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Abstract
Hypoxia or low oxygen concentration in tumor microenvironment has widespread effects

ranging from altered angiogenesis and lymphangiogenesis, tumor metabolism, growth, and

therapeutic resistance in different cancer types. A large number of these effects are medi-

ated by the transcription factor hypoxia inducible factor 1⍺ (HIF-1⍺) which is activated by

hypoxia. HIF1⍺ induces glycolytic genes and reduces mitochondrial respiration rate in hyp-

oxic tumoral regions through modulation of various cells in tumor microenvironment like

cancer-associated fibroblasts. Immune evasion driven by HIF-1⍺ further contributes to

enhanced survival of cancer cells. By altering drug target expression, metabolic regulation,

and oxygen consumption, hypoxia leads to enhanced growth and survival of cancer cells.

Tumor cells in hypoxic conditions thus attain aggressive phenotypes and become resistant

to chemo- and radio- therapies resulting in higher mortality. While a number of new thera-

peutic strategies have succeeded in targeting hypoxia, a significant improvement of these

needs a more detailed understanding of the various effects and molecular mechanisms

regulated by hypoxia and its effects on modulation of the tumor vasculature. This review

focuses on the chief hypoxia-driven molecular mechanisms and their impact on therapeutic

resistance in tumors that drive an aggressive phenotype.
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Introduction

Physiological oxygen concentration in tissues or normoxia
is hampered during cancer progression that gives rise to a
low oxygen concentration in the TME known as hypoxia.
The specific oxygen concentration during tumor develop-
ment differs depending on the tumor tissue type and is on
average 1–2% or even less.1 Hypoxia can arise due to an
abnormal rate of cell division, development of solid tumor
masses that disrupt blood vessels from penetrating and
hence a resulting drop in oxygen diffusion.2 Intratumoral
hypoxia is characterized by formation of irregular vascular
networks and regions within the solid tumor that have
areas of low oxygen.3 Hypoxia can be classified as acute

hypoxia where cells are exposed to low oxygen concentra-
tion for a brief period of a fewminutes and chronic hypoxia
typically seen in large tumors where low oxygen concen-
trations are prolonged in TME.4 Acute as well as chronic
hypoxia can lead to a number of cellular changes that ulti-
mately contribute to metastasis and tumor-associated che-
moresistance or radioresistance.5 These changes range from
a metabolic shift towards glycolysis for faster ATP synthe-
sis, induction of anti-apoptotic and pro-tumorigenic signal-
ing pathways, and decreased drug penetration. In addition
to chronic and acute, a third kind of hypoxia known as
intermittent or cycling hypoxia has also been seen in certain
regions of different solid tumors.6 Cyclic hypoxia,
defined by periodic sequence of hypoxia and

Impact statement
Hypoxia contributes to tumor aggressive-

ness and promotes growth of many solid

tumors that are often resistant to conven-

tional therapies. In order to achieve suc-

cessful therapeutic strategies targeting

different cancer types, it is necessary to

understand the molecular mechanisms

and signaling pathways that are induced by

hypoxia. Aberrant tumor vasculature and

alterations in cellular metabolism and drug

resistance due to hypoxia further confound

this problem. This review focuses on the

implications of hypoxia in an inflammatory

TME and its impact on the signaling and

metabolic pathways regulating growth and

progression of cancer, along with changes

in lymphangiogenic and angiogenic

mechanisms. Finally, the overarching role

of hypoxia in mediating therapeutic resis-

tance in cancers is discussed.

ISSN 1535-3702 Experimental Biology and Medicine 2020; 245: 1073–1086

Copyright ! 2020 by the Society for Experimental Biology and Medicine

https://orcid.org/0000-0002-0724-5444
https://orcid.org/0000-0002-7614-3265
https://orcid.org/0000-0002-4869-3198
mailto:schakraborty@tamu.edu


reoxygenation, (H-R cycles) is involved in upregulating
angiogenesis, metastasis, immune evasion, and increased
resistance to therapy in cancer.6 The differing ramifications
of a hypoxic TME on the growth, spread, and therapeutic
resistance of cancer cells are profound and make under-
standing the different facets crucial.7 This review aims to
summarize the role of hypoxia in shaping cancer progres-
sion and therapeutic tolerance focusing on specific regulat-
ed signaling pathways and drug resistance mechanisms.

Hypoxia and cancer progression: Role of
hypoxia inducible factor

The various components of the TME such as cancer-
associated fibroblasts (CAFs), stromal cells, lymphatic and
blood vessels, and immune cells undergo pro-tumorigenic
adaptation predominantly mediated by hypoxia inducible
factor (HIF) when exposed to hypoxia. HIF proteins are a
family of transcription factors that consist of oxygen sensi-
tive members such as HIF-1, HIF-2, and HIF-3 of which
HIF-1⍺ is the most widely characterized and studied.2

