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Abstract
Remodeling of extracellular matrix in the womb facilitates the dramatic morphogenesis of

maternal and placental tissues necessary to support fetal development. In addition to pro-

viding a scaffold to support tissue structure, extracellular matrix influences pregnancy out-

comes by facilitating communication between cells and their microenvironment to regulate

cellular adhesion, migration, and invasion. By reviewing the functions of extracellular matrix

during key developmental milestones, including fertilization, embryo implantation, placental

invasion, uterine growth, and labor, we illustrate the importance of extracellular matrix

during healthy pregnancy and development. We also discuss how maladaptive matrix

expression contributes to infertility and obstetric diseases such as implantation failure,

preeclampsia, placenta accreta, and preterm birth. Recently, advances in engineering the

biotic–abiotic interface have potentiated the development of microphysiological systems,

known as organs-on-chips, to represent human physiological and pathophysiological con-

ditions in vitro. These technologies may offer new opportunities to study human fertility and

provide a more granular understanding of the role of adaptive and maladaptive remodeling

of the extracellular matrix during pregnancy.
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Introduction

Before conception and throughout gestation, the womb
integrates a multitude of signals to become a receptive envi-
ronment capable of supporting embryonic growth and
development. While much attention has been given to the
role of hormones and growth factors during this transfor-
mation,1,2 cells in the womb also receive important bio-
physical and biochemical cues from their surrounding
extracellular matrix. Extracellular matrix is composed of

fibrous proteins and viscous proteoglycans that provide a
three-dimensional scaffold within which cells adhere.3,4

Once viewed as a passive substrate,5 the extracellular
matrix is now recognized as a key regulator of embryonic
development, organ growth, and disease progression.6,7

While it is well accepted that extracellular matrix regulates
cell differentiation and morphogenesis in the embryo
proper,8 the role of extracellular matrix in regulating the
structural and functional changes that occur in the womb
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and at the maternal–fetal interface is not yet fully
appreciated.

During pregnancy, extracellular matrix maintains the
structural integrity of the uterus, facilitates embryo adhe-
sion, and regulates placental invasion into the endometri-
um to form the maternal–fetal interface. To mediate these
processes, the extracellular matrix attaches to the cells via
membrane bound adhesion molecules including integrins
and selectins.9,10 Through these connections, cells sense the
physical characteristics of their microenvironment, includ-
ing substrate stiffness, pressure, shear, and stretch, and con-
vert these mechanical cues into chemical and electrical
signals that regulate cell structure and behavior.11–13

Throughout gestation, the extracellular matrix is dynami-
cally remodeled, constantly deposited and degraded to
support evolving tissue functions.14 The spatiotemporal
regulation of this remodeling is critical; if matrix molecules
in the womb are abnormally expressed, pathological con-
ditions of reproduction and pregnancy often occur.15–19 For
example, placenta accreta spectrum disorder—an obstetric
disease characterized by unrestricted placental invasion—
is thought to arise from maladaptive matrix signaling from
fibrotic scar tissue in the womb. As a result, placental over-
growth poses a great risk of maternal hemorrhage, often
necessitating surgical removal of the placenta and uterus
upon delivery.20 While this condition was once extremely
rare, placenta accreta is becoming more prevalent as the
rate of cesarean deliveries increases,21 and there are few
options for more conservative treatments.22 Thus, there is
a pressing need to better understand the interactions
between cells and extracellular matrix at the maternal–
fetal interface in the progression of healthy pregnancies to
inform efforts to treat obstetric diseases.

In this review, we argue that extracellular matrix in the
uterus and at thematernal-fetal interface is a primary deter-
minant of pregnancy outcome. To support this claim, we
review the functions of the extracellular matrix and matrix-
mediated cellular processes in the context of key milestones
that occur throughout gestation. We discuss how extracel-
lular matrix in the womb facilitates cellular adhesion and
migration and supports tissue growth mediated by
mechanical signaling. We also review extracellular matrix
composition and remodeling typical of a healthy pregnancy
and discuss cases where aberrant expression or maladap-
tation of the remodeling process results in reproductive and
obstetric complications such as implantation failure, pre-
eclampsia, placenta accreta, and preterm labor. Finally, we
discuss the recreation of native matrix in in vitro models of
the female reproductive tract to study developmental tox-
icities and to facilitate the discovery of novel treatments for
infertility and obstetric diseases.

