIRT1 protects cardiomyocytes from the apoptotic path-
way and age-dependent degeneration as demonstrated by
a dose dependent manner, in which SIRT1 displays a pro-
tective function at low doses but detrimental effects at high
doses.101 Peroxisome proliferator-activated receptor-alpha
(PPAR alpha) is a master controller of the metabolic path-
way and which regulates cardiac hypertrophy and metab-
olism. Over-expression of SIRT1 resulted in the
deacetylation of the PPARalpha co-activator PGC-1alpha
that induces cardiac protection.102
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SIRT2 is a negative regulator of anoxia-reoxygenation
tolerance. Specific inhibition of SIRT2 increased the produc-
tion of a chaperone protein 14–3-3 f, which sequesters the
Bcl2 antagonist of cell death (Bad) in the cytoplasm, thereby
attenuating the pro-apoptotic buildup of Bad in mitochon-
drial membranes.103

SIRT3-deficient mice are born grossly normal but show
the development of cardiac hypertrophy and interstitial
fibrosis by 8weeks of age.104SIRT3-deficient mice develop
an even more severe cardiac hypertrophy when exposed to
hypertrophic stimuli, while mice over-expressing SIRT3 in
the myocardium are resistant to hypertrophy from similar
stimuli. SIRT3-induced protective effects against stress-
induced hypertrophy are likely mediated through the
activation of the Foxo3a-dependent antioxidant and atten-
uation of the RAS, MAPK/ERK, and PI3K-Akt path-
ways.105–107 SIRT3 deacetylates FOXO3 and protects
mitochondria against oxidative stress through modulating
mitochondrial mass, ATP production, and clearance of
defective mitochondria.108 SIRT3 deficiency exacerbates
the aged hearts’ susceptibility to ischemia-reperfusion
injury.109 SIRT3 deacetylates Ku70 and regulates the inter-
action of Ku70 with the proapoptotic Bax (Bcl2-associated X
protein), thereby blocking the entry of Bax into the mito-
chondria to induce apoptotic signaling.110 Another report
demonstrated that reactive oxygen species (ROS)-mediated
NF-kappa B activation was related to the downregulation
of SIRT3, which develops protective effects in myocytes
exposed to oxidative stress.111

SIRT4 and SIRT5-deficient mice were found to be born
grossly until at least 18months of age and did not illustrate
obvious cardiac defects.112,113SIRT6-deficient mice show
runting with lymphopenia, loss of subcutaneous fat, lordo-
kyphosis, and severe metabolic disarrangements.114

SIRT7-knockout mice undergo shorter lifespans and
develop cardiac dysfunction and inflammatory cardiomy-
opathy. SIRT7 mutant hearts are also characterized by
extensive interstitial fibrosis. SIRT7 associated with p53
directly deacetylates p53 in vitro, which initiates hyperace-
tylation of p53 in vivo, increases apoptosis, and diminishes
resistance to oxidative and genotoxic stress.115

Clinical translation and therapeutic
implications of HDAC inhibitors and SIRT
activators

Altered expression of HDAC genes modulate the function
of cardiomyocytes, endothelial cells, vascular smooth
muscle cells, and macrophages in association with the tran-
scription of key genes regulating important cellular events
and cell survival in different conditions. Thus, HDACs
recently were recognized as promising potential therapies
for CVD treatment and other pathological disorders.
Pathological features of heart failure are often observed in
pathological conditions including increased stress associat-
ed with injury, genetic causes, infection, and aging, etc. In
the present, class I/II HDAC inhibitors and SIRT activators
are found to be involved in different pathways that control
heart remodeling (Figure 2).

Small molecules targeting HDACs

Small molecule HDAC inhibitors are usually designed as
structural mimics of the endogenous acetyl–lysine ligand,
which contain elements including a surface binding or cap
group, a hydrocarbon linking motif, and a zinc-binding
group (ZBG). The rationale for drug design has allowed
the small molecule inhibitors to be selectively applied for
either class I or class II HDACs.116 HDACs inhibitors can be
classified into several structural categories, including struc-
turally distinct groups: hydroxamic acids (e.g. Trichostatin
A [TSA], vorinostat, suberoylanilide hydroxamic acid
[SAHA]; short chain fatty acids (e.g. phenylbutyrate, val-
proic acid); benzamides (e.g. MGCD0103, Entinostat [MG-
275]; and cyclic peptides (e.g. depsipeptides).117,118 Some
classes of broad HDAC I and II inhibitors have recently
been shown to be protective in animal models. HDAC
inhibitors, including trichostatin A and sodium butyrate,
showed a protective effect against the hypertrophic
response in a dose-dependent manner119 in response to a
hypertrophic stimulus.120 In infarcted rats, HDAC inhibi-
tors such as valproic acid (VPA) and tributyrin suppressed
myocardial remodeling following cardiac infarction.121

TSA also preserved cardiac function and attenuated cardiac
remodeling by stimulating endogenous repair.122

Previously, we and others have found that TSA can signif-
icantly reduce myocardial infarct size in ischemia/reperfu-
sion (I/R) injury in mice and rats.123–126 For more general
information in terms of therapeutic potential for HDAC
inhibitors in the heart, we respectfully refer the reader to
these comprehensive reviews.34,127–132 Recent evidence
supports that HDAC inhibition holds promise in develop-
ing a potentially new therapeutic strategy in the treatment
of CVD. Treatment of several HDAC inhibitors were
reported to mitigate myocardial hypertrophy and improve
cardiac performance in pathological disease models.133,134

