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Abstract
The occurrence of hypoxia is common in many solid tumors, and it enhances aggressive

features of cancer such as cell survival, angiogenesis, and metastasis while minimizing the

efficacies of chemotherapy and radiotherapy. Hypoxia also plays a pivotal role in regulating

immune cell function which is important for immunotherapy. Hypoxia-inducible factor has

been suggested as a master regulator of tumor cell adaptation to the hypoxic microenvi-

ronment. Currently, several approaches have been proposed to eliminate the hypoxic state

in tumors for delaying cancer progression and improving therapeutic efficacy. In this review,

we summarize current findings on the relevance of hyperoxia-based therapeutics for cancer

treatment. Accumulating evidence indicates that hyperoxic therapy inhibits tumor growth

and increases treatment efficacy. Primary antitumor effect of hyperoxic therapy may be due

to the reversal of tumor hypoxia and the generation of reactive oxygen species. Restoring

immune function is also suggested as a potential mechanism. Hyperoxic therapy can also

cause cellular injury and organ dysfunction. In conclusion, overcoming tumor hypoxia is a major problem that needs to be solved.

Further studies to standardize and personalize hyperoxia therapy according to the type of cancer, stage, and comorbidities are

needed.
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Introduction

Oxygen is an indispensable element for cells in our body
to fulfill energy requirement from aerobic metabolism.
Therefore, reduced oxygen levels, hypoxia, may produce
cell death and resulting organ dysfunction as occurs
in heart attacks or strokes. Hypoxia commonly arises
in the core of most solid tumors as a result of an
inadequate supply of oxygen from abnormal vasculature,
and an increased oxygen demand from changes in
tumor metabolism.1 Severity of tumor hypoxia varies
depending on tissue of origin and tumor size, and
median oxygen levels in untreated tumors are frequently
less than 2% in comparison to the normal human tissues
(5%).2,3 The hypoxic regions within the tumor are hetero-
geneously distributed and may even located near to
vessels.4

Traditionally, hypoxia was thought of as a factor limiting
the cancer growth by reducing the ability of cells to divide.5

However, increasing evidence indicates that tumor hypoxia
plays an important role in cancer progression. When tumor
cells adapt to the imbalance between oxygen supply and
demand, malignant features of solid tumors such as resis-
tance to cell death, angiogenesis, and metastasis were
invariably enhanced.6,7 Emerging features of cancer devel-
opment such as genome instability, the enrichment of
cancer stem cells, and aberrant exosomal secretion were
also suggested as hallmarks of tumor hypoxia.8–10

Overall, hypoxic microenvironment in tumor promotes
acquisition of the more aggressive cancer phenotypes and
thus is associated with poor prognosis.11,12 In addition,
tumor hypoxia has been considered as one of the biggest
barriers to treating cancer because it renders tumors more
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resistant to surgery, radiotherapy, chemotherapy, and
immunotherapy.13–16 In this regard, it is widely accepted
that hypoxia is a potential cancer-specific target,11,17 and
several approaches targeting tumor hypoxia for cancer
therapy such as erythropoietin, nicotinamide, hypoxia-
activated prodrugs, and nanocarriers have been
proposed.14,18

Numerous studies also suggest increasing oxygen con-
tent using hyperoxia as a promising therapeutic modality
to reverse tumor hypoxia as well as resistance to cancer
therapeutics.5,19–21 Recently, we also identified anti-cancer
effect of hyperoxia and its mechanism of action in mouse
lung cancer.22,23 However, despite of growing interest and
clinical trials, the application of hyperoxia to cancer treat-
ment is still in its nascent stage. Here, we will focus on the
recent insights into the understanding of hyperoxia-
mediated cancer treatment.

Hyperoxic therapy in cancer

Oxygen therapy is a type of treatment to enhance the
amount of dissolved oxygen in the plasma by breathing
supplemental oxygen, thereby increasing O2 delivery to
body tissue. For hyperoxygenation, 100% oxygen is admin-
istered to a patient either at ambient atmospheric pressure
(normobaric oxygen, NBO) or under hyperbaric conditions
usually in a pressurized chamber (hyperbaric oxygen,
HBO). Oxygen therapy has long been regarded as integral
to the management of various medical conditions for cen-
turies. For cancer treatment, there is still no evidence that it
is effective in treating cancer.24 However, despite ongoing
controversy, interest in applying hyperoxic therapy as adju-
vant for cancer treatment is rapidly growing. For example,
in Pubmed search concerning oxygen therapy and cancer,
since the first article in 1951,25 more than 20,000 were
found. A brief summary of hyperoxic therapies on cancer
is listed in Table 1.

In addition to oxygen breathing, although relatively
uncommon, other forms of oxygen therapy such as
oxygen-containing substances (i.e. ozone or hydrogen per-
oxide), and prodrugs that are activated only in the hypoxic
tumor environment also have been tried for cancer treat-
ment.32–34

Hyperbaric oxygen therapy

HBO treatment is breathing 100% oxygen at higher atmo-
spheric pressure usually between 1.5 and 3 atm which
enable the lungs to receive more oxygen up to three times
than under normal air pressure, resulting in immediate sat-
uration of plasma with oxygen. In normal subject, com-
pared to normobaric air, HBO at 3 atm increases both
arterial (from 100 to 2000mmHg) and tissue (from 55 to
500mmHg) oxygen tensions (PO2).

35 Similarly, the PO2

level was significantly increased in tumor tissue by HBO
exposure, demonstrating three to four times greater hyper-
oxygenation effect in tumor tissue than NBO.36,37

Therefore, HBO rather than NBO has been preferentially
used to eliminate poorly oxygenated regions of tumor
which play a major role in tumor development and

resistance to other therapeutic modalities. In addition,
HBO therapy is considered safe and well tolerated, and
side effects are rare.38 Although several studies showed
the favorable outcomes of HBO by itself in cancer treat-
ment,5,28,39 HBO alone gives a limited curative effects,
and it even enhances tumor growth.19,40 Accordingly,
HBO is preferentially used as an adjuvant treatment for
enhancing tumor sensitivity and decreasing complications
of other therapies.34

Normobaric oxygen therapy

NBO therapy is a routine adjuvant oxygenation interven-
tion supplied by nasal cannula or facemask under ambient
pressure. For cancer treatment, NBO is an attractive alter-
native to HBO due to its ease of administration and lower
complication in actual clinical practice.41 However, when
compared to HBO, effect of NBO on arterial and tissue oxy-
genation is much weaker. Arterial PO2 in aorta has
increased only 4-fold after exposure to NBO (345 vs.
84.1mmHg).42 In animal study, most of tumors were
nearly anoxic (PO2 <1mmHg), but NBO immediately
increased PO2 (mean >25mmHg) and remained elevated
during gas exposure.43 Accordingly, NBO treatment signif-
icantly retarded tumor growth.39,44 We also previously
showed the NBO inhibits lung cancer in in vivo and in
vitro through reactive oxygen species (ROS) generation
and apoptosis.23

Molecular mechanisms: Hypoxia-inducible
factor 1a

Hypoxia

When oxygen levels in tumor microenvironment are drop-
ping, transcriptional induction of a series of genes neces-
sary for maintaining cell survival/proliferation and
promoting more aggressive features occurs in tumor cells.
These oxygen-dependent responses are tightly regulated
by HIF-1a, the master transcriptional regulator of the hyp-
oxic response as well as a representative endogenous bio-
marker for hypoxia.45HIF-1a is induced by hypoxia
through post-translational modification, and it binds to
specific recognition sequences in the genome to increase
the expression of HIF-1a target genes.46 Since the seminal
discovery of HIF in the early 1990s by Gregg Semenza, a
Nobel Laureate in Physiology or Medicine for 2019,47 thou-
sands of genes are identified as direct targets of HIF-1a,48

and therefore a myriad of changes associated with tumor
aggravation occur in hypoxic tumor cells including angio-
genesis and oxygen supply, stemness/self-renewal, prolif-
eration, epithelial to mesenchymal transition, metastasis
and invasion, redox homoestasis, anti-apoptosis, and met-
abolic reprogramming.49,50 Metabolic reprogramming from
oxidative phosphorylation to accelerated glycolysis in
cancer cells is also known to be mediated via HIF-1a.51 In
addition, HIF-1a contributes to the development of tumor
resistance to therapeutic approaches and serves as a prom-
ising biomarker.52,53 For example, HIF-1a limits T cell rec-
ognition of tumor cells by downregulating MHC class I
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molecule expression.54 It also induces multidrug resistance,
the major cause of chemotherapy failure, by inducing mul-
tidrug resistance-associated protein 1 in cancer cells.55

Accordingly, in cancer patients, protein levels of HIF-1a
in solid tumors are considered as a critical prognostic
factor.56 Based on these findings, HIF-1a has become targets
for developing novel cancer therapeutics. However, no
agents directly inhibiting HIF-1a have been approved for
treating cancer patients.57

Hyperoxia

Many reports suggest various beneficial effects of hyper-
oxia on hypoxic tumor. Hyperoxic breathing of 60% O2

recovers oxygen homeostasis in tumor microenvironment
hypoxia to normoxia, inhibits survival/proliferation, stem-
ness, and immune escape of cancer cells, resensitizes che-
moresistance, leading to tumor regression.29,58,59 We also
reported anti-cancer effects of hyperoxia, alone or in com-
bination with a chemotherapeutic drug carboplatin, on
mouse lung cancer; normobaric hyperoxia significantly
induces oxidative stress and apoptosis in tumor tissue
and reduces tumor mass and migration/invasion.22,23

Differential response of cancer and normal cells to hyper-
oxia has also provided a treatment rationale of hyperoxia in
cancer treatment. Basal antioxidant defense levels are aber-
rant in tumor cells, thus an increased oxidative stress has
been observed. Since the superoxide dismutase activity in
most tumors are lower than normal tissue, tumor cells
show higher susceptibility to increased ROS activity
induced by hyperoxia.60 Synthesis of glutathione (GSH),
an antioxidant preventing ROS-induced damage, increases
proportional to ambient oxygen tension, but not in cancer
cells.61 In consistent with these findings, we demonstrated
that NBO showed anti-tumor activity in lung tumor cells
but not in normal lung cells.23 In addition, hyperoxia is
angiogenic in normal tissues, but anti-angiogenic in
tumor tissues.62

Anti-cancer mechanisms of hyperoxia can also be
inferred indirectly from clinical and experimental findings.
Roles of HIF-1a in hypoxia-mediated cancer development
are widely acknowledged, and hyperoxic treatment has
long been used to cure clinical disorders such as hypoxia
or ischemic diseases by increasing oxygen delivery to
oxygen-deficient tissues. We can also take a hint from
well-known mechanisms for the induction and regulation
of HIF-1a: HIF-1a protein is subject to degradation through
an oxygen-dependent ubiquitination,63 and hypoxia-
induced HIF-1a protein is rapidly decayed within 5min
upon exposure to normoxia (20% O2).

64 In addition, tran-
scriptional activity of HIF-1a is enhanced by hypoxia-
induced ROS,65 and inhibited by oxygen in nonhypoxic
cells.66 Taken these findings together, it seems reasonable
that therapeutic effects of hyperoxia on hypoxic tumor are
mediated through not direct regulation of HIF-1a but pri-
marily the reversal of hypoxia and the attenuation of the
HIF-mediated effects.

However, despite of accumulating evidence supporting
this idea, many reports also indicate HIF-1a–independent

effects of hyperoxia on tumor. For example, both normoxia
and hyperoxia induces higher levels of HIF-1a than hypox-
ia in tumors, but tumor grows faster in hypoxia group,
suggesting that signaling pathways other than HIF-1a
driven response may play important roles for in vivo
cancer cell proliferation.67 Recent report also showed that
HIF-1a levels in tumor cells was significantly downregu-
lated in hyperoxia (60% O2) than normoxia (20% O2), indi-
cating that alternative mechanisms other than simple
reversal of tumor hypoxia to normoxia underlie anti-
tumor effects of hyperoxia.59 Coincidentally, Rocco et al.68

suggest that relative changes of oxygen availability
rather than steady state hypoxic or hyperoxic conditions
play an important role in HIF transcriptional effects. In
addition, hyperoxia activates HIF-1a overexpression
through the activation of Src oncogene, and also inhibits
the stability of HIF-1a by reducing ROS formation.65,69,70

Despite numerous attempts, mechanisms underlying
hyperoxia-mediated anti-cancer activity remain to be
elucidated.

Side effects

Hyperoxic therapy is usually well tolerated with an accept-
able rate of complications; however, as with all medical
treatments, it also includes medical risks. Dependent on
the type of hyperoxic therapy, patients may experience
two prominent side effects due to exposure to high levels
of oxygen (oxygen toxicity) or high atmospheric pressure
(barotrauma). As shown above, PO2 used in HBO therapy
is much higher than that of NBO, thus oxygen toxicity is
more common in patients exposed to HBO. In addition,
only HBO therapy is carried out in a hyperbaric chamber,
thus barotrauma occurs only in patients taking HBO
therapy.

Oxygen toxicity

Exposure to high concentration of oxygen is well known
cause of cell damage. For example, oxygen, at concentra-
tions of 95% or more, is severely cytotoxic to the pulmonary
cells of many animal species, including humans.71 Humans
appear more resistant to oxygen-induced damage and the
risk of hyperoxic acute lung injury is minimal when the
FiO2 is � 0.672 but continuous exposure to elevated levels
of oxygen may cause oxygen toxicity. Major organs subject
to oxygen toxicity are lungs (hyperoxic acute lung injury),
central nervous system (loss of consciousness and oxygen
toxicity seizure), and eye (hyperoxic myopia and cata-
ract).73–75 Oxygen toxicity is believed to be mediated pri-
marily by a production of ROS at levels exceeding the
capacity of antioxidant defence mechanisms.76 Following
HBO treatment, ROS increased to about 2.14–2.44 fold in
mitochondria and 1.32–1.42 fold in whole cell.77 Reduction
of antioxidant enzymes such as superoxide dismutase and
glutathione by HBO, but not by NBO, also contributes to
increased oxygen toxicity.78 Excessive ROS can damage all
essential macromolecules, including nucleic acids, lipids
and proteins, leading to an overall progressive decline in
physiological function.79 For example, protein oxidation
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and nitrosylation can impair a wide variety of enzymatic
processes and growth factors that can result in marked cel-
lular dysfunction.80 Lipid peroxidation activates apoptosis
through activation of sphingomyelinase and release of cer-
amide.81 Nucleic acid oxidation has been linked with aging
and DNA strand breaks, leading to necrosis and/or apo-
ptosis.82 Therefore, HBO-driven ROS can display many
harmful activities including the induction of DNA
damage, cell death, cellular senescence, and deleterious
inflammatory response which in turn exacerbates oxidative
toxicity and tissue damage.83,84 Several mechanisms
involved in hyperoxia-induced oxygen toxicity have been
proposed. For example, ROS stimulates signaling pathways
mediated via protein kinases (Akt, MAPK and PKC),
resulting in activation of transcription factors (Nrf2,
NF-jB, and AP-1) responsible for cell death and inflamma-
tion.85 In addition, ROS-independent mechanisms such as
the induction of apoptosis by direct activation of Bax, Bak,
or FAS,86 chemokine receptor CXCR2-mediated tissue
inflammation,87 and toll-like receptor-linked cell dam-
ages88 also have been suggested.

Barotrauma and other complications

In HBO therapy, unlike to NBO, patients are exposed to the
high atmospheric pressure in hyperbaric chamber.
Barotrauma, pressure-induced injury, is caused by inability
to equalize pressure between the environment and the air-
filled space in the body such as lungs, ear, sinuses, eyes,
and teeth are concurrently at risk. The most common type
of barotrauma (>17%) is middle ear barotrauma which can
lead to permanent hearing loss and vertigo.89

Some patients can develop a feeling of claustrophobia,
the fear of being enclosed in small spaces with no escape,
due to the confined nature of hyperbaric chamber. HBO
therapy also causes mild increase in blood pressure in
both hypertensive and non-hypertensive patients, and
hypoglycemia can occur in diabetic patients.90 In addition,
NBO increases pulmonary metastasis of tumor91 and inhib-
its glucose-induced insulin release.92

Because hyperoxia, unlike hypoxia, is a man-made con-
dition, specific adaptive response to hyperoxia has not been
evolved in humans. To enhance safety and to prevent side-
effects of HBO therapy in cancer treatment as well as other
clinical trials, further investigation to maximize therapeutic
efficacy andminimize complications by standardizing ther-
apy protocol in particular with regard to pressure and
duration is required.

Role of hyperoxia treatment in chemotherapy

Hypoxia reduces the sensitivity of cancer to chemothera-
py.6 In addition, hypoxic cells do not receive sufficient che-
motherapeutic agents due to distance from the capillary
and because of abnormal vascularization of tumors.
Hypoxia remotes resistance through the HIF-1-mediated
upregulation of different genes and signaling pathways.93

Hypoxia-induced drug resistance is also explained by inhi-
bition of apoptotic pathways23,94 and increased intracellu-
lar drug efflux.95 Currently, respiratory hyperoxia is mainly

used for the treatment of hypoxic tissue damage. Also,
hyperoxia has also been shown to improve the treatment
efficacy of chemotherapy in animal models.20,22,26 From our
previous study, NBO therapy was found to be tumoricidal
and NBO with carboplatin exhibited a synergistic antitu-
mor effect on B[a]P-induced lung cancers in mice.22,23

Oxidative stress and its effects on DNA are increased fol-
lowing exposure to hyperoxia and even more with chemo-
therapy, and this may lead to apoptosis of lung tumors. Lee
et al.30 showed that NBO treatment resensitizes chemore-
sistant glioblastoma cells to temozolomide through unfold-
ed protein response.

Other studies were mostly performed under HBO treat-
ment. Moen et al.26 showed that HBO treatment increases
the uptake of 5-fluorouracil in mammary tumors for the
duration of, and immediately after, HBO treatment.
Kawasoe et al.27 showed significant suppression of osteo-
sarcoma with HBO plus carboplatin compared with mono-
therapy, both in in vitro and in vivo. Other studies also
showed increased efficacy against variety of malignancies
with combination of HBO and chemotherapy.28,96,97

However, precise mechanisms are not known until now
and more standard combination treatment protocols are
needed. In addition, a combination of HBO treatment and
particular chemotherapeutic agents (doxorubicin, bleomy-
cin, and disulfiram) may cause potential toxicity98

because it can potentiate oxygen-related serious organ
damage.99–101 However, studies showing conflicting results
also exist.102,103

Role of hyperoxic treatment in radiation therapy

The primary mechanism of radiation therapy is creation of
ROS, which in turn induces cell death by the mechanisms
including apoptosis, necrosis, autophagy, and senes-
cence.104 In hypoxic state, DNA radicals are repaired by
abstracting hydrogen from sulfhydryl group present in
protein.1 Since oxygen is required for ROS generation, hyp-
oxic tumors are resistant to the cytotoxic effects of radio-
therapy.105 HIF-1 plays a role in radioresistance of a tumor
by up-regulating downstream genes, which are involved in
apoptosis, metabolism, proliferation, and neovasculariza-
tion.106 In general, cells irradiated under normal oxygenat-
ed conditions are two- to three-fold more radiosensitive
than cells irradiated under hypoxic or anoxic condi-
tions.107,108 Several human studies reported significant
improvement of survival and local tumor control in
patients with cancer treated with radiotherapy and
HBO.109–111 However, other studies suggest a high rate of
complications from combination of HBO and radiotherapy,
including severe tissue radiation injury and seizures.34,110

Concerning this matter, beneficial effects of NBO on tumor
radiosensitivity have been also reported.112,113 In addition,
both the extent and the timing of this hyperoxic therapy are
variable. From systematic reviews in patients with high
grade gliomas, radiation therapy after HBO treatment
was tolerated and beneficial.111
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Role of hyperoxic treatment in immunotherapy

Oxygen tension directly affects immune cell function, and
thus hypoxia can cause immunosuppression and/or
immune dysfunction.114 It is widely appreciated that hyp-
oxic tumor microenvironment negatively affects anti-tumor
immune responses, and also is responsible for resistance to
immunotherapy.16,115 Many mechanisms underlying
hypoxia-induced immunomodulation in cancer have been
suggested.116 Extracellular adenosine, a potent immuno-
suppressive metabolite, is increased in hypoxic conditions,
and controlled by two cell surface nucleotidases; CD39 and
CD73 in tumors,117,118 providing evidence that the
adenosine-dependent immunoregulation is important for
hypoxia-mediated immunosuppression. TGF-b, a potent
immunosuppressive cytokine, is upregulated in tumor
cells after culturing in hypoxic conditions.119 Hypoxia
also increases the accumulation of intracellular adenosine
by HIF-1a-dependent mechanism, resulting in the elevation
of extracellular adenosine independent of CD39/
CD73.120,121 Programmed cell death-1 (PD-1) and pro-
grammed death-ligand 1 (PD-L1), important players in
immune checkpoint pathways, are also regulated oxygen-
dependently in the tumor microenvironment. Hypoxia
increases PD-L1 expression which induces cancer cell resis-
tance to T-cell dependent cytotoxicity.122,123Exposure to
adenosine or the activation of its receptors in T cells also
downregulates T cell activities by inducing PD-1 and cyto-
toxic T-lymphocyte-associated protein-4 (CTLA-4) expres-
sion.124,125 Activities of myeloid-derived suppressor cells
(MDSCs), typical immunosuppressive cells in the tumor
microenvironment, are also regulated by hypoxia and
extracellular adenosine.126,127

Based on these findings, hyperoxia therapy has been
attempted to restore hypoxia-induced impairment of
immune function in cancer cells, in particular by downre-
gulation of immune checkpoint pathways.31 In mice, 60%
oxygen efficiently reduced tumor burden only in wild-type
mice, but not in immunocompromised mice, indicating the
involvement of immune response in anti-tumor activities of
hyperoxia.31 Hyperoxia-induced alleviation of hypoxia
reduces the levels of immunosuppressive molecules such
as adenosine, TGF-b and PD-L1 in the tumor, and enhances
anti-tumor immune responses.31,58,59 Population of typical
immunosuppressive immune cells such as MDSCs and
Treg cells in the tumor microenvironment is also decreased
by hyperoxia therapy.20,31 Recently, Wang et al.59 reported
that hyperoxia reduces stemness of colorectal cancer cells
through the inhibition of hypoxia-mediated production of
exosome from granulocytic MDSCs.

The role of cancer immunotherapy has become increas-
ingly important compared to traditional cancer treatments.
Accumulating evidence indicates that attenuation of immu-
nosuppressive activity in the tumor microenvironment by
regulating immune checkpoints is the key factor for the
success of cancer immunotherapy.128 In this regard, it is
intriguing that the inhibition of immune checkpoints path-
ways is the main mechanism underlying anti-tumor activ-
ity of hyperoxia.114 Although several immune regulators
and molecular mechanisms involved in hyperoxia-

mediated antitumor activities have been identified, precise
adjunctive role for hyperoxia in cancer immunotherapy still
remains unclear.

Future directions and conclusion

Tumor hypoxia is a major treatment target for effective
cancer therapy and inhibition of cancer progression.
Hyperoxia therapy has been suggested to reverse cancer
hypoxia, and it is more often used as an adjunctive treat-
ment for cancer treatment along with other therapeutic
modalities. Currently, no standard protocols for hyperoxic
tumor therapy are approved. In case of combining hyper-
oxia with radiation, hyperoxic periods are relatively short
and may not have significant side effects,34 but in other
cases where oxygen is administered over a long period,
hyperoxia can cause cellular injury and organ dysfunction.
Further, randomized, large, and well-organized clinical
research could reinforce the use of hyperoxia therapy in
the clinical setting for cancer treatment with minimal com-
plications. Furthermore, more personalized approach
according to the type of cancer and comorbidities are
needed. Hypoxia-activated prodrugs or HIF inhibitors are
suggested as possible alternatives to hyperoxic cancer ther-
apy. The number of preclinical and clinical trials targeting
low-oxygen tumor compartments via hypoxia-activated
prodrugs is increasing.129 In addition, combinations of clin-
ical immunotherapy and immunomodulation from HIF
inhibitor have a possibility of being powerful treatment
option.130 In conclusion, overcoming tumor hypoxia is an
urgent problem to be solved for effective treatment of
cancer patients. Further research is required to determine
the mechanism for the role of oxygen tension in cancer
progress and treatment, and to develop standard protocols
for increasing efficacies and safety of hyperoxia therapy in
cancer.
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