The HIF-1 andHIF-2 primarily play a role as transcriptional
activators and hence have both unique and overlapping
target genes, while the function of HIF-3 is a little less clear-
ly understood.8 The transcriptional complex of HIF-1 con-
sisting of HIF-1ß and HIF-1⍺ is constitutively synthesized
in normoxic conditions.5 HIF-1⍺ under normoxia is
hydroxylated at proline residues 402 and 577 and marked
for ubiquitination by a prolyl hydroxylases (PHDs).
Subsequently, HIF-1⍺ interacts with the tumor suppressor
von Hippel Lindau protein (pVHL) and finally is degraded
by 26S proteasome. Under hypoxia, the activity of PHDs
which require O2 as a cofactor is reduced and HIF-1⍺ is
stabilized in the cytoplasm. Mitochondrial O2 sensors also
stabilize HIF-1⍺ by increasing the production of mitochon-
drial reactive oxygen species (mtROS) which helps in HIF-
1⍺ nuclear translocation. Post nuclear translocation HIF-1⍺
forms a heterodimer with aryl hydrocarbon nuclear recep-
tor (ARNT) and transactivates genes which have hypoxia
responsive elements (HREs) in their promoter and enhanc-
er regions. HIF2⍺ acts in a similar manner and shares over-
all 48% amino acid identity.9 Low O2 conditions or hypoxia
stabilize HIF-1⍺ by taking advantage of the low availability
of O2, an essential PHD substrate needed for PHD-
mediated hydroxylation.10,11

HIF switch in hypoxia

Cancer cells shift their dependence between HIF1⍺ and
HIF2⍺ based on the level of oxygen concentration available
to them. While HIF2⍺ is more stable at higher oxygen con-
centration and is active in chronic hypoxia, stable and
higher levels of HIF1⍺ are observed during acute hypox-
ia.12,13 These differences in stabilization patterns arise
partly from the ease of hydroxylating HIF2⍺ by PHD and
asparagynyl hydroxylases (FIH-1) during acutely low
oxygen levels.14 Multiple studies point to the temporal reg-
ulation of HIF1⍺ or HIF2⍺ levels during hypoxia. This
switch from HIF-1 to HIF-2 and HIF-3 signaling is required
in order to adapt the endothelium to prolonged hypoxia.8

HIF1⍺ levels are usually highest at 4–8 h after onset of hyp-
oxia after which they decrease and diminish at 18–24 h,
while HIF2⍺ levels stabilize much later around 24–72 h of
hypoxia.13,15–17 In addition to the ease of hydroxylation of
HIF1⍺, ubiquitination by heat shock protein (HSP)-70 com-
plex and ensuing degradation under chronic hypoxia takes
place exclusively with HIF1⍺.18,19 miR-429 has been seen to
regulate the switch from HIF1⍺ to HIF3⍺ during chronic
hypoxia in endothelial cells indicating a potential involve-
ment of a variety of cell type-specific molecular factors that
govern hypoxia-mediated effects.20

Cyclic hypoxia and its impact on HIFs

Cyclic or intermittent hypoxia has recently come under
increasing scrutiny because of the high levels of HIF1⍺
found in cancer cells during periodic hypoxia.21,22 Stable
and enhanced HIF1⍺ levels of cyclic hypoxia have been
attributed to multiple mechanisms such as the post-
translational modification of HIF1⍺ or high phosphorylated
HIF1⍺ levels during intermittent hypoxia takes place possi-
bly through PKA activation in HAMEC-1 and EAhy926
endothelial cells. This heightened level of HIF1⍺ also leads
to increased migration and angiogenesis by endothelial
cells.15,21,23 The effects of cyclic hypoxia in induction of
angiogenesis andmigration become important while consid-
ering therapeutic resistance of cancer cells. Verduzco et al.24

have shown that exposure to intermittent hypoxia leads to
cancer cells having low levels of p53 and E-cadherin and led
to increased survival, metastasis, and drug resistance to eto-
poside. The genes induced by HIFs activate signaling cas-
cades ultimately contributing towards cancer growth,
angiogenesis, lymphangiogenesis, metastasis, and resistance
to therapeutic intervention.1,9,25–27 Signaling pathways regu-
lated by HIF-1⍺ and consequently hypoxia can be distin-
guished under the following major areas:

Role of HIF-1⍺ in mitochondrial biogenesis

HIF-1⍺ preferentially shifts dependence of cellular metabo-
lism frommitochondrial respiration to glycolysis. As shown
in Figure 1, HIF⍺ proteins play a major role in mitochondrial
biogenesis by regulating expression of peroxisome
proliferator-activated receptor gamma coactivator 1-alpha
(PGC 1⍺), that is activated by PGC1b, in turn activated by
pro-oncogenic transcription factor MYC.28,29 Activated HIF-
1⍺ induces MYC-associated factor X(MAX)-interacting pro-
tein 1 (MAXI1) expression that represses MYC activity by
binding to MYC target genes’ (such as PGC1⍺/b) promoter
sites. Additionally, Forkhead-box protein O3a (FOXO3a),
activated by hypoxia transmits this inhibitory effect of
HIF-1⍺ on MYC by reducing MYC structural stability and
upregulating expression of miRNA which interferes with
MYC translation.29,30 In cells expressing HIF-2⍺ an opposite
effect of hypoxia on MYC activity is observed, HIF2⍺ binds
and stabilizes MAX-MYC heterodimer needed to exert
downstream effects of MYC. The consequence of HIF2⍺ reg-
ulation is thus the pro-tumorigenic regulation of cell cycle
proteins.31,32 However, the inhibitory effect on PGC1⍺/b
and in extension on mitochondrial biogenesis is primarily
mediated by HIF-1⍺. Hypoxia drives reactive oxygen
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species (ROS) production in cancer cells which triggers anti-
oxidant enzyme activity through PGC1⍺/b expression that
ultimately contributes to cancer cell survival by ROS
removal.33

Role of HIF-1⍺ in cellular metabolism

Apart from the role of HIF⍺ proteins in controlling mito-
chondrial biogenesis, the principal role of hypoxia during
tumorigenesis and cancer progression is regulation of cel-
lular metabolism. HIF-1⍺ activates transcription of key gly-
colytic genes such as glucose transporter1 (GLUT1),
GLUT3, phosphoglycerate kinase 1 (PGK), and hexokinase
(HK)-1/2. Additionally, lactate dehydrogenase A (LDHA)
responsible for NADþ replenishment andmonocarboxylate
transporter 4 (MCT4), the transporter responsible for lac-
tate efflux, are also induced by HIF-1⍺. This HIF-1⍺-medi-
ated regulation of glycolytic genes ultimately results in a
shift towards dependence of cancer cell metabolism on gly-
colysis.34,35 In addition to inducing glycolytic gene expres-
sion, HIF-1⍺ also reduces the rate of mitochondrial
respiration in hypoxic cancer cells. Pyruvate

dehydrogenase, a critical enzyme belonging to the pyru-
vate dehydrogenase complex (PDC) converts pyruvate to
acetyl-CoA that then enters tricarboxylic acid cycle (TCA
cycle) in mitochondria. Pyruvate dehydrogenase kinase 1
(PDK1) phosphorylates and inactivates pyruvate dehydro-
genase and as a result pyruvate is unavailable for mito-
chondrial respiration. PDK1 is induced by HIF-1⍺ with
the net effect of cancer cells utilizing glycolytic ATP. An
additional advantage of reducing mitochondrial depen-
dence is the generation of lower levels of mtROS.36,37 It
has been shown that HIF-1⍺ also reduces mtROS by induc-
ing two proteins: LONP1, a protease that degrades cyto-
chrome c oxidase subunit 4 isoform 1 (COX 4–1) and
COX4-2, a more efficient form of COX4-1.38 These studies
show that hypoxia increases glycolysis and reduces mito-
chondrial respiration and ROS production in tumor cells.

Impact of hypoxia on the tumor
microenvironment

Tumor cells along with the local non-malignant cells con-
stitute the TME. It has been well understood now that the

Figure 1. Hypoxia-mediated mechanisms of mitochondrial biogenesis in tumor cell. Hypoxia activates FOXO3a gene transcription which in turn destabilizes structural

integrity of Myc; ROS production is upregulated under hypoxia which stimulates PGC1⍺/b enzymatic activity that ultimately removes ROS thus facilitating cancer cell

survival; Hypoxia also activates MAXI1 which interacts with PGC1⍺/b and inhibits mitochondrial biogenesis by PGC1⍺/b. In cancer cells that express HIF2⍺, the
MAXI1/MYC dimer is stabilized that leads to higher mitochondrial biogenesis. FOXO3a: Forkhead box protein O3; ROS: reactive oxygen species; HIF1/2⍺: hypoxia

inducible factor 1/2⍺; MYC: myelocytomatosis gene; PGC1⍺/b: peroxisome proliferator-activated receptor gamma coactivator 1-alpha/beta; MAXI1: myc-asso-

ciated factor X interactor 1.

Roy et al. Impact of hypoxia in tumor progression and therapeutics 1075
...............................................................................................................................................................



interactions of the neighboring stromal cells in the micro-
environment are critical for the progression of tumor cells.
The TME is primarily comprised of the chemical microen-
vironment that includes the pH, nitric oxide, and metabo-
lites (like glucose) and the cellular microenvironment that
involves tumor cells, stromal cells, and the extracellular
matrix (ECM).7 Here, we mainly focus on the influence of
hypoxia on stromal cells and ECM and their effects on
tumor progression. One of the major cells that constitute
the TME are the CAFs.39 CAFs are spindle shaped cells
that are actively involved in secreting ECM proteins and
are abundantly present in connective tissues.40 During
cancer development, majority of CAFs are derived from a
mesoderm-derived precursor cell. However, CAFs also
originate from trans-differentiation of pericytes, from endo-
thelial cells through endothelial-mesenchymal transition,
and from epithelial cells by epithelial-mesenchymal transi-
tions.41 CAFs have also been derived from normal fibro-
blasts during chemotherapy as a result of the created
hypoxic environment.42 CAFs in the TME are large spindle
shaped cells that express a-smooth muscle actin and are
stiffer than normal fibroblasts.2,43. However, there are addi-
tional biomarkers like vimentin (VIM), fibroblast activation
protein (FAP), and fibroblast-specific protein-1 (FSP-1) that
are used to identify CAFs.44,45 Hypoxia is one of the main
driver events that alters the functioning of CAFs in TME
and defines its role in tumor progression. CAFs affect both
tumor development and progression in various ways both
by directly regulating tumor growth factors, EMT mecha-
nisms, and chemokines. Hypoxic conditions increase the
expression of the angiogenic factors angiopoietin and vas-
cular endothelial growth factor (VEGF) in CAFs as well as
regulate the expression of the chemokine CXCL3 in activat-
ed myofibroblasts.25 However, CAFs also provide critical
metabolites and undergo metabolic reprogramming to sup-
port glycolysis.46,47 HIF-1a also mediates metabolic reprog-
raming in CAFs by upregulating the expression of MCT4
and subsequently downregulating caveolin-1 in order to
supply energy to the growing tumor cells.48 Tumor cells
switch their metabolic state between glycolysis and oxida-
tive phosphorylation through metabolic interplay with
CAFs, and exhibit the Warburg effect under hypoxia and
reverse Warburg effect under normoxia.49 This metabolic
interplay is critical as it further promotes tumor growth
and metastasis.49 Tumor cell-derived ROS decreases the
expression of caveolin-1 in CAFs which further stabilizes
HIF-1a.50,51 This metabolic symbiosis however does not
occur equally in all tumor types and accounts for tumor
heterogeneity in the same tumor and thus significantly
affects therapeutic strategies and chemoresistance.51

Another major player in TME regulation is the ECM,
that maintains cell dynamics and regulates the cellular
microenvironment.52 It has been observed that during the
initial stages of cancer development, CAFs and other stro-
mal cells secrete factors that modify ECM composition and
dynamics.53 The altered ECM then maintains the behavior
of stromal cells, thereby influencing the development and
maintenance of TME.52 Hypoxia affects ECM through fibro-
sis, regulating collagen deposition and by mediating ECM
degradation.54 HIF-1a-mediated fibrosis enhances cell

invasion and migration by increased ECM deposition.55–57

In adipose tissue, kidney, and liver cells, it has been
observed that HIF-1a also influences ECM remodeling.57–59

ECM stiffness is regulated by hypoxia-mediated collagen
deposition. Specifically, HIFs regulate prolyl 4-hydroxylase
subunit alpha (P4HA) and procollagen-lysine 2-oxygluta-
rate 5-dioxygenase (PLOD) enzyme family genes which
play a vital role in collagen synthesis.59 P4HA2 plays a
role in breast cancer progression and enhanced expression
of PLOD2 by HIF-1a in primary tumors is implicated in
sarcoma metastasis and increased mortality in breast can-
cers.60–62 PLOD2 also promotes alignment of cancer cells
along collagen fibers which in turn enhances invasion
and metastasis to lungs and lymph nodes.63 Apart from
P4HA and PLOD genes, HIF also influences collagen depo-
sition through upregulation of lysyl oxidase (LOX)
enzymes that regulate collagen crosslinking in the ECM.64

HIF-increased LOX expression has been associated with
breast and head and neck cancer metastasis.65 LOX expres-
sion inhibits E-cadherin and promotes epithelial-
mesenchymal transition (EMT), which drives invasion
and metastasis.66 Finally, hypoxia regulates ECM by pro-
moting ECM degradation via expression of matrix metal-
loproteinases like MMP2, MMP9, and MMP15 and thus
significantly influences the tumor microenvironment.2

Hypoxia-mediated regulation of cancer
immune evasion

Hypoxia can also negatively regulate the antitumor
immune responses in cancer and some of the key mecha-
nisms by which it mediates immune evasion in cancers are
illustrated in Figure 2. Among the target genes whose
expression is regulated by HIF-1⍺ is Cluster of differentia-
tion 47 (CD47). CD47, a membrane protein is responsible
for regulating a number of cellular responses such as cell
migration, T cell activation, cytokine secretion, and metas-
tasis.67 Zhang et al. showed that breast cancer cells were
protected from bone marrow-derived macrophage-mediat-
ed phagocytosis by expressing a stem cell phenotype. They
also showed that HIF-1⍺ activates CD47 transcription in
these breast cancer cells.68 CD47 controls immune evasion
through CD47-signal regulatory protein⍺ (SIRP⍺) axis
where SIRP⍺ is expressed on TAMs (tumor-associated mac-
rophages) and myeloid-derived suppressor cells
(MDSCs).69,70 Hypoxia has been shown to stimulate
VEGF secretion by M2 macrophages in the TME.71 TAMs
residing in hypoxic areas of TME, achieve a M2-inducing
phenotype through increased secretion of molecules like
TGFb.72 Hypoxic tumor microenvironment has been
shown to promote anti-tumor immunity through increased
expression of the master regulator of T regulatory cell dif-
ferentiation, FoxP3.73 Increased number of T regulatory
cells in the tumor microenvironment suppresses CD8þ T
cell-mediated cytotoxic killing of tumor cells.74

Programmed death ligand 1 (PDL1) expressed on the sur-
face of cancer cells binds to its receptor PD1 on the surface
of CD8þ T cells and inactivates CD8þ T cell antitumor
response. HIF-1⍺-mediated PDL1 expression was recorded
on tumor cells, dendritic cells, as well as macrophages.75,76
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Hypoxia, in addition to having direct effects on the surviv-
al, differentiation, and activation of key immune effectors
also activates an immune metabolism modulating mole-
cule, adenosine. A hypoxic TME upregulates the expres-
sion of CD39, an ectonucleoside triphosphate
dihydrophosphohydrolase (ENTPD1) which converts
ATP/ADP to AMP and CD73 a 50-ectonucleotidase that
finally converts AMP into adenosine.77,78 Moreover, hypox-
ia induces increased expression of the cognate receptor of
adenosine, A2A adenosine receptor (A2AR).79 Notably, the
adenosine-A2AR binding causes T cell apoptosis, negative-
ly affects T cell activation and effector responses.80 Thus,
hypoxia negatively regulates anti-tumor immune
responses by facilitating immune evasion and promoting
T cell apoptosis through adenosine production.

Hypoxia and lymphangiogenesis

It has been very clearly demonstrated that lymphatic ves-
sels play a critical role in promoting tumor progression and
metastasis. Expression of lymphangiogenic growth factor,
VEGF-C, high lymphatic vessel density, and high incidence
of lymphatic invasion have been associated with metastasis
and reduced survival in cancer patients.81–84 However, the
impact of a low oxygen environment on the lymphatic vas-
culature and effect on cancer metastasis has not been clear-
ly elucidated although multiple pathways have been
implicated in hypoxia-mediated regulation of the
lymphatic-cancer crosstalk.85–87 Tumor-induced

lymphangiogenesis is promoted by secretion of growth fac-
tors such as VEGF-C, VEGF-D, PDGF-B, IGF1 and -2, FGF2,
HGF, and other mediators such as angiopoietin-2, sphingo-
sine-1- phosphate, adrenomedullin, and IL-7 by the cancer
cells and other cells within the TME.85,88–90 Hypoxia has
been shown to favor the processes of lymphangiogenesis
and metastasis of cancer cells via lymphatic vessels pre-
dominantly through activation of HIF-1-a.91 HIF-1a regu-
lates the expression of growth factors, tumor-promoting
pathways and cytokines that are involved in lymphatic
endothelial cell (LEC) proliferation, migration, and subse-
quent lymph node metastasis.86 HIF-1a levels are shown to
correlate with the expression of VEGF-C and peritumoral
lymphangiogenesis in breast cancer.87 Further, HIF-1⍺
expression also correlates with increased VEGF-C and lym-
phatic vessel density in biopsies from oral squamous cell
carcinoma patients.92 Interestingly, in contrast, Schito et al.
have shown that in MDA-MB-231 breast cancer cells, hyp-
oxia decreased the mRNA levels of VEGF-D and did not
increase the VEGF-C levels. However, it was shown that
hypoxia induces LEC proliferation and migration via
HIF-1⍺!PDGF-B!PDGFRb signaling.93 HIF-1a expressed
during tumor hypoxia influences peritumoral lymphangio-
genesis.87 Hypoxia increases apelin expression in cancer
cells.94 The apelin/APJ pathway has been implicated in
progression of lymphangiogenesis and lymph node metas-
tasis.95 Hypoxia also increases expression of the b1 integrin
subunit, PI3K/Akt and mTOR pathways, mechanisms that
have been widely implicated in promoting

Figure 2. Hypoxia-driven tumor immune evasion pathways. Hypoxia induces CD73 and CD39 gene expression in cancer cell. CD39 converts ATP/ADP to AMP and

CD73 converts AMP to adenosine which leads to T cell apoptosis. Under hypoxia, HIF1⍺ translocates to the nucleus in the tumor cell and induces expression of CD47.

CD47 then engages with SIRP⍺ on TAMs and inhibits TAM-based tumor phagocytosis. Under hypoxia, cancer cells also express PDL1 which binds to PD1 on CD8þ T

cell leading to CD8þ T cell apoptosis. In a hypoxic TME, induced FoxP3 expression leads to T regulatory cell proliferation that then inhibits cytotoxic T cell death. TME:

tumor microenvironment; Treg cell: T regulatory cell; FoxP3: forkhead box protein P3; TAMs: tumor-associated macrophages; SIRP⍺: signal regulatory protein

alpha; CD47: cluster of differentiation 47; CD73: cluster of differentiation 73; CD39: cluster of differentiation 39; PD1: programmed death 1(receptor); PDL1:

programmed death ligand 1; HIF1⍺: hypoxia inducible factor 1⍺; CD8 T cell: cluster of differentiation 8 expressing T cell. Figure was created with Biorender.com.
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lymphangiogenesis and lymph node metastasis.81

Inhibition of mTOR with rapamycin reduces lymphangio-
genesis in primary tumors and prevents spread of cancer
cells to the cervical lymph nodes.98 Hypoxia activates tran-
scription factors, activator-protein-1 (AP-1), and Prox-1 that
are closely associated with the lymphatic vasculature.97

AP-1 activation co-operates with HIF-1a for upregulation
of VEGF gene expression in hypoxic conditions.96 AP-1-
inducible genes are triggered in LECs due to hypoxia,
including ET-1, MMP9, and c-jun.97 The AP-1 complex
exemplifies a network of transcription factors that coordi-
nately function in lymphangiogenesis and promote tumor
development and progression.96,97 The expression of Prox-
1, a transcription factor essential for embryonic lymphan-
giogenesis, is increased under hypoxia or induction of
HIF-1a. Importantly, both Prox-1 and NFjB activate the
VEGFR-3 promoter in LECs, that enhances the responsive-
ness of LECs to VEGFR-3 ligands VEGF-C and VEGF-D,
ultimately resulting in robust lymphangiogenesis.25 The
ET-1/ETBR signaling, that activates HIF-1a, induces LEC
proliferation and branching morphogenesis concomitantly
with activation of p42/44 mitogen-activated protein kin-
ases (MAPK) and Akt pathways. HIF-1a silencing desensi-
tizes VEGF-A and VEGF-C production in response to ET-1
or hypoxia, implicating HIF-1a/VEGF as downstream sig-
naling molecules of ET-1 axis.46 The ET-1/ETBR axis and
hypoxia may thus act through a HIF-1a-dependent mecha-
nism to promote lymphangiogenesis via VEGF family
members. Hypoxia has been shown to directly promote
the attraction and adhesion of cancer cells to the lymphatic
endothelium by inducing CXCR4 levels in cancer cells and
its ligand CXCL12 in LECs.51 Further, hypoxia induces
NOTCH signaling that downregulates VEGFR2 in LECs
and decreases migration of lymphatic vessels which
might be critical for maintaining the balance between lym-
phangiogenesis and angiogenesis.53

Hypoxia and targeting angiogenesis for
cancer therapy

Tumors require nutrients and oxygen from the surrounding
tissue to survive. After reaching a certain size,99 enlarging
tumors must obtain their own blood supply to meet
increasing metabolic needs. When tumors become hypoxic
and continue to grow, HIFs secrete various factors that
influence angiogenesis.100 One of the major angiogenic
genes regulated by HIF-1a is the VEGF, a primary regulator
of angiogenesis1,100 and highly induced in several can-
cers.1,101 Hypoxic stabilization of HIFa results in expression
of angiogenic factors like nitric oxide synthase, adrenome-
dullin, and interleukin 8.102–104 Suppression of HIF-1a in
endothelial cells alters NO levels, suppresses tumor cell
migration, and inhibits tumor metastasis. But loss of HIF-
2awas observed to have the opposite effect.46 Hypoxia also
influences angiogenesis by altering the fiber morphology in
the ECM.105 As discussed above, tumors secrete proangio-
genic factors, VEGF, basic fibroblast growth factor (bFGF),
and placental growth factor (PIGF), that activates neighbor-
ing endothelial cells and induces proliferation and migra-
tion toward the tumor mass.106 As tumor angiogenesis

serves as a rate limiting step to continued growth, it has
emerged as a promising potential therapeutic target.107

Several drugs targeting VEGF or its receptors have been
developed and approved for cancer therapy. While there
are some clinical examples of success using anti-
angiogenesis drugs in combination with chemotherapeu-
tics,108 the use of anti-angiogenic drugs as a monotherapy
has not significantly improved patient survival rates.109–110

After treatment, the tumor can upregulate other angiogenic
stimulators, such as bFGF, PlGF, TGFb, and angiopoietins,
circumventing the loss of VEGF signaling.112–114 This
acquired resistance is possibly a response to the increase
in tumor hypoxia induced by the anti-angiogenic therapy,
that affects multiple cellular signaling pathways promoting
tumor progression, invasiveness, and metastasis.112,115–117

Further, the ineffectiveness of the combination therapy
may be attributed to the architecture of the tumor vascula-
ture. The tumor vessels are highly tortuous and heteroge-
neous, with thin-walled, leaky large vessels, devoid of
pericyte coverage, and irregularly branched smaller vessels
that connect randomly. As a result, oxygen distribution to
the tumor cells through these irregular blood vessels causes
hypoxic regions within tumor cells. These tumor cells,
while adapting to the hypoxic microenvironment, become
more aggressive and attain therapeutically resistant tumor
phenotypes.118 Endothelial cells associated with the tumor
in many cases have lost polarity, detached from the base-
ment membrane, and contain wide junctions, causing the
vessels to be leaky.119–122 Because the vascular endothelial
cells no longer serve as a functional barrier, tumor vessels
enable transendothelial tumor cell migration.120 The irreg-
ular vessels and loss of pericyte coverage cause
non-uniform blood flow within the tumor which further
prevents uniform delivery and uptake of co-administered
chemotherapeutic agents and impedes immune cell infil-
tration.122 Additionally, tumor hypoxia caused by anti-
angiogenic therapies can hinder the efficacy of irradiation
and chemotherapies that function through the formation of
ROS to kill tumor cells.123,124 As the tumor vasculature
serves as an impediment to the efficacy of chemotherapy,
improving vessel function through increasing and normal-
izing blood flow throughout the tumor, enhancing pericyte
coverage, and decreasing vessel permeability, can improve
chemotherapeutic delivery throughout the tumor. Further,
by reducing tumor hypoxia, clinicians can prevent devel-
opment of a more aggressive andmetastatic phenotype and
enhance radiation therapy.123,125 Intriguingly, anti-
angiogenic drugs, such as bevacizumab, when used at
low doses can normalize the tumor vasculature. The vessels
become less tortuous with improved blood perfusion,
decreased interstitial pressure, and increased tumor oxy-
genation, preventing tumor cell diapedesis due to
enhanced endothelial cell barrier function.123,125–130 In
additional studies, tumors implanted in mice heterozygous
for PHD2, which acts as an oxygen sensor to promote the
HIF-driven hypoxic response, showed increased perfusion
and oxygenation. PHD2 haplodeficiency promoted tumor
vessel maturity and normalization and prevented tumor
cell invasion, diapedesis, andmetastasis.120 These data sup-
port that normalization of the tumor vasculature through
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modulation of HIF-mediated signaling is likely to benefit
treatment of solid tumors.

Hypoxia and tumor therapy outcome

The role of drug resistance in cancer metastasis

Resistance of cancer cells to chemotherapy/radiotherapy
can be broadly divided into two classes: intrinsic and
acquired resistance. Factors conferring resistance to tumor
cells prior to therapy result in development of intrinsic
drug resistance, while acquired resistance refers to the
development of resistance in cancer cells during the
course of drug administration/treatment. Both of these
resistance modes give rise to a population of tumor cells
that do not respond to chemotherapeutic treatments and
continue to proliferate rendering treatment ineffective.131

A number of factors described below results in drug resis-
tance of cancer cells:

Drug efflux pathways are well-recognized to confer drug
resistance in various cancers. Three most extensively
studied members of the well-known ATP-binding cassette
(ABC) transporter family that regulates the bulk of the che-
motherapeutic efflux across the plasma membrane are
related to multi-drug resistance (MDR). These three pro-
teins are, MD1(aka P-glycoprotein/ABCB1), MRP1(MDR-
associated protein 1/ABCC1), and BCRP (breast cancer
resistance protein/ABCG2). These three proteins play crit-
ical roles in eliminating a broad range of widely used che-
motherapeutic agents. MDR1 overexpression (both before
and after chemotherapy) is associated with intrinsic as well
as acquired drug resistance in hepatic and renal cancers
along with leukemia and lymphoma.132,133 MDR1 is
found to be highly expressed on the surface of epithelial
cells forming the lining of excretory organs like colon, renal
proximal tubules, bile ductules, etc. compared to other tis-
sues under normal conditions which highlights the role of
MDR1 in drug excretion.134,135 Similarly, BCRP has been
correlated with drug resistance in breast cancer and leuke-
mia.136,137 The role of ABC transporter overexpression in
cancer cells is further underlined by the finding that
cancer stem cells also show high MDR transporter overex-
pression levels, particularly for BCRP.138

Hypoxia is thus a critical element of the TME contribut-
ing to drug resistance. A number of reasons such as low
drug bioavailability in hypoxic tumors, HIF-1⍺-mediated
MDR1 overexpression and decreased expression of drug
targets such as topoisomerase II have been reported to be
responsible for hypoxia-mediated therapeutic resistance in
cancer.139

Hypoxia and tumor chemoresistance

The most prominent player in hypoxia-induced chemore-
sistance is HIF-1⍺ gene identified through a number of
studies where poor patient prognosis has been correlated
with HIF-1⍺ overexpression in a variety of cancer types
such as neuroblastoma and non-small-cell lung cancer
(NSCLC).5 A number of HIF-1⍺ regulated genes such as
Bcl-2, Glut-1, VEGF, and MDR1 induces

chemoresistance.140 Thus, HIF-1⍺ inhibition-based
treatment regimens have been shown to rescue hypoxia-
mediated chemoresistance.141 In neuroblastoma, hypoxia-
mediated chemoresistance is seen for drugs such as doxo-
rubicin, cisplatin, etoposide, etc.,142 while head and neck
squamous cancer and gastric cancer acquire resistance
towards cisplatin, 5-fluorouracil.143,144 Different mecha-
nisms have been identified by which this chemoresistance
is induced, including upregulation of P-glycoprotein
expression, downregulation of topoisomerase, blockade of
apoptosis, induction of autophagy, and upregulation of
telomerase.

Induction of P-glycoprotein expression. Under hypoxic
conditions, HIF-1⍺ binds to the promoter of MDR1 gene
and induces overexpression of membrane transporter P-
gp that then mediates chemoresistance. P-gp is an impor-
tant efflux transporter belonging to ABC family of trans-
porters which transports hydrophobic/amphiphilic drugs
out of the cell when overexpressed in chemoresistant cells
thus causing increased cell proliferation.26 A large number
of chemotherapeutic drugs have been identified as sub-
strates of P-gp all of whom are amphiphilic in
nature.134,145 Since low solubility of P-gp substrates has
been identified, treatment strategies such as the usage of
liposome nanoparticle mediated drug delivery have been
suggested to prevent P-gp-mediated drug efflux and
increase intracellular drug availability.146

Altered drug target expression. Resistance to known
topoisomerase II inhibitors such as etoposide has been
observed in breast cancer cells as a response to hypoxia in
the TME. Such resistance is believed to be caused by HIF-
1⍺-mediated low nuclear levels of topo II⍺.147

Hypoxia-mediated anti-apoptosis. Mitochondria-based
cell apoptosis through Bcl family proteins Bax and Bad
are direct targets of hypoxia-mediated microRNA, miR-
26a overexpression. In a study published in 2018, miR26a
overexpression by HIF-1⍺ in hypoxic conditions was iden-
tified which was inversely related to Bax and Bad expres-
sion leading to resistance to the drug temozolamide.148

Autophagy induction and metabolic regulation. HIF-1⍺
caused protective autophagy in cancer cells exposed to fen-
retinide leading to drug resistance by HeLa cells. Inhibition
of HIF-1⍺ led to enhanced cancer cell death by fenreti-
nide.149 Colorectal cancer cells with high ATP levels were
found to be resistant to 5-fluorouracil and oxaliplatin which
points to the metabolic regulation by HIF-1⍺. HIF-1⍺ is
known to upregulate PDK1 protein which reduces mito-
chondrial respiration by phosphorylating and inactivating
pyruvate dehydrogenase (PDH). As a result of this, hypoxic
cancer cells become dependent on glycolysis as a fast and
cheap source of ATP which is thus produced in high
levels.27 Inhibiting glycolysis in colorectal cancer cells
resensitized them to 5-fluoruracil and cisplatin treatment.37
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Upregulation of telomerase. A number of studies have
shown that HIF-1⍺ causes upregulation of telomerase
gene expression by binding to telomerase promoter site
and by causing alternative splicing. As a result of this,
active telomerase variants are produced and cancer cells
are protected from replicative senescence that is also
believed to play a role in ultimate cancer cell
chemoresistance.150

In addition, a number of factors other than HIF-1⍺ have
been identified to cause hypoxia-based chemoresistance.
Such evidence has come from studies demonstrating that
inhibiting HIF-1⍺ only partially reverses chemoresist-
ance.151 Overexpression of anti-apoptotic members of
Bcl-2 family and IAP3 in response to hypoxia is one such
example of HIF-1⍺-independent chemoresistance in cancer
cells.152 This has been clearly demonstrated in studies with
different tumor cells, where blocking the activity of HIF-1⍺
did not affect the increased apoptotic susceptibility of the
tumors subjected to hypoxia.152 In addition, nuclear factor
kappa-B (NFjB), cyclooxygenase-2 (COX2), STAT3, etc.
when inhibited also decrease chemoresistance in hypoxic
cancer cells.153

Hypoxia and tumor radioresistance

Radiotherapy kills cancer by producing ROS that induces
DNA damage in recipient cells. Hypoxia plays a major role
and contributes almost three times to radioresistance com-
pared to other factors. This is because the presence of
oxygen is critical for radiotherapy-induced generation of
ROS. As one of the most electronegative elements inside
cells, oxygen respond to ionizing radiation by accepting
free radicals generated due to radiotherapy.154 These free
radicals further induce DNA damage by strand breaks and
kill cancer cells. Under hypoxia, as cancer cells are deprived
of oxygen, free radicals generated from DNA under radio-
therapy undergo reduction by molecules containing sulf-
hydryl (SH) groups that lead to DNA repair.154 The ability
of oxygen to bolster radiotherapy-induced DNA damage is
popularly known as oxygen fixation hypothesis.155

Hypoxic status in cancer types such as cervix carcinoma,
sarcoma, head and neck cancer has emerged to be a major
prognostic factor for poor radiotherapy results.155–157

Radiotherapy treatment under hypoxia has shown a
number of mechanisms through which ROS adaptation
by cancer cells takes place. At the helm of most of these

Figure 3. Hypoxia-associated tumor microenvironment of a cancer cell and related effects: Hypoxia causes nuclear translocation of HIF-1⍺ which binds at various

sites in the DNA and upregulates expression of MDR1, VEGF, NO, etc. PI3K/Akt/ERK signaling is activated, drug availability of topoisomerase II is reduced, intracellular

ATP levels are upregulated due to high rate of glycolysis. CXCR4 and CXCL12 expression is upregulated in presence of hypoxic conditions from both cancer cell and

LECs. Tortuous abnormal blood vessel growth further contributes to the alterations in the TME under hypoxia. High efflux transporter (P-gp, MRP1, BCRP) expression

leads to drug efflux from cancer cell. Figure was created with Biorender.com.
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mechanisms is HIF-1⍺. HIF-1⍺ transcriptionally activates
antioxidant gene expression as well as ROS efflux.35,158

Hypoxia can also cause increase in ROS during its initial
phase (ischemia) which instead of inducing cell death acts a
signaling molecules for HIF-1⍺ stabilization.159 This hyp-
oxic ROS-based HIF-1⍺ activity takes place through PI3K/
AKT pathway activation and ERK phosphorylation that
ultimately increases HIF-1⍺ expression.160,161 A number
of strategies have been implemented to re-sensitize radio-
resistant hypoxic tumor cells to radiotherapy by using drug
therapy which are briefly summarized as follows:

NO donors. NO homeostasis is critical to prevent hypoxia-
mediated therapeutic resistance by cancer cells. Low intra-
cellular NO levels destabilize HIF-1⍺ during hypoxia due
to which a number of NO donors such as sodium nitroprus-
side,162 nitroglycerin,163 insulin,164 spermin nonoate165

have sensitized hypoxic cancer cells to radiotherapy.

Enzymatic inhibition. Drugs such as diethylmaleate,166

diethylfumarate167 (both deplete glutathione which is an
antioxidant for ROS), auranofin (inhibits thioredoxin
reductase activity),168 auranofinþButhionine sulphoxi-
mine (thioredoxin reductase inhibition and glutathione
depletion)169 that inhibit the activity of antioxidant
enzymes radiosensitize the hypoxic cancer cells by increas-
ing the availability of ROS inside the hypoxic cancer cells.

Metabolic inhibitors. Inhibiting tumor cell metabolism by
agents such as dichloroacetate (glycolytic inhibitor),170 rito-
navir (glucose transporter inhibitor)171 that target the met-
abolic mechanisms regulated by hypoxic conditions, has
been shown to be a potent radiosensitizing technique.

Regulation of oxygen consumption. Drugs like metfor-
min that inhibits mitochondrial complex I as well as gluco-
corticoids has been shown to decrease oxygen consumption
thus increasing oxygen availability for radiotherapy in
cancer cells under hypoxia.172,173

HIF-1⍺ inhibition. Since HIF-1⍺ is the master regulator for
mediating hypoxia-related effects, a number of radiosensi-
tizing agents inhibiting HIF-1⍺ expression, translation and
downstream activation have been developed such as ator-
vastatin,174 berberine, YC-1 (degrades HIF-1⍺ in addition to
inhibiting HIF-1⍺ translation).175 Gold nanoparticles aug-
menting ROS production by electron donation have also
been shown to be effective in radiosensitization in a variety
of tumor types.176

Conclusion and future directions

Hypoxia is the key regulator for chemo-/radio resistance in
different cancer types that account for increased cancer
morbidity. As depicted in Figure 3, a variety of mechanisms
both HIF-1 and HIF-2 dependent and independent are
adopted by hypoxic cancer cells as a means to bypass ther-
apy and account for tumor heterogeneity that promotes
survival in unfavorable conditions. The metabolic interplay
between tumor cells and components of a hypoxic TME

coupled with activation of lymphangiogenic and angiogen-
ic mechanisms further complicates the response to specific
clinical interventions. Thus, the need to identify new drug
targets of a hypoxic TME as well as studies combining drug
therapy with radiotherapy are needed to better understand
and directly target mechanisms contributing to therapeutic
resistance of cancer cells. In addition, the specific signaling
pathways that are regulated by HIF-1⍺ can be studied to
identify prognostic factors under hypoxia which will help
to identify radiotherapeutic outcomes. Homeostasis and
not a mere absence/presence of molecular species such as
NO and ROS have emerged to be important in shaping
cellular response to therapy. Thus, in conjunction with
identifying and targeting specifically overexpressed down-
stream targets of HIF-1⍺ targeting antioxidant enzyme pro-
duction, decreasing oxygen demand, reducing ATP
availability by inhibiting glycolysis have emerged to some
of the more novel strategies for combating hypoxia-
mediated therapeutic resistance. In summary, understand-
ing key mechanisms of hypoxia-based cancer cell growth
and progression along with novel therapeutic strategies is
required to ameliorate the pro-tumorigenic effects of
hypoxia.
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