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Abstract
Obesity involves genetic and environmental factors. The co-expression gene network in

relevant tissues in different obesity groups provides an entrance for profiling and identifying

associated pathways and genes. We aim to identify the meaningful co-expressed gene

network in mRNA extracted from adipose tissues representing different obesity phenotypes

in a new tree shrewmodel. Furthermore, to find the potential drug target based on analyzing

the possible pathways and hub genes responsible for obesity. Ten tree shrews were select-

ed from F1 populations and divided into three groups based on their Lee’s index for mRNA

sequencing. We identified clusters of highly correlated genes (modules) in differently

expressed genes by weighted gene co-expression network analysis. Three modules were

firmly correlated with not less than one obesity phenotype (associations ranging from�0.94

to 0.85, P< 0.01). The genes from the blue module (including 481 genes) are mostly

enriched in the ribosome pathway. The genes from the brown module (including 389

genes) are mostly enriched in the lysosome pathway. The genes from the turquoise module (including 1781 genes) are mostly

enriched in the ubiquitin-mediated proteolysis pathway. The hub gene in each module was determined, including UBA52 in the

blue module, AKT1 in the brownmodule, and LRRK2 in the turquoise module. After profiling and analyzing the co-expression gene

network of obese tree shrew, we identified differently expressed genes and pathways (ribosome, lysosome and ubiquitin-

mediated proteolysis pathway) that might be involved in the development of obesity. Further study of the differently expressed

genes and pathways might provide new targets for the prevention and therapy of obesity.
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Introduction

Obesity is a rapidly expanding worldwide disease that
causes cancer, metabolic disorders, and cardiovascular
diseases. Obesity is an over-nutrition condition, which
harms systemic metabolic balance and evokes stress.1,2

Chronic inflammation in white adipose tissue (WAT) is
a characteristic of obesity pathophysiology and is highly
associated with other severe diseases.3 The initiation and

exacerbation of chronic inflammation primarily occur in
WAT.4 However, the lack of recognition of the pathogen-
esis has delayed the relevant pharmacological
approaches. Existed medications are often accompanied
by many unintended adverse events. The precise mecha-
nisms of adipose tissue, especially its co-expression net-
work profiles, in the development from lean to moderate
obesity, and then to severe obesity are still less
understandable.

Impact statement
We constructed the transcriptomic net-

work in adipose tissue in lean, moderate

obesity and severe obesity groups of tree

shrew for the first time. Compared to other

laboratory animal models, the tree shrew is

a prospective laboratory animal that has a

closer genetic association with primates

than with rodents. It is widely used in bio-

medical researches. Enrichment analyses

revealed several molecular biological pro-

cesses were involved in the ribosome,

lysosome, and ubiquitin-mediated prote-

olysis process. These results provided

insights into new targets for the prevention

and therapy of obesity and a novel

research model for obesity.
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Compared to other laboratory animal models, the tree
shrew (Tupaia belangeri) is a prospective laboratory animal
that has a closer genetic association with primates than
with rodents.5,6 Additionally, other advantages, including
easy maintenance, small body size, and rapid reproduction,
make the tree shrew an excellent model animal. Many stud-
ies use the tree shrew for fundamental biological mecha-
nisms,7,8 modeling human diseases,9–13 organism
responses,14,15 and molecular evolution.16,17 The tree
shrew has been proposed as a substitute choice for primates
in biomedical research. The available annotated genome
data provide a solid foundation to analyze the genes of
tree shrew at the transcriptomic level.18,19

Therefore, considering the central role of WAT in energy
homeostasis, we used subcutaneous adipose tissue from
the tree shrew model of spontaneous obesity to study the
mRNAs of three extreme groups. We performed the
WGCNA method using RNA-sequencing (RNA-Seq)
data.20 We aimed to elucidate transcriptomic mechanisms
of obesity in tree shrews and to shed light on the mecha-
nism of human obesity by detecting mRNAs and pathways
involved in the pathogenesis of obesity.

Materials and methods

Profile of tree shrew obesity

Three hundred and twenty-nine F1 tree shrews (168 males
and 161 females) were bred in the Centre of Tree Shrew
Germplasm Resources, Institute of Medical Biology,
Chinese Academy of Medical Science and Peking Union
Medical College (IMBCAMS). The age of the 329 tree
shrews ranged from 1.5 to 4.5 years. All methods were con-
ducted in accordance with ethical and relevant guidelines
and regulations. The institutional Animal Care & Welfare
Committee of IMBCAMS approved all experimental proto-
cols (NO. DWLL2016012).