Extracellular matrix facilitates fertilization
and implantation

Even before conception, extracellular matrix in the repro-
ductive tract lays the foundation for a successful pregnan-
cy. In mammalian ovaries, oocytes mature in follicles
surrounded by cumulus cells that produce amatrix cushion
that encapsulates and protects the egg.23 In response to an

ovulatory surge in luteinizing hormone, this cushion thick-
ens to form the zona pellucida.24 The zona pellucida is a
transparent membrane which is composed of a hyaluronic
acid and specialized glycoproteins that protects the egg
during release from the ovary and facilitates fertilization.25

If matrix molecules or their crosslinkers are disrupted or
missing from the zona pellucida, oocyte release and fertil-
ization are impaired, resulting in infertility or sterility.26–28

Matrix composition is affected by a number of factors,
including disrupted endocrine function during the men-
strual cycle and genetic abnormalities that affect matrix
protein production.29,30

A few days after an egg is fertilized, the resulting con-
ceptus must implant into the endometrium, the inner lining
of the uterus, to continue normal growth and development.
Because both embryonic and endometrial signaling path-
ways must be synchronized, the timing of implantation is
critical.31,32 If implantation occurs two or three days early
or late, the risk of spontaneous abortion or pregnancy com-
plications increases dramatically.33,34 Steroid hormones35

and other signaling molecules are coordinated during the
menstrual cycle to create a “window of receptivity”, a
period when conditions are optimal for embryo implanta-
tion. The composition of extracellular matrix in the endo-
metrium helps to define this window of receptivity (Table 1,
Figure 1(a)), which is marked by a reduction of matrix mol-
ecules that prevent adhesion and an increase in integrin
expression to facilitate attachment between the embryo
and uterine wall.36

Throughout the menstrual cycle, endometrial matrix
composition shifts in response to cycling levels of estrogen
and progesterone to balance factors that prevent or poten-
tiate embryonic adhesion.62 Before ovulation, the surface of
the endometrium is coated with anti-adhesion glycopro-
teins, such as mucin and Tenascin-C, that inhibit cell attach-
ment until secretion is suppressed or cleared by cell surface
proteases.40,63 After ovulation, the endometrium undergoes
a process known as decidualization, where endometrial
fibroblasts differentiate into secretory decidual cells that
produce extracellular matrix and secrete factors that nour-
ish the embryo.64 As steroid hormone levels increase,
decidual cells deposit matrix proteins such as laminin,
entactin, fibronectin, collagen IV, and heparan sulfate in
the glandular areas of the endometrium to promote embry-
onic attachment and invasion.42,65 Heparan sulfate, in par-
ticular, has been shown to facilitate implantation as it is
recognized by selectins found on the outer layer of the blas-
tocyst.66 Decidual cells also synthesize more collagen V,
which has high affinity for heparan sulfates and is thought
to stabilize growth factors found in the extracellular micro-
environment.67,68 Together, the reduction of anti-adhesive
glycoproteins and the synthesis of proteoglycans which
promote cell–matrix and matrix–matrix interactions help
to create a receptive and adhesive environment for
implantation.

Coinciding with the secretion of specific matrix mole-
cules during decidualization, transiently expressed integ-
rins in the endometrium also signify the window of
receptivity for implantation. In decidual cells, integrin acti-
vation potentiates cytoskeletal remodeling and focal
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adhesion assembly that stabilizes embryo apposition and
attachment to the uterine wall, which are important initial
steps in implantation.69 Evidence from animal models has
shown that implantation efficiency is impaired when cer-
tain integrins are inhibited or lacking. For example, mice
embryos lacking integrin ß1, which is required for implan-
tation, do not develop beyond the point when normal
embryos implant.70 Further, mice and rabbits that receive
an intrauterine injection of integrin aVß3 blocking antibody
have fewer successful implantations than control animals
injected with bovine serum albumin or antibodies for non-
RGD peptides.71,72 Integrins aVand ß3 are also thought to be
involved in regulating human implantation, as both integ-
rins are temporarily upregulated during decidualization
and ovulation.10

Aberrant expression of these integrins has been
observed in women with a history of infertility and endo-
metriosis, an inflammatory disease of the inner lining of the
uterus. In some cases, integrin ß3 expression is delayed,
resulting in a window of endometrial receptivity that is
not synchronized with the developmental stage of the
embryo trying to implant.10 In other cases, integrin ß3

expression is reduced in endometrial lesions, which may
contribute to the subfertility often seen in women with
endometriosis.40 Reduced sensitivity to progesterone in
endometriosis further disrupts the balance of matrix depo-
sition and degradation necessary for decidualization and
implantation.73–75 Because of their role in implantation,
integrins and adhesive extracellular matrix molecules are
potential biomarkers to improve assisted reproductive
technologies and fertility treatments. Taken together, these
observations demonstrate that extracellular matrix compo-
sition and binding site availability contribute to endometri-
al receptivity and thereby regulate embryo implantation.