Currently, treatment with VPA attenuates inflammation,
cardiac hypertrophy, and fibrosis through acetylation of
the mineralocorticoid receptor in rats.135 The apicidin
derivative, API-D, is capable of antagonizing myocardial
hypertrophy and consequently the transition to cardiac
dysfunction in mice subjected to thoracic aortic constric-
tion.136 The class II specific HDAC inhibitor MC1568 inhib-
its HDAC4 and HDAC5 activities without affecting
HDAC3 activity in skeletal muscle and heart. Thereby, it
may might have a therapeutic potential for the treatment
of muscle and heart disease.137 It also blocks HDAC4 enzy-
matic function and induces HDAC 4 proteasomal path-
ways of degradation.138 In addition, HDAC expression
increased significantly in heart failure and ischemic
hearts, and HDAC inhibitors were found to effectively
attenuate interstitial fibrosis and inflammation as well as
ischemic injury.139–143 In addition to the beneficial effects of
small molecules to target HDACs, the genetic approach to
target HDACs also demonstrates protective effects against
pathological disorders. Experimental data have accumulat-
ed exciting observations in the review that FDA-approved
HDAC inhibitors antagonize cardiac remodeling, myocar-
dial ischemia/reperfusion, and related diseases.144–148
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Pharmacologic targeting of SIRT

Unlike class I and II HDACs, activation of a member of a
class III histone deacetylase (e.g., SIRT1 and SIRT3) abro-
gates pathological disorders associated with heart failure,
protects myocytes from hypertrophic agonist-mediated cell
death, and promotes endothelial angiogenic functions.
Resveratrol, a polyphenol phytoalexin abundantly found
in grape skin and in wine, protects cardiomyocytes from
hydrogen peroxide-induced apoptosis by activating SIRT1,
3, 4, and 7.149 SIRT1 and mitochondrial biogenesis are
known to play a key role in controlling the production of
ROS. Resveratrol-induced SIRT1 over-expression protected
cardiomyocytes from oxidative injury, mitochondrial dys-
function, and cell deaths induced by ischemia-reperfu-
sion.150 Additionally, the beneficial effects are associated
with the induction of mitochondrial genes, which include
NDUFA1, NDUFA2, NDUFA13, and Mn-SOD.151,152 They
attenuated the extent of ischemia/reperfusion injury
through an increase in peroxisome proliferator-activated
receptor gamma co-activator-1 (PGC-1) alpha and
enhanced mitochondrial biogenesis.153 Treatment of cardi-
omyocytes with resveratrol prevents oxidative stress-
derived lipid peroxidation byproduct 4-hydroxy-2-nonenal
modification of the LKB1/AMPK signaling pathway that
accelerates the progression towards heart failure.
Resveratrol mitigates pro-apoptotic signaling in the senes-
cent myocardium through deacetylation of SIRT1 in sup-
pressing the Foxo1/Bim-associated pro-apoptotic signaling
pathway.154Long-term treatment with resveratrol in mice
activates SIRT1 and improves myocardial performance of
senescent mice by attenuating Foxo1-associated pro-apo-
ptotic signaling.154 Resveratrol increases mitochondrial bio-
genesis and reduces Ang II-induced myocardial
remodeling in rats.155 Treatment of the patients with the
SIRT1 activator resveratrol rescued the senescent pheno-
type.156 Reductions in arterial SIRT1 are related to vascular
endothelial dysfunction induced by aging. The SIRT1 acti-
vator SRT1720 reduces myocardial infarction in both aged
and SIRT1(þ/�) hearts,157 ameliorating endothelial dys-
function in mice by activating COX-2 signaling and inhib-
iting oxidative stress and inflammation.158 The treatment of
mice with sildenafil, a phosphodiesterase-5 inhibitor, or
adiponectin resulted in an increase in SIRT1 activity in

themyocardium and demonstrated a protective effect, indi-
cating a causal relationship between SIRT1 activation and
cardioprotective effects.159,160 In addition, Tadalafil-treated
diabetic mice showed an improvement in myocardial func-
tion in association with increased SIRT1 activity and AMPK
in the diabetic hearts.161 Recently, statins that induced the
upregulation of SIRT resulted in acetylation/deacetylation-
dependent modification with about 100 detected proteins.
These dynamic acetylations are likely to affect protein func-
tion and are important in regulating a statin-mediated
pleiotropic effect. Therefore, targeting SIRT could be a
promising approach to develop the therapeutic strategy
to treat CVD.

Conclusions

Our review indicates that HDACs are major regulators to
control cardiac development and contribute to stem cell-
derived cardiogenesis. Second, HDACs play a critical role
in mediating myocardial hypertrophy, remodeling, and
functional recovery after cardiac damage. Finally, HDACs
are considered to be the most promising therapeutic targets
for CVD treatment and other pathological disorders.
Specific HDAC isoforms function differently in executing
their biological roles (Table 2), which require the develop-
ment of isoform specific HDAC inhibitors and activators
for translational implications.
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