The body weight and Lee’s index [(body weight (g)�
1000)(1/3)/body length (cm)� 100] were determined as
before.21 Based on the normal distribution curve of Lee’s
index, tree shrews were categorized into three groups: lean
(Lee’s index<meanþ 2SD), moderate obesity (Lee’s index-
>meanþ 2 SD), and severe obesity (Lee’s index-
>meanþ 4 SD). Through calculation, the range of these
three groups is: lean (Weight< 178.66), moderate obesity
(Weight� 178.66–208.84), and severe obesity
(Weight> 208.84).

We chose 10 animals from these three groups and used
the subcutaneous adipose tissue for RNA-Seq: three severe
obesity (O), three moderate obesity (M), and four lean (L)
tree shrews.

Phenotypic characterization of the selected tree
shrews

Data acquisition on all 329 tree shrews was completed
within a one-week time in April 2017. All tree shrews
were fasted for12 h before measuring. Each tree shrew
was caught in a pocket, and the body weight/length was
measured twice. Biochemical parameters and related data
on the 10 selected tree shrews were determined as

described previously.21 An Aquillon ONE 320-row helical
CT scanner (Toshiba, Tokyo, Japan) was used to determine
fat volume in vivo. The results were regarded as significant
at P< 0.05. After anesthesia, a biobank of tissues was cre-
ated by sampling subcutaneous adipose tissue for each
animal.

Sample collection and preparation

The mRNA was extracted using TRIzolTM Reagent
(Thermofisher, MA, USA). The RNA purity was assessed
by a NanoPhotometerVR spectrophotometer (IMPLEN, CA,
USA). The RNA concentration was determined by QubitVR

RNA Assay Kit in a QubitVR 2.0 Fluorometer (Life
Technologies, CA, USA). The RNA integrity was measured
by RNA Nano 6000 Assay Kit. Libraries were created by
NEBNextVR UltraTM RNA Library Prep Kit afterward. The
clustering of the index-coded samples was executed on a
cBot Cluster Generation System. Then the library was
sequenced on an Illumina Hiseq platform and 125 bp/
150 bp paired-end reads were created. The clean reads
were aligned to the reference genome TupChi_1.0 using
STAR (v2.5.1b) with the method of maximal mappable
prefix (MMP).

Quantification of gene expression level and (DEGs)
expression analysis

The number of reads aligned to every gene was estimated
by HTSeq v0.6.0. Subsequently, the FPKM of all genes was
determined, resulting in an average of 10,838 genes per
sample. The DEGs analysis between every two groups
was conducted by DESeq2 R package (1.10.1). DESeq2 pro-
vides statistical methods for determining DEGs from
sequencing data that rely on the negative binomial distri-
bution. The resulting P-values were adjusted by Benjamini
and Hochberg’s method. Genes with an adjusted P-val-
ue<0.05 were considered as DEGs.

WGCNA

We reduced the data set further before network construc-
tion, and genes were selected based on variation
(SD> 0.25), leading to 7115 genes. We conducted
WGCNA as mentioned previously.20

Gene ontology and the Kyoto encyclopedia of genes

and genomes analysis

GO and KEGG were used to interpret gene data in each
module.22 The DAVID database (https://david.ncifcrf.
gov/) is a combined data source for annotation, visualiza-
tion, and integrated GO/KEGG analysis for a set of genes.
Functional and pathways analyses were conducted using
this database to identify the gene function and most
enriched pathways of DEGs. The cut-off criterion was an
adjusted P-value<0.05. We selectively showed the top 20
significantly enriched GO terms and showed all the signif-
icantly enriched KEGG pathways.
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Construction and analysis of the protein–protein
interaction network

DEGs in each module were matched to the PPI data
through the Search Tool for the Retrieval of Interacting
Genes (STRING) database v.9.1 (http://www.stringdb.
org/) to demonstrate potential protein–protein interaction
(PPI) networks.23,24 The STRING database applies a meta-
method to assess PPI relationships and identifies functional
or physical links between proteins. The extended network
was built based on the minimum required interaction score
of 0.9, which indicates that only interactions with the high-
est confidence score were selected. Cytoscape is a useful
software tool for visually exploiting biomolecular interac-
tion networks. The DEGs in each module were mapped to
STRING at first and then visualized using Cytoscape. The
criterion for screening hub genes was based on the node
degree.