Extracellular matrix guides placental invasion

After a blastocyst apposes and attaches to inner lining of
the uterus, extraembryonic cells that will form the placenta
begin to migrate into and remodel the endometrium. These
invasive cells, called extravillous trophoblasts, travel along
fibrillar matrices in uterine tissue, degrading and deposit-
ing new matrix proteins as they anchor the embryo to the
uterine wall (Figures 1(b) and 2(a) and (b)).76 In concert

Table 1. Distribution of select extracellular matrix proteins in the womb.

Matrix Location/structure Adaptive remodeling Refs

Endometrium Collagen I Interstitial fibers – 14,37

Collagen III Interstitial fibers # in decidualization 14

Collagen V Interstitial fibers " in decidualization 14

Fibrillin Decidual cells " in 1st & 2nd trimester 38

Fibulin Decidual cells # during 1st trimester 39

Elastin – – 38

Tenascin C Stroma # in secretory phase 40

Hyaluronan Stroma and vessels # in secretory phase 41

Fibronectin Basement membrane & PCM " in decidualization 42

Laminin Basement membrane & PCM " in decidualization 42

Collagen IV Basement membrane & PCM " in decidualization 42

Heparan Sulfate Basement membrane & PCM " in decidualization 42

Placenta Collagen I Stromal fibers & vessels # in 3rd trimester 43–45

Collagen III Stromal thin beaded fibers – 44

Collagen V Stromal thin filaments – 44

Fibrillin Villous stroma " in 3rd trimester 43,46

Fibulin Villous/extravillous trophoblast " 1st, 2nd,3rd trimester 47

Elastin Stroma and vessels – 43,48

Tenascin C Stroma and vessels – 43

Hyaluronan Stroma and vessels – 49

Fibronectin Stroma & basement membrane " in 3rd trimester 44

Laminin Stroma & basement membrane " in 3rd trimester 43–45

Collagen IV Stroma & basement membrane " 1st, 2nd,3rd trimester 43,44

Heparan sulfate Stroma & basement membrane 50

Myometrium Collagen I Smooth muscle cells # in 3rd trimester 51

Collagen III Smooth muscle cells & fibers " in pregnancy 51

Collagen V Smooth muscle cells – 51,52

Fibrillin Colocalized with elastin fibers " in pregnancy 53

Fibulin – – –

Elastin Outer myometrium " in pregnancy 54,55

Tenascin C Basement membrane and smooth muscle " in pregnancy 56,57

Hyaluronan Cervical tissue " at term & labor 58

Fibronectin Connective tissue & PCM " in late pregnancy 51,59

Laminin Basement membrane " in pregnancy 60

Collagen IV Basement membrane " in late pregnancy 53,59

Heparan sulfate Cervix & PCM " in labor 61

PCM: pericellular matrix.
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with decidual cells andmaternal immune cells, extravillous
trophoblasts use enzymes such as matrix metalloprotei-
nases (MMPs) to degrade the native matrix and remodel
uterine spiral arteries, ensuring sufficient blood flow from
the maternal to the fetal compartment.43,79,80 As the placen-
ta develops, it secretes hormones that further stimulate
matrix deposition and protease secretion in both placental
trophoblasts and maternal endometrial cells.81 Ultimately,
the degree of tissue remodeling and vascularization is reg-
ulated by a delicate balance of MMP expression, enzymatic
activation, and abundance of tissue inhibitors of metallo-
proteinases (TIMPs),82 which are controlled by a combina-
tion of steroid hormones as well as genetic and epigenetic
programming.83,84

