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Abstract
Kidney dysfunction, including chronic kidney disease and acute kidney injury, is a globally

prevalent health problem. However, treatment regimens are still lacking, especially for

conditions involving kidney fibrosis. Stem cells hold great promise in the treatment of chron-

ic kidney disease and acute kidney injury, but success has been hampered by insufficient

incorporation of the stem cells in the injured kidney. Thus, new approaches for the

restoration of kidney function after acute or chronic injury have been explored. Recently,

kidney organoids have emerged as a useful tool in the treatment of kidney diseases. In this

review, we discuss the mechanisms and approaches of cell therapy in acute kidney injury

and chronic kidney disease, including diabetic kidney disease and lupus nephritis. We also

summarize the potential applications of kidney organoids in the treatment of

kidney diseases.
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Introduction

Kidney diseases are prevalent all over the world, with
chronic kidney disease (CKD)1 comprising more than 10%
of kidney disease diagnoses, and acute kidney disease
(AKI) a wide range between 1% and 66% in different
regions globally.2 In the case of AKI, approximately 41%
of patients not recovering renal function before hospital
discharge will progress into CKD.3 Treatment regimens
for CKD and AKI are currently limited. Current efforts
have focused on improving outcomes and reducing comor-
bidities for both CKD and AKI.

Stem cells are a class of cells that maintain the ability to
self-renew and differentiate into multiple cell lineages.
They can be divided into three categories: (a) pluripotent
stem cells (PSCs) such as embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs); (b) multipotent
stem cells with partial differentiation ability; and c) unipo-
tent stem cells, which can only differentiate into one kind of
cell lineage. PSCs have been differentiated into kidney
organoids,4 which are useful for kidney functional replace-

ments in vivo and in vitro. Multipotent stromal cells such
as mesenchymal stem cells (MSCs) that are derived from
organs or tissues, such as bone marrow (BM-MSCs),
amniotic fluid (AFSCs), urine (USCs) and umbilical cord
(UC-MSCs), are used to treat kidney disease through
mechanisms including paracrine signaling, initiation of
autophagy, anti-apoptotic, or anti-inflammatory effects.
Thus, stem cell treatment is a very promising therapy for
kidney diseases. In this article, we review the mechanisms
underlying the effects of stem cells on different kidney dis-
eases (Figure 1, Table 1 and Table 2). We also summarize the
progress in the development of kidney organoids for
research and clinical application.

Differentiation of stem cells into functional kidney cells

Kidney cells contribute to many different physiological
functions. For example, podocyte processes prevent pro-
teinuria and tubule cells reabsorb filtrated materials.
Damage to these cells induces proteinuria or kidney dys-
function.5–7 Studies have shown that culturing MSCs with
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injured mesangial cells induced by hydrogen peroxide in
vitro allowed MSCs to differentiate into mesangial cells,8

and that MSCs injected into the suprarenal aorta could
trans-differentiate into podocyte-like cells in a puromycin
aminonucleoside induced acute proteinuria model in rat.9

However, stem cells have not been shown to trans-
differentiate into tubule cells.10 Using iPSCs in adriamycin
nephropathy revealed labeled-iPSCs were trapped in the
lungs,11 and very few donor cells were observed in the
kidney.10,12–14 This was attributed to the fact that only few
stem cells infused into the soma could home into the
injured areas during kidney injury and multiple reasons
may contribute to these challenges.15–17 First, detrimental
environment of stem cells may affect their differentiation
abilities. Second, targeting stem cells to the location of
injury is a major challenge in clinical applications. Third,
the internal environment in AKI and CKD, including oxi-
dative stress, inflammation, uremic toxin, hypoxia and
other factors, can influence stem cell vitality.

Extracellular vesicles (EVs) from stem cells: Paracrine
effects

EVs or exosomes in the size of approximately 40–200 nm
can be secreted from endosomal compartments bymost cell
types and have been reported to be involved in the cell-to-
cell communication and delivery of biomolecules including
proteins, DNA, messenger RNAs (mRNAs), microRNAs
(miRNAs) and lipids to recipient cells.18 Exosomes from
MSCs have been reported to be a new regimen for AKI
and CKD.19 Treatment with EVs via caudal vein after reper-
fusion could improve cortical microvascular and peritubu-
lar capillary density as well as the expression of angiogenic
factors, such as vascular endothelial growth factor
(VEGF)20 and hepatocyte growth factor.21 VEGF subse-
quently activated Notch122 in human arterial endothelial
cells to trigger arteriogenesis and angiogenesis,23 which

improves microcirculation through more efficient delivery
of oxygen. As a result, oxidative stress and apoptosis were
attenuated, resulting in better renal function and histolog-
ical conditions.24–27