Analysis of transcription factors related to nine shared
genes

We used a Cytoscape plugin, iRegulon, to predict the pos-
sible transcription factors (TFs) of the nine target genes.
And then a new network was built with the output result.
The parameter values were as following: the maximum
false discovery rate on motif similarity is 0.001; the mini-
mum identity between orthologous genes is 0.05, the nor-
malized enrichment scores (NES) is 7.

Hub gene analysis and validation

Hub genes are highly linked with one another in one
module and are involved in their function. We identified
the hub genes based on both their module membership
(>0.9) and their node degree in the PPI network.

According to the Sangon Biotech manufacturer’s proto-
col (SK1321), we got total RNA from adipose tissue samples
using Trizol reagent. The quality and quantity of extracted
RNAwere evaluated. The isolated RNA concentration was
normalized to the same. We conducted qRT-PCR by ABI
Stepone plus (Thermofisher scientific, ABI, US). The
reverse transcription (RT) reaction was carried out by incu-
bating RNA 5 lL, with random primer p(dN) 6 1 lL, dNTP
Mix 1.0 lL, Rnase-free ddH2O 7.5lL, 5�RT Buffer 4lL,
RNase Inhibitor 0.5 lL, and reverse transcriptase 1.0lL
(Kit code No: EP0733, Thermo Scientific) at 50�C, for
30min. The total reaction volume used in RT was 20lL.
The PCR reaction was carried out by incubating cDNA
from the previous step 2 lL, with SybrGreen qPCR
Master Mix 10 lL, forward primer 0.4lL, reverse primer
0.4lL, ddH2O 7.2lL. The PCR conditions were as follows:
denaturation at 94�C for 30 s, annealing at 60�C for 30 s, and
polymerization for 70�C for 1 min with DNA polymerase
(Kit code No: B639273, ABI). SangonBio-tech (Shanghai,
China) synthesized the primer sequences of DEGs and
GAPDH. The primer sequences are:

• GAPDH-F50GACCTGACCTGCCGCCT30

• GAPDH-R50GTGGGTGTCGCTGTTGAAGT30

• UBA52-F50TCCAAGACAAGGAGGGCAT30

• UBA52-R50GAGGGTGGACTCTTTCTGGAT30

• AKT1-F50CACGCCACCTGACCAAGA30

• AKT1-R50AGCGAGACAGCAAAACCCT30

Results

Weight and Lee’s index of surveyed tree shrews

The phenotype of animals in the severe obese group was
fairly different from that of their lean counterparts as
shown in Figure 1(a). Body length and body weight meas-
urements shown in Figure 1(b) and (c) of the 329 breeding
tree shrews were conducted within a one-week period in
April 2017. Tree shrew age was between 1.5 and 4.5 years as
shown in Figure 1(d). The average body weight of the 329
tree shrews was 148.47� 15.09 g, and the average Lee’s
index was 280.67� 15.09. Although the body weight and
Lee’s index were variable, the data followed a Gaussian
distribution as shown in Figure 1(e). However, Pearson’s
correlation analysis suggested that body weight (r¼ 0.27, P
< 0.001, shown in Figure 1(f)) and Lee’s index (r¼ 0.41, P
< 0.001, shown in Figure 1(g)) were positively correlated
with age, which was equal to feeding time. The body
weight and Lee’s index were significantly higher
than those previously reported for wild tree shrews
(128.66� 0.66 g and 274.46� 8.16, respectively).

Animals selected based on body weight, body length,

and Lee’ index

The normally distributed body weight and Lee’s index for
the entire population clearly showed that the degree of obe-
sity varied widely in these animals. Based on the popula-
tion distribution of body weight and Lee’s index, we
categorized the animals into three groups: lean, moderate
obesity, and severe obesity. Based on the above criteria, we
selected 10 tree shrews. The body weight, Lee’s index, and
abdominal circumference were significantly different
among the three groups. The blood glucose concentration
after fasting in severe and moderate obesity groups was
significantly higher than that in the lean group. The
level of serum HbA1c in the moderate obese tree shrews
(7.83� 4.56) was the highest of the three groups. In spite of
the numeral differences in fasting blood glucose and serum
HbA1c concentrations, no statistically significant differen-
ces in these parameters were detected between any
two groups. CT scan analysis showed 3 and 6-fold
increases in total fat volume in the moderate and severe
obese tree shrews, respectively, compared with the
volume in the lean group. These results are typical
of obese humans and other commonly utilized models
of obesity.