The spatiotemporal regulation of integrins and MMP
expression in the placenta and endometrium is critical for
proper trophoblast invasion. In early pregnancy when the
placenta is most invasive, these extravillous trophoblasts
secrete mostly MMP-2, a gelatinase that targets collagens
and basement membrane proteins near the surface of the
endometrium.85 By the end of the first trimester, these cells
also secrete MMP-9 to degrade interstitial collagens deeper
in the uterus.86 Expression of integrins and MMPs also
varies among trophoblasts derived from different regions
of the placenta.87,88 To illustrate this differential expression,
we parsed integrin and MMP expression data from a
genome-wide transcription study of sorted trophoblast
cells isolated from first trimester placentas (Figure 2(c) to
(e)).77 Here, we see that extravillous trophoblasts express
more fibronectin-binding integrins and basement mem-
brane degrading proteases than other cell types in the

placenta, which is necessary to penetrate endometrial
basal lamina. If MMPs or their target matrix proteins are
missing or are overabundant, the placenta cannot invade
properly, resulting in obstetric syndromes that increase
risks of both maternal and fetal morbidity.18,89–91

Insufficient placental invasion is thought to contribute to
preeclampsia, an obstetric disease characterized by the
onset of hypertension, proteinuria, andmaternal inflamma-
tion after the 20th week of pregnancy.92 During preeclamp-
sia, shallow trophoblast invasion and incomplete
remodeling of the spiral arteries result in reduced placental
volume and increased blood pressure that often lead to fetal
growth restriction.93,94 Aberrant integrin and MMP expres-
sion at the maternal fetal interface are one explanation for
this restricted invasion. For example, placental cells isolat-
ed from patients with preeclampsia express lower levels of
integrins and MMPs that bind to and degrade laminin, col-
lagen, and fibronectin compared to cells from normal preg-
nancies.19,90 Genetic deficiency in MMP-9—a proteinase
that cleaves collagens that are abundant in the womb—
impairs trophoblast invasion and decidualization in mice,
producing a preeclamptic phenotype with intrauterine
growth restriction, hypertension, and proteinuria.89

Interestingly, not all matrix degrading enzymes are
reduced in preeclampsia. Patients with preeclampsia have
elevated levels of extracellular matrix metalloproteinase
inducers circulating in their bloodstream, while their pla-
centae express a broader range of MMPs, suggesting a pos-
sible compensatory mechanism to overcome insufficient
invasion and vascular remodeling.95,96 However, matrix
fragments generated by excessive proteases can cause

Figure 1. Roles of extracellular matrix in the womb. Extracellular provides structural support in the womb and mediates important cellular processes including

adhesion, migration, invasion, and mechanical signaling. (a) Extracellular matrix regulates embryonic adhesion by defining a window of receptivity for implantation.

(b) Extracellular matrix guides placental invasion and is dynamically remodeled when extravillous trophoblasts invade the endometrium. (c–d) Extracellular matrix

forms a fibrillar scaffold to reinforce tissue strength and extensibility, propagating mechanical signals that induce stretch-mediated hypertrophy and uterine contractile

activation at the onset of labor.
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inflammation by triggering additional immune cell activa-
tion and recruitment.97,98 Therefore, maladaptive protein-
ase expression and aberrant remodeling of the extracellular
matrix at the maternal–fetal interface contribute to both
insufficient invasion at the onset of preeclampsia and over-
active maternal immune response seen in the later stages of
the disease.99

Maladaptive matrix proteinase expression in the womb
is also associated with excessive trophoblast invasion as
seen in placenta accreta spectrum disorder. Instead of
adhering to and remodeling maternal tissues to connect
to the maternal circulation, these placentae penetrate the
deep muscular layers of the uterus and sometimes even
enter the abdominal cavity, resulting in a cancer-like
growth. Overly invasive placentas show increased expres-
sion of MMPs and lower levels of enzyme degradation
inhibitors.100 Specifically, extravillous trophoblasts from
patients with placenta accreta spectrum disorder retain
the highly invasive phenotype of first trimester tropho-
blasts well into the third trimester of gestation.101

Although the disease is characterized by improper tropho-
blast invasion, placenta accreta spectrum disorder is not
considered to be a disease of placental origin. On the con-
trary, risk factors for placenta accreta spectrum include past
uterine surgeries such as cesarean section and uterine
fibroid removal, suggesting disruption in maternal endo-
metrial tissue architecture is a contributing factor in the
disease.102 Disorganized and fibrotic extracellular matrix
in uterine scar tissues is weaker than that of healthy
tissue and presents points of entry for excessive invasion.103

To improve uterine tissue integrity and reduce scar forma-
tion after cesarean deliveries, matrix-based scaffolds have
emerged as an approach to facilitate wound healing in the
womb.104–106 By recapitulating the healthy matrix that sup-
ports cellular migration and integration, tissue-engineered
wound healing approaches may reduce scar formation in
the uterus after cesarean delivery, thereby ameliorating the
risk of developing placenta accreta spectrum disorder in
subsequent pregnancies. Altogether, these results empha-
size the importance of uterine matrix integrity in regulating
trophoblast invasion and underscore the potential for novel
approaches to improve scarless wound healing after cesar-
ean delivery.