Furthermore, EVs exhibited anti-calcification and anti-
fibrosis characteristics. In the end stage renal disease, vas-
cular calcification is commonly attributed to high
phosphorus-induced vascular smooth muscle cell calcifica-
tion which lacks of effective treatment, while the disease
could induce sudden death, increase fragility of blood ves-
sels and remote ischemia. It has been reported that EVs
could secret miRNAs to activate Wnt, mammalian target
of the rapamycin (mTOR), and mitogen-activated protein
kinase pathways to inhibit vascular calcification.28

Therefore, using EVs to ameliorate the calcification would
be a promising method in end stage renal disease patients.
In addition, kidney fibrosis is a final common pathology of
CKD attributed to hypoxia and ischemia. In the fibrosis
model of unilateral ureteral obstruction, miRNA-26a inhib-
ited the levels of connective tissue growth factor and trans-
forming growth factor-b (TGF-b1).29 Also, exosomes from
MSCs activate tubular Sox9 to prevent the transition of
tubular epithelium cells into a pro-fibrotic phenotype
induced by TGF-b130; however, this transition model has
been challenged31 and whether EVs can inhibit kidney
fibrosis needs to be validated.

The effect of stem cells on autophagy

Autophagy is a self-clearance process in which excess or
damaged organelles are selectively degraded mediated by
autophagosome. There are usually three types of autoph-
agy: macroautophagy, microautophagy, and chaperone-
mediated autophagy. Mutation of autophagy-related
protein, ATG5 or ATG7, resulted in mild dysfunction of
podocytes and tubules within twomonths and severe glo-
merular and tubular changes by fourmonths, and then

Figure 1. Mechanisms of stem cells in treatment of kidney disease.(A color version of this figure is available in the online journal.)
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organ failure by sixmonths.32 Similar changes were
observed in human idiopathic focal segmental glomerular
sclerosis kidney biopsy specimens,32 suggesting that dysre-
gulated autophagy could influence kidney structure.
Transmission electron microscopy has revealed large
amounts of autophagosomes in MSC-exosome-treated rat
kidney epithelial cells,33 indicating autophagy was activat-
ed marked by elevated expressions of LC3B.34 The mecha-
nisms of activating autophagy include: a. Increasing
autophagy proteins ATG5 and ATG7 to activate the
mTOR pathway34; b. 14–3-3f protein contained in MSC-
exosomes interacts with ATG16L to promote the localiza-
tion of ATG16L at autophagosome precursors, resulting in
activation of autophagy35; c. Secreting miRNA-486 inhibits
mTOR activation, resulting in the increase of autophagy
and the reduction of podocyte apoptosis via decreasing
smad1.36 But whether autophagy improves or perturbs
kidney function in AKI and CKD remains unclear. It is
known that rapamycin can inhibit mTOR pathway to acti-
vate mitophagy. In ischemia and cisplatin-induced kidney
injury, rapamycin did not enhance autophagy or ameliorate
kidney injury although it blocks the mTOR pathway.37 In
parallel, BMSCs inhibited mitophagy, manifesting as
decreased Beclin1, PINK1, Parkin, p-Parkin, and LC3B, to
restore chromium-injured kidney via upregulating phos-
phorylation of extracellular signal-regulated kinases and
downregulating phosphorylation of p38 and c-Jun-N-
terminal kinase.38 On top of that, decreased beclin1 was
also observed in diabetic nephropathy rats treated with
MSCs.39 In contrast, human UC-MSCs could secrete
miRNA-145 to induce HK-2 cellular autophagy via inhibi-
tion of the phosphoinositide-3-kinase (PI3K)/AKT/mTOR
signaling pathway.40 Moreover, LC3B and ATG5 as well as
ATG7 were increased in cisplatin-induced AKI rats after
receiving the treatment of MSC-exosomes,33 suggesting
autophagy was activated to preserve kidney function
after injury. This kind of protection effect is not only on
cisplatin-induced AKI but also in diabetic nephropathy
model. It has been shown that glucose metabolism and
kidney fibrosis could be improved41 by using ASCs via
decreasing mTOR pathway.

Based on these studies, autophagy should be an impor-
tant mechanism correlating with different kidney injury
models. Previous studies show that MSC delivery via
peripheral veins results in decreased autophagy,38,39

while MSCs via kidney injection33 or subrenal capsule
increase autophagy.41 Although peripheral delivery of
MSCs also show some labeled stem cells homing into
kidney tissue, it is still unclear why different injecting
methods influence the activity of autophagy in injured
kidney.

The anti-apoptosis effects on AKI models

The initiation of apoptosis is induced by BAK and BAX42

via mitochondrial outer membrane permeabilization,43

which subsequently releases pro-apoptotic protein, cyto-
chrome c, which activates caspase-9 protease in the cyto-
sol.44 Thereafter, caspase-9 activates caspase-3,-6,-7 to
induce the cascade that culminates in apoptotic cell

death. Apoptosis is a common pathophysiological process
in AKI.45 It has been shown that intraluminal debris
appeared after AKI,45 which are apoptotic tubule cells
induced by oxidative stress and endoplasmic reticulum
stress (ER). Oxidative stress can induce mitochondria to
transmit apoptotic signals via release of cytochrome c into
cytoplasm.46 ER could induce unfolded protein response
(UPR). Mildly enhanced UPR protects against glomerular
injury,47 while severe ER stress results in overwhelming
UPR and UPR-related apoptosis emerges.48,49 Studies
have shown using MSCs could inhibit oxidative stress50–56

and ER stress57,58 to attenuate apoptosis. Also, previous
studies have revealed the effect of MSCs on anti-
apoptosis in different kidney injury models to improve
kidney outcomes.36,38,59–64 In the chromium-injured
kidney, BMSCs treatment revealed decreased apoptosis-
related proteins Bax, cytochrome c, and caspase-3,38

which were also observed in ischemia AKI after dealing
with PSC-derived endothelial progenitor cells59 via
decreasing indoxyl sulfate and interleukin-1b (IL-1b).63

Furthermore, this kind of anti-apoptosis could be enhanced
by resveratrol to promote MSCs to secrete platelet-derived
growth factor-DD, activating extracellular signal-regulated
kinases, which inhibit renal tubular cells apoptosis.61

In addition, cisplatin-induced nephropathy also exhibits
reduced tubular apoptosis after treating with BMSCs
through activating Wnt/b-catenin pathway.62 Wnt/
b-catenin pathway has also been defined to induce
kidney fibrosis.65 Therefore, the effect of MSCs on kidney
fibrosis needs to be validated. Rhabdomyolysis-induced
AKI model is another kidney injury model, manifesting
as muscle pain and hematuria as well as kidney
dysfunction requiring dialysis. Collagen graft packed
with MSCs has been reported to ameliorate outcome of
rhabdomyolysis-induced AKI via activating PI3K/Akt
pathway to inhibit apoptosis.64 Delivery of MSCs via bio-
logical membrane provides a useful tool in the treatment of
AKI and CKD. Potentially, it would be more useful if bio-
logical membrane can be made into small capsule to deliver
MSCs as subrenal capsule.

Anti-inflammation and immunoregulation

Aseptic inflammation, a common pathophysiology process
in AKI and CKD, is induced by multiple signaling path-
ways that are activated by the binding of ligands, termed
“damage-associated molecular patterns,” to toll-like recep-
tors. These pathways include the nuclear factor kappa B,
mitogen-activated protein kinase, and type I interferon
pathways.66 The activated inflammatory pathways release
IL-1b, tumor necrosis factor-a (TNF-a), interferon-c to
recruit chemokines resulting the migration of mononuclear
leucocytes into the injured areas inducing local inflamma-
tion. Inflammation can result from different pathogenesis.
Ischemia kidney injury could induce hypoxia and increase
release of inflammatory factors by necrotic proximal tubule
cells, which could be reversed by treatment with USCs,63

adipose-derived mesenchymal stem cells (ADSCs),60 and
human AFSCs67 via decreasing the mRNA expression
levels of interferon-c and IL-1b and increasing IL-10 and
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TGF-b1, resulting in decreased lumen expansion and loss of
tubular epithelial cells.63 Another common etiology of
CKD, lupus nephritis, induces kidney injury by immune
system activation resulting in elevation of inflammatory
markers which could also be inhibited by human UC-
MSCs via suppressing nuclear factor kappa B pathway to
downregulate the expression of TNF-a, intercellular cell
adhesion molecule-1, and plasminogen activator inhibi-
tor-1.68 Besides the classical kidney injury model, there
are still chronic infiltration inflammation in kidney, such
as obesity-associated kidney injury manifesting as elevated
inflammation markers of IL-6, chemokine (C-X-C motif)
ligand 1 and 2 which were also mitigated after treatment
with MSCs.48

During ischemia–reperfusion injury, T cells accumula-
tion in kidney tissues is observed to reside in the infarction
boundary zone for about 14 days. The CD4þ and CD8þ T
cells have a detrimental role in the kidneys after ischemia–
reperfusion injury.69 In contrast, T-regulatory cells exhibit a
protective role in ischemia and reperfusion by secreting IL-
10 to reduce the ischemia–reperfusion injury.70 On top of
that, plenty of innate immune cells, including mast cells,
neutrophils, macrophages, myeloid-derived suppressor
cells, dendritic cells and natural killer cells are engaged in
ischemia–reperfusion injury regulated by MSCs.71 MSCs
can secret prostaglandin E2,72 kynurenic acid,73 TNF-
stimulated gene 674 to promote macrophage polarization
from an M1 phenotype towards an M2 phenotype to ease

inflammatory status. MSCs also inhibited the infiltration of
macrophages in kidney tissue.75,76 In addition, MSCs inhib-
it lipopolysaccharide-stimulated rat peritoneal macro-
phages by downregulating inflammation-related
cytokines such as IL-6, TNF-a, IL-1b,77 and IL-878 to prevent
diabetic nephropathy. Moreover, decreasing IL-17 and
increasing CD4þCD25þFoxp3þTregs by ADSCs79 or EVs80

could relieve immune inflammation.

Kidney organoids open a new avenue for stem cell
therapy

The kidney organoids are developed from ESCs or
iPSCs,81,82 and transcriptional congruence of nephron cell
type-specific markers, as well as stromal and endothelial
markers were similar to human fetal kidney.83 The induced
organoids begin from the primitive streak, induced by Wnt
pathway agonist, CHIR99021, to intermediate mesoderm.84

Thereafter, ureteric epithelium, metanephric mesenchyme,
progenitors of renal interstitium, and endothelium are
induced from intermediate mesoderm by using a transwell
filter. The above progenitors then aggregate at an air-media
interface.4,85 After about 20 days, kidney organoids can be
obtained. During this procession, exosomes from stem cells
are involved in the impaction of kidney organoids by enter-
ing the cytoplasm and nucleus via fluorescently labeled
exosomal RNA.86 Kidney organoids contain all kinds of
kidney cell lineages. However, lacking of capillary loops

Table 1. Sources of stem cells and their roles in the treatment of kidney diseases.

Sources of stem cells Disease model Mechanisms References

BMSCs Acute kidney injury Transdifferentiation Wong et al.;8

hUCMSC-exosome, ADSCs-

exosome, BMSCs-exosome,

hAD-MSCs-exosome,

UC-MSCs-exosome.

Cisplatin-induced Nephrotoxicity;

Diabetic nephropathy;

Acute kidney injury;

AKI-CKD transmission;

High phosphorus-induced vascular smooth

muscle cells calcification;

Unilateral ureteral obstruction.

paracrine Guo et al.;28 Zhang et al.;29 Zhu

et al.;30 Wang et al.;33 Jia et al.;35

Jin ;36 Kilpinen et al.;80 Zhong

et al.;106 Nagaishi et al.107

hUC-MSCs, BMSCs,

hUCMSC-exosomes, ASCs,

ADSCs-exosome.

Acute kidney injury;

Cr (VI)-injured kidney;

Diabetic nephropathy;

Cisplatin-induced AKI.

Autophagy Ebrahim et al.;24 Wang et al.;33

Jin et al.;36 Yin et al.;38

Rashed et al.;39 Xiang et al.;40

Tang et al.41

BMSCs, PSC-derived endothelial

progenitor cells, uADSCs,

hUCMSCs, USCs.

Chromium-injured kidney;

Acute kidney injury;

Cisplatin-induced acute kidney injury;

Rhabdomyolysis-induced acute kidney

injury model; Adriamycin nephropathy;

Diabetic nephropathy;

Unilateral ureteral obstruction; Obesity-

associated kidney injury; Renal artery

stenosis;

Chronic kidney disease.

Anti-apotosis Jin et al.;36 Yin et al.;38 Rashed

et al.;39 Li et al.;48 Song et al.;54

Liu et al.;55 Xie et al.;56 Shen

et al.;59 Zhang et al.;60 Zhang

et al.;61 Jiao et al.;62 Tian et al.;63

Geng et al.;64 Zhu et al.79

hU-MSCs, iPS-MSCs, BMSCs,

hAFS, USCs, ADSCs.

Lupus nephritis;

Obesity-associated kidney injury;

Cardiorenal syndrome type II;

Acute kidney injury.

Anti-inflammation Li et al.;48 Zhang et al.;60

Tian et al.;63 Vescovo et al.;67

Liu et al.68

MSCs, ADSCs Acute kidney injury;

Unilateral ureteral obstruction;

Chronic kidney disease;

Diabetic nephropathy;

Systemic lupus erythematosus.

Immunoregulation Shi et al.;73 Vasandan et al.;74 Wang

et al.;75 Mittal et al.;76 Xing

et al.;77 Rota et al.;78 Li et al.;79

Hamza et al.;80 He et al.81
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suggests that kidney organoids may be insufficient to fil-
trate urine yet.87 It has been reported that modulating Wnt
pathway activity could generate capillary loops that is
adding CHIR99021 at different time period.88 Although a
vascular network is developed, no significant filtration abil-
ity was still observed by the organoids.88,89 There should be
other factors or microenvironment influencing the function
of kidney organoids. Therefore, the kidney organoids were
transplanted into vivo resulting functionally vascular filtra-
tion,88,89 suggesting a soft environment promotes the mat-
uration of kidney organoids.88,90 Likewise, high fluidic
shear stress also revealed generation of capillary loops
using a millifluidic chips in vitro.87 This study indicates a
future direction to combine kidney organoids and dialyzer
together to use fluidic shear stress to promote the matura-
tion of kidney organoids. The matured kidney organoids
then could replace dialysis membrane to serve as kidney
replacement therapy.

Based on the similarity to kidney structure and function,
kidney organoids have been used to screen drugs. Taking
cisplatin kidney injury model as an example, after intro-
duction of 5 mM cisplatin into the culture medium with
kidney organoids, acute apoptosis of mature proximal
tubular cells emerged at only one day.91 In addition,
kidney organoids can also be used as kidney disease
models. For example, polycystic kidney disease is an auto-
somal dominant hereditary kidney disease that lacks an
ideal disease model. Cruz et al.92 have used kidney

organoids to generate a polycystic kidney disease model
with decreased cystogenes of polycystin-1 after removing
stoma, while increased cysts when adding cyclic adenosine
monophosphate. Furthermore, kidney organoids from
iPSCs of a congenital nephrotic patient with a missense
mutation of Nephrin revealed impaired silt diaphragm
which could be restored by genetic correction of mutation
in the single amino acid, resulting in normal silt diaphragm
formation.93,94 Apart from establishing disease models,
exploring gene expression in kidney intrinsic cell lines is
available. Single cell transcriptional signature analysis of
podocytes disease in kidney organoids revealed LYPD1,
PRSS23, and CDH6 correlated with human glomerular dis-
ease, which had not been reported before as it is difficult to
study the gene expression signatures of podocytes in vivo.95

When it comes to transplantation application of kidney
organoid, many questions remain to be resolved. First, the
source of PSCs needs to be secured. While ESCs are viewed
with potential ethic concerns, iPSC banks with MHC
matching are not. Recently, urine-derived renal progenitor
cells has been published that showed renal stem cell
markers -SIX2, CITED1, WT1, CD24, and CD106 and
pluripotency-associated proteins- TRA-1–60, TRA-1–81,
SSEA4, C-KIT, and CD133 indicating a potential source
for kidney organoids.96 Second, current kidney organoids
are too small to provide sufficient filtration ability.
Therefore, kidney organoids shall contain a sufficient
amount of nephrons for future transplantation; Third, as

Table 2. Application of mesenchymal stem cells and exosomes in the treatment of kidney diseases.

Treatment regimens Protocols References

EVs MSCs were incubated with 10% exosome-depleted fetal bovine serum

for 24–72 h and then collected to be centrifuged at 3000g for 20 min

to remove cell debris. The supernatant was ultracentrifuged at

100,000g for 1–2 h at 4�C. Exosomes were then washed once with

serum-free M199 or PBS and stored at �80�C

Ebrahim et al.;24 Guo et al.;28 Zhu et al.;30

Wang et al.;33 Jin et al.; Kilpinen et al.;80

Nagaishi etal.;107 Zhong et al.111

BMSCs Femurs and tibiae were flushed with a 20 g needle containing DMEM

nutrient mixture F-12 and then cultured in 10% FBS incubated at

37�C and 5% CO2

Yin et al.;38 Rashed et al.39 Song et al.;5

Xie et al.56

ASCs and AFSCs ASCs of iguinnal adipose tissue were isolated from C57 background

mice, while AFSCs were obtained via amniocentesis from healthy

pregnant mice with a C57 background. Both of them were cultured in

StemPro MSC SFM supplemented with 10% FBS incubating at 37�C
and 5% CO2

Tang et al.;41 Zhang et al.60

USCs The centrifugation of urine sample was at 400g for 10 min at room

temperature. Then discard the supernatant and wash the sediment

with PBS. After centrifugation again, use DMEM to resuspend with

2% FBS, 10 ng/mL human epidermal growth factor, 2 ng/mL platelet-

derived growth factor, 1 ng/mL transforming growth factor-b,
2 ng/mL basic fibroblast growth factor, 0.5 mM cortisol, 25 mg/mL

insulin, 20 mg/mL transferrin, 549 ng/mL adrenaline, 50 ng/mL triio-

dothyronine and L-glutamine

Tian et al.63

hUC-MSCs Umbilical cord was washed by PBS containing antibiotics and minced

into 1 mm three pieces. Thereafter, the pieces were seeded into cell

culture dishes with low-glucose DMEM-containing 10% FBS incu-

bated at 37�C and 5% CO2

Liu et al.;56 Wang et al.75

Note: Clinical use of stem cells has focused on applications for lupus nephritis100 and monoclonal immunoglobulin-related renal disease,101 including AL amyloidosis,

light chain deposition disease, heavy chain deposition disease, and myeloma-related renal disease. Because of immunogenicity, autologous peripheral blood stem

cells are used in treatment. Study has shown using stem cells could improve remission rate and patient survival in monoclonal immunoglobulin-related renal

disease.102 Studies on CKD have shown that infusing BMSCs or autologous CD34þ cells was safe and tolerable for CKD patients, with no significant change of

kidney function.103,104 However, in AKI after cardiac surgery, using allogeneic MSCs did not improve the time to kidney function recovery, indicating the mechanisms

of action behind the use of stem cell treatments in AKI patients have yet to be fully elucidated.
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blood perfusion is essential to promote the maturation of
kidney organoids,88–90 the transplantation site should be
adjacent to great vessels and ureter. It has been reported
using omentum97 and retroperitoneal fat tissue98 as the
transplantation site. Retroperitoneal fat tissue resulted in
better glomerular filtration rate. However, both studies
transplanted metanephroi not kidney organoids into rats.
A recent study99 showed transplanted kidney organoids
beneath kidney capsule could survive for several months
and also be vascularized from endothelial cells of host mice.
Finally, although kidney organoids exhibit better nephron-
like structures after transplantation, structure of tubules
brush border, filtration barrier, and capillary lumens were
not as organized as in the mature kidney tissues, requiring
further improvement of kidney organoids differentiation.

Conclusions

In our review, we focused on the mechanisms by which
stem cells could help treat kidney diseases, as well as the
use of kidney organoids as an emerging treatment
approach and research resource. Although MSCs are ver-
satile with many mechanisms during the treatment, exo-
somes may be an alternative to fulfill the therapeutic
effects of MSCs. As transdifferentiation of MSCs into
tubule cells is not successful in vivo,10 MSCs may restore
kidney injury via paracrine pathways including secreting
exosomes. In fact, exosomes are being used in a clinical trial
(NCT04173650).

Clinically, stem cells have been used to treat lupus
nephritis patients, with good complete recovery rates.
However, clinical trials using MSCs in diabetic nephropa-
thy did not show sufficient effect and the treatment effects
of stem cells on AKI are still controversial. As lupus nephri-
tis or primary amyloidosis are systemic diseases, MSCs
exhibit effective treatment results clinically. Based on cur-
rent clinical methods, delivering exosomes into injured
kidney through renal artery could be a more feasible and
useful procedure. In addition, injection of exosomes subre-
nal capsule may also be a clinically relevant delivery
method.

Although many studies have shown the safety of MSCs
treatment, the side effects of stem cell treatment of kidney
diseases remain to be investigated. Nevertheless, we fore-
see a great future for stem cell therapy of nephropathy.
Through better understanding the pathophysiology of
CKD and AKI, we will further clarify the protective mech-
anisms of stem cells in the treatment of kidney diseases.
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