Adipose tissues from four lean (L), three moderate obese
(M), and three severe obese animals (O) were obtained for
RNA-Seq for a total of 10 samples. Descriptive statistics for
each obesity phenotype group are shown in Table 1. The
average age of the selected tree shrews was between two
and four years at slaughter.
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Differential gene/transcript expression

A total of 1679 DEGs were identified between M and L
group, 6961 DEGs were identified between M and
O group, and 6376 DEGs were identified between O and
L group. We selected these DEGs (fold change >2) for
subsequent bioinformatics analysis. The heat map of
Pearson’s correlation matrix for the DEGs among the three
extreme groups indicated that the three groups also differed
at the transcriptomic level, consistent with the obesity phe-
notypes as shown in Figure 2(a). DEGs among the three

groups are shown together in Figure 2(b) by Venn diagram.
The obtained clean data were submitted to NCBI Sequence
Read Archive database (accession number: PRJNA310673).

WGCNA

We employed WGCNA to evaluate the RNA-Seq data. The
WGCNA assumes that highly co-expressed genes work
cooperatively, contributing to the corresponding pheno-
type. The network was constructed using 7115 count
genes. Strongly co-expressed genes in clusters (modules)

Figure 1. Survey of body weight and Lee’s index of tree shrews. (a) Obese tree shrew with lean counterpart. (b) Body weight measurement. (c) Body length

measurement. (d) Age distribution. (e) Body weight distribution. (f) Correlation between body weight concentration and age in tree shrews. (g) Correlation between

Lee’s index and age in tree shrews. (A color version of this figure is available in the online journal.)

Table 1. Descriptive statistics (mean and standard deviation) and test of difference in means for a selection of obesity-related traits for the three

subgroups.

BlSuga HbA1ca Wgtb Len AbdCirb Lee’sb FatVolb Gender Age

Lean 5.13 (0.90) 4.33 (0.06) 142.03 (7.42) 18.37 (0.35) 9.43 (0.06) 284.08 (7.2) 6.85 (1.85) 3/1 2/2/2/2

Moderate obese 9.27 (7.13) 7.83 (4.56) 195.87 (19.44) 18.77 (0.12) 10.10 (0.3) 309.20 (8.28) 21.64 (4.92) 3/0 2/3/2

Severe obese 9.60 (4.37) 6.27 (2.80) 233.39 (18.24) 18.43 (0.12) 10.93 (0.49) 333.91 (10.71) 36.44 (12.36) 2/1 3/3/4

BlSug: blood sugar; HbA1c: hemoglobin A1C; Wgt: weight (g); Len: body length (cm); AbdCir: abdominal circumference (cm); Lee’s: Lee’s index; FatVol: fat volume

(mL).

Note: Gender is presented as frequency male/female. Age unit is year and presented as age/age/age of each animal in the group.
aSignificantly different between lean and moderate obesity and significantly different between lean and severe obesity, P< 0.05.
bSignificantly different among the three groups, P< 0.05.
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were found and assigned to module colors as shown in
Figure 3(a). In all, we found three modules with each cov-
ering at least 300 genes.

An eigengene was calculated, representing each module
to explain the gene expression variation. The module-trait
relationships (MTRs) were measured by linking the eigen-
gene to the traits. Then, MTRs were used to select relevant
modules for further analysis as shown in Figure 3(b). Based
on the criteria of both MTRs> 0.5 and their gene intra-
modular connectivity mentioned previously, we selected
three modules for further annotation: The blue module
(481 genes), the brown module (389 genes), and the tur-
quoise module (1781 genes).

Functional enrichment of DEGs in modules. We found
enriched GO terms and KEGG pathways in the three mod-
ules. P-values were adjusted using the Benjamini-Hochberg
(BH) correction. We selectively showed the top 10 signifi-
cant GO biological process terms and all the significant
KEGG pathways as shown in Supplementary Table 1.

The most interesting and relevant module was the blue
module, which showed high MTRs with obesity-related
traits, such as triglycerides (0.85), subcutaneous fat thick-
ness (0.75), and age (0.75). The genes in the blue module
were highly expressed in obese tree shrews and showed
low expression in lean tree shrews. This module showed
significant translation and metabolism-related GO terms
and KEGG pathways after BH correction. The most
enriched GO term was a multi-organism metabolic process

(Padj¼ 2.93E-39). The highest enriched pathways were
related to pyrimidine, purine, and cysteine metabolism.