Extracellular matrix remodeling during
uterine growth and labor

In the uterus, layers of smooth muscle and extracellular
matrix wrap circumferentially and longitudinally around
the uterine cavitity.107 Within these layers, the concentra-
tion and structure of extracellular matrix change through-
out pregnancy to enable dramatic growth and expansion
without increasing intrauterine pressure.54 Strikingly, the
matrix surrounding the outer layer of the uterus possesses
not only the strength to withstand forces generated during
labor but also the flexibility to expand to a volume almost
500 times its original size.107 Matrix strength derives from
elaboration by uterine cells that remodel the extracellular
fibrils that reinforce tissues (Figure 1(c)). For example,
small collagen fibrils are degraded and reassembled

Figure 2. Integrin and matrix metalloproteinase gene expression in placental cell types. (a) First trimester placental villi stained for Collagen IV and counterstained with

hematoxylin and simplified illustration (right). Arrow indicates basement membrane staining and box represents globular Col IV in extravillous column (reprinted with

permission from Oefner et al.78). (b–e) Heatmaps of alpha (panel b) and beta (panel c) integrin and matrix metalloproteinase (panel d) and tissue inhibitors of matrix

metalloproteinases (panel e) transcription levels in placental cells (RNA sequencing data were extracted from a previously published dataset77) For clarity, only genes

with more than 3.6 fragments per kilobase of transcript per million mapped reads (FPKM) in at least one cell type are included.
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within the uterus to form larger collagen bundles that
increase tissue strength.37,51,60 Thicker elastic fibers are sim-
ilarly formed by increased expression of elastin and fibrillin
to accommodate tissue strain.55 Further, basement mem-
brane proteins are upregulated near the end of term, with
increased deposition near hypertrophied muscle cells to
improve cellular integration within the tissue.59

Interestingly, this increase in extracellular matrix deposi-
tion is only temporary. Towards the end of pregnancy, the
body begins to degrade the additional matrix and soften
uterine tissue,108 thereby increasing connectivity between
uterine muscle cells to achieve synchronized contractions
for labor.109,110

The dynamic deposition and remodeling of extracellular
matrix proteins are important for maintaining a healthy
pregnancy and enabling a safe labor and delivery. If extra-
cellular matrix composition is disrupted or lacking, the
structural integrity of the uterus is impaired.111 For exam-
ple, women with Ehlers-Danlos syndrome, a family of dis-
eases that disrupts connective tissues in the body, are more
likely to experience obstetric complications including pre-
mature rupture of membranes and preterm birth.112

Pregnant patients with severe forms Ehlers-Danlos syn-
drome also face an increased risk of uterine rupture and
maternal mortality.113 The hypothesized mechanism of pre-
mature membrane rupture is a defect in collagen synthesis,
which weakens the chorionic membrane of the affected
fetus.114 Aside from genetic defects that impair collagen
synthesis, uterine integrity is also compromised in
women with who have had a previous cesarean deliv-
ery.115,116 After a cesarean section, fibrotic scar tissue with
increased but disrupted collagen at the site of the incision
leads to uterine tissue weakness that is more prone to rup-
ture in subsequent pregnancies.117–119 While cesarean scar
niche formation directly effects myometrial tissue mechan-
ical properties, including elasticity, extensibility, and
strength, the close proximity of uterine tissues with the
chorionic and amniotic membrane can influence their
mechanical properties as well.111,119 Together, these clinical
observations suggest that extracellular matrix plays an
important role in maintaining uterine integrity throughout
pregnancy and delivery.

Throughout gestation, uterine growth is mediated by a
combination of steroid hormone dynamics and mechanical
stretch. In early pregnancy, uterine myocyte hyperplasia
and matrix deposition are triggered by hormones released
by the ovaries and the nascent placenta. Specifically, both
estrogen and progesterone stimulate increased extracellu-
lar matrix production and remodeling in the womb that
increase tissue strength and extensibility.111 As pregnancy
progresses, mechanical stretch plays a more significant role
by modulating uterine response to hormonal cues and
transmitting physical signals that modulate gene expres-
sion and cellular function. Importantly, uterine stretch
caused by the growing fetus is necessary for the normal
induction of matrix protein expression.98 Even in the
absence of steroid hormones, stretch alone can induce uter-
ine growth and protein production; for example, when a
balloon was used to inflate the uterus of ovariectomized
rabbits, uterine cell mass and protein expression increased

as if the animals were pregnant.37 Mechanical stretch also
regulates uterine muscle hypertrophy that enables uterine
contractility in the later stages of pregnancy and labor
(Figure 1(d)).120,121 After first proliferating in early preg-
nancy, uterine myocytes then grow and expand by hyper-
trophy, simultaneously becoming more excitable and
contractile in preparation of labor. Importantly, these
muscle cells do not contract synchronously until active
labor begins.122 For labor to begin, the extracellular
matrix that once reinforced tissue strength must be degrad-
ed to enable electromechanical coupling between uterine
myocytes. Like extracellular matrix production, matrix
degradation is also regulated by a combination of hormonal
and mechanical signals. Injections of progesterone in the
final days of pregnancy can postpone matrix degradation
and the onset of labor in rats.59 The activity of matrix deg-
radation enzymes is also sensitive to stretch,123 further con-
tributing to the mechanosensitive matrix remodeling and
tissue softening that is necessary for labor to begin.

Due to its regulation of labor onset in normal pregnan-
cies, mechanical signaling has been investigated as a poten-
tial cause of preterm labor and preterm birth. Preterm
birth—or delivery that occurs before 37weeks gestation—
affects between 5% and 18% of pregnancies and is the lead-
ing cause of infant mortality and morbidity.85,124 Of these
preterm deliveries, approximately two-thirds are due to
preterm labor and premature rupture of fetal membranes,
and one-third represent medical interventions to treat pre-
eclampsia or fetal growth restriction.125 Mechanical signal-
ing and maladaptive remodeling of extracellular matrix in
the myometrium or fetal membranes contribute to certain
cases of spontaneous preterm labor. For example, twin or
multiple gestation pregnancies are more likely to result in
preterm birth, in part because the uterus stretches and
remodels more rapidly than in singleton pregnancies.126–128

Pregnant patients with a history of endometriosis also face
increased risk of premature rupture of membranes or pre-
term birth.129 Just as reduced progesterone sensitivity in
early pregnancy impairs decidualization and implantation,
aberrant expression of MMPs and TIMPs near term can
cause precocious softening of the cervix and amnion.111

Further, uterine collagenase and elastase expression in
both term and preterm labor are also upregulated in
response to stretch and can induce contraction of uterine
smooth muscle cells necessary for labor.110 In sum, matrix
degrading enzymes are critical for the completion of
normal labor and represent possible pharmacological tar-
gets for preventing or postponing preterm labor.

Recapitulating the maternal–fetal interface
in vitro

While extracellular matrix performs key roles in pregnancy,
it remains difficult to fully elucidate how matrix aberra-
tions lead to obstetric disease and how to correct them
to improve pregnancy outcomes. Difficulties stem from
the limitations of clinical trials in pregnant women and
species variation in reproductive anatomy and gestation
in animal models.130 Further, the multivariate interactions
that influence extracellular matrix remodeling, including
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hormonal and immune signaling, are difficult to control
and manipulate in vivo. Therefore, there is a need for
alternative approaches to study the contributions of extra-
cellular matrix remodeling in healthy and pathological
pregnancies.

Addressing the limitations of in vivo experiments, com-
plex reproductive tissue structures have already been gen-
erated from stems cells and primary cell cultures in vitro.
For example, human endometrial and decidual cells have
been used to model maternal tissues (Figure 3(a)),131 while
cytotrophoblast aggregates have been used to recapitulate
placental development (Figure 3(b)).77,132 While in vitro fer-
tilization has enabled the study of early embryogenesis for
many years,133,134 later stages of embryonic development
have recently been modeled in vitro by combining mouse
embryonic and trophoblast stem cells (Figure 3(c)).135 Thus
far, these organoid models have relied on tissue self-
assembly within undefined mixtures of animal-derived
matrices.

In conjunction with advances in stem cell biology, micro-
physiological systems, or organs on chips,136–140 have
emerged as human tissue models with the potential to con-
trol and study cell–cell and cell–matrix interactions.141–146

When applied to the female reproductive tract,147 endome-
trial,148 placental,151 and fetal membrane149 models have
provided insight into reproductive diseases,150 prenatal
drug safety,152 and basic developmental biology.132

Featuring multiple cell types and continuous perfusion,
these systems can quantify cellular migration, invasion,
and barrier function in response to dynamic stimuli
(Figure 3(d) and (e)).151,153–156

By recreating aspects of native extracellular matrix,
microphysiological systems are ideal for probing the con-
tributions of matrix cues on cellular behavior at the mater-
nal–fetal interface.157–159 Using native tissue composition as
a guide,160 experiments in microphysiological systems have
demonstrated that matrix proteins including fibronectin,
laminin, and collagen regulate placental and amniotic
cell adhesion, morphology, differentiation, and func-
tion.159,161,162 In addition to structural proteins, matrix-
binding and matrix-degrading proteins can be spatially
and temporally controlled in vitro to study their effects on
cell migration, invasion, and hormone secretion.163–165

Beyond protein composition, matrix stiffness can also be
tuned,166 allowing co-culture of endometrial epithelial
and stromal cells that require different local

Figure 3. In vitro models of the maternal–fetal interface and embryogenesis. (a) Primary endometrial cells suspended in matrigel self-organize into organoids in

chemically defined medium (adapted from Turco et al.131). (b) Human trophoblast stem cells form three-dimensional syncytiotrophoblasts aggregates that produced

human chorionic gonadotropin (CGB) and syndecan-1 (SDC) a trophoblast marker (adapted from Okae et al.77). (c) Mouse embryonic stem cells and extra-embryonic

trophoblast stem cells create embryo-like structures in three-dimensional matrigel scaffolds (adapted from Harrison et al.135). (d) Microphysiological model of the

placental barrier composed of trophoblasts and endothelial cells on a fibronectin-coated membrane, stained with E-cadherin and VE-cadherin, respectively (adapted

from Blundell et al.151). (e) Microfluidic model of trophoblast invasion, with primary extravillous trophoblasts (EVTs) embedded in Matrigel between two channels that

create a chemokine gradient (adapted from Abbas et al.153 under Creative Commons CC BY 4.0).

O’Connor et al. The role of extracellular matrix in normal and pathological pregnancy 1169
...............................................................................................................................................................



microenvironments,167 and generation of three dimension-
al models to study endometrial vascularization and tropho-
blast invasion.168 These studies demonstrate that
microphysiological systems can be used prior to in vivo
testing to elucidate the functions of extracellular matrix at
the maternal–fetal interface.

Even with advances in stem cells and tissue engineering,
microphysiological systems of the maternal–fetal interface
have yet to realize their full potential to advance reproduc-
tive medicine. To realize this potential, microphysiological
systems should incorporate and continue to study the
effects of extracellular cues at the maternal–fetal interface.
To inform and improve the design and accuracy of these
systems, structural and mechanical properties of the womb
microenvironment should also be further characterized
throughout development and disease.169 As microphysio-
logical systems move towards exclusively human tissues
and matrix, minimum essential elements of the extracellu-
lar microenvironment should be identified to balance
precision with scalability for clinical applications. By engi-
neering the biotic–abiotic interface of stem cell-derived tis-
sues to match their native counterparts, microphysiological
systems of the maternal–fetal interface will provide a plat-
form for personalized reproductive medicine.

Conclusions

The extracellular matrix coordinates cellular differentiation
and morphogenesis in the womb. Though often over-
looked, maladaptive extracellular matrix composition and
remodeling in womb are contributing factors for obstetric
complications that threaten both maternal and fetal health.
To close the gap in our understanding and appreciation of
the role of extracellular matrix in pregnancy, we propose to
use microphysiological systems to further probe the rela-
tionship betweenmaternal and fetal cells and their physical
microenvironment. By incorporating physiologically rele-
vant cues from the extracellular matrix, these in vitro
models can be used to improve reproductive technologies
and identify therapeutic interventions for obstetric dis-
eases. We envision the knowledge gained from these sys-
tems can be used to engineer more receptive environments
for assisted reproduction, to develop wound dressings to
scarlessly heal surgical incisions, and to better predict pre-
natal drug safety, thereby improving women’s reproduc-
tive health.
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