Enrichment analysis of KEGG pathways found five
pathways at the P<0.05 level. The most notable were the
“ribosome,” “spliceosome,” and “RNA polymerase” path-
ways. The enriched pathways and contained genes are col-
lectively presented in Supplementary Table 2. The fourth
significant KEGG pathway was “protein processing in the
endoplasmic reticulum (ER),” with protein translation,
folding, sorting, and degradation occurring in the ER. The
ER can also coordinate various cellular processes through
unfolded protein response (UPR) signaling. Obesity
murine models are accompanied by chronic UPR activation
in liver and/or adipose tissues.25

The brown module (eigengene) exhibited an overrepre-
sentation of immune stress relevant GO terms and KEGG
pathways, e.g. 83 genes enriched in immune system pro-
cesses (Padj ¼6.75E-12) and 102 genes enriched in the reg-
ulation of response to stimulus (Padj ¼7.36E-07) in GO
biological processes. These expression profiles are consis-
tent with previous studies. Much previous works demon-
strate chronic inflammation in hypertrophied adipocytes
and increased levels of proinflammatory cytokines.
Macrophages play a key role in the initiation and exacerba-
tion of the inflammatory state in obesity.26 Phagocytosis is a
primary mechanism used to remove pathogens and cell
debris by fusing phagosome and lysosomes to form a phag-
olysosome in macrophages. As expected for the 389 genes
whose module membership was greater than 0.9,

Figure 2. Differentially expressed genes (DEGs). (a) Pearson correlation matrix of transcriptome data. (b) The mean expression distribution of DEGs between M vs L

group. (c) The mean expression distribution of DEGs between O vs M group. (d) The mean expression distribution of DEGs between O vs L group. (e) Venn diagram of

DEGs among 3 groups. (A color version of this figure is available in the online journal.)
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we observed the phagocytosis-related GO pathways,
e. g. “endocytosis” (Padj ¼0.001) and “phagocytosis”
(Padj ¼0.001). The most significant pathway was also
phagocytosis-related. A significant immune-related KEGG
pathway was “natural killer cell-mediated cytotoxicity”
(Padj ¼0.0077). High BMI in tree shrews is associated
with “increased activation of peripheral NK cells.” A
recent study reported that the activated NK cells in obesity
patients were hard to degranulate or to produce signal
cytokines. Thus, constant stimulation of NK cells may
lead to an abnormal response, which could make obese
individuals more susceptible to infectious diseases.27 The
cellular responses to stimulus and inflammation can inhibit
or activate one another. The immune system regulates the
cellular stress through signaling proteins and pathways,
e.g. “regulation of response to stimulus” (GO: 0048583,
Padj ¼1.76E-11), “regulation of immune response-

regulating cell surface receptor signaling pathway”
(GO: 0002768, Padj ¼6.78E-11), ultimately causing metabol-
ic changes and subsequently altered insulin sensitivity.

The turquoise module showed a strong negative corre-
lation with Lee’s index (�0.94). The module also showed
significant signaling-related GO terms and KEGG path-
ways. We identified 13 pathways at the level P<0.05.
Notable among the pathways were “ubiquitin-mediated
proteolysis” (Padj ¼1.60E-05), “phosphatidylinositol sig-
naling system” (Padj ¼0.00562), “TGF-beta signaling
pathway” (Padj ¼0.012), and “mTOR signaling pathway”
(Padj ¼0.017).

To further elucidate the enriched trend of each module,
we selected the top 50 eigengenes in each module to dem-
onstrate the expression levels of the genes therein. The
genes in the blue module were highly expressed in severe
obesity, moderately expressed in moderate obesity, and

Figure 3. WGCNA results. (a) Average linkage clustering tree (dendrogram) defined byWGCNA representing the co-expressionmodules. Branches of the dendrogram

correspond to modules labeled with different colors below the dendrogram. (b) MTRs and matching P-values between the modules and their related traits. The

discovered modules are on the y-axis, and the discovered traits are on the x-axis. Other color rows showed the MTRs’ degree of correlation. Red indicates a strong

positive association; blue indicates a strong negative correlation. HbA1c: glycated hemoglobin; FBS: fasting blood sugar: Wt: weight: Ht: height; Lee’s index a/b:

results of intermediate calculation of Lee’s index; SFT: subcutaneous fat thickness; TG: triglycerides; TC: total cholesterol; HDL: high density lipoproteins; LDL:

low density lipoproteins; SBP: systolic pressure; MAP: mean arterial pressure; BP: blood pressure; HR: heart rate. (A color version of this figure is available in the

online journal.)
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expressed at low levels in lean animals as shown in Figure 4
(a). The genes in the brown module were highly expressed
in both severe obesity and moderate obesity and expressed
in low levels in lean animals as shown in Figure 4(b).

GO/KEG analysis

The GO/KEGG pathways of the genes in the blue are
shown in Figure 5(a) and (b) and brown modules are
shown in Figure 5(c) and (d) were further analyzed to
show the most relevant GO biological process terms and
pathways.

PPI regulatory network analysis of different modules
and analysis of the TFs of marker genes

A PPI regulatory network of the top 20 genes in degree in
three modules, including 20 up-regulated genes in the
blue/brown modules and 20 down-regulated genes in
the turquoise module, was constructed. Top 20 genes in
the blue module consisted of 20 nodes and 137 edges as
shown in Figure 6(a). Top 20 genes in the brown module
consisted of 20 nodes and 35 edges as shown in Figure 6(b).
Top 20 genes in the turquoise module consisted of 20 nodes
and 79 edges as shown in Figure 6(c).

AKT1, RPLP0, NEDD8, SSR4, SSR2, EXOSC4, LSM3,
ARPC4, and CFL1 belonged to both blue and brown mod-
ules (intra-modular connectivity> 0.9 in both modules). All
nine shared genes are highly conserved in all species,
including humans. We further identified AKT1 as the hub
gene of this PPI network in the blue and brown modules
using the same strategy according to node degree. Nine
shared genes and hub gene UBA52 in the blue module
were used for further analysis and are reportedly linked
with obesity. We further analyzed the TFs’ regulatory

network of these genes. We found that five TFs with the
highest NES was: FLI1, ELK1, ELF2, ETV6 and ETV4 as
shown in Figure 6(d).

Validation of hub genes in obesity samples

We selected the AKT1 and UBA 52 as hub genes of posi-
tively correlated modules for certification. RT-PCR was
conducted to measure the expression of 2 hub genes in
adipose tissue from 10 normal, 10 moderate obesity, and
10 severe obesity tree shrews. The expression of AKT1
was up-regulated in moderate obesity group and severe
obesity group compared to the normal group as shown in
Figure 6(e). The expression of UBA52 was unchanged
in moderate obesity group and significantly up-regulated
in severe obesity group compared to the normal group as
shown in Figure 6(f).

Discussion

Obesity is a complicated metabolic and multifactorial
status strongly associated with metabolic diseases, such
as cancer, insulin resistance, and cardiovascular disease,28

leading to public health burden and economic cost.29

Obesity in humans is classified according to the body
mass index (BMI), which is divided into three categories:
normal BMI (18.5–24.9 kg/m2), moderate obesity (25.0–
34.9 kg/m2), and severe obesity (35.0–50.1 kg/m2)
(Thagaard et al., 2017).29 A BMI of 30 or higher in humans
is currently classified as a disease.29 To identify the co-
expressed genes network for the progression of obesity
may provide an entry point for the molecular pathogenesis
of obesity.

Notably, obesity phenotypes were similar in our artificial
breeding tree shrews. In this study, we characterized the

Figure 4. Expression profile of top 50 highly expressed genes in blue and brown module and GO (biological process)/KEGG analysis. (a) Expression levels of the top

50 highly expressed genes in blue module. (b) Expression levels of the top 50 highly expressed genes in brown module. (A color version of this figure is available in the

online journal.)
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spontaneous obesity phenotypes of tree shrew for the first
time and explored the possible mechanism of obesity
development based on the transcriptomic data. Like the
phenotypes, the transcriptomic data of 10 tree shrews clus-
tered in lean, moderate, and severe obesity groups. Clear
between-group differences from RNA-Seq data were
detected among the three groups.

WGCNA revealed some specific pathways that might
play an important role in the progression of obesity (e.g.
translational and metabolic pathways in the blue module,
immune and stress-related pathways in the brown module,
and signal pathways in the turquoise module). Particularly,
WGCNA revealed highly co-expressed genes in clusters.

Some of these genes were related to translation-relevant
pathways in the blue module, e.g. the “ribosome,”
“spliceosome,” “RNA polymerase,” and “protein process-
ing in the ER” pathways in the obese cohort. In obese ani-
mals, an increase in protein synthesis resulted in the
increased ribosomal pathways and was accounting for the
increase in energy demands.30

The brown module contained genes previously associat-
ed with immune function and stress, which confirmed the
accepted close relation between obesity and other metabol-
ic disorders, e.g. congenital disorders of metabolism
(Padj¼ 4.80E-07), immune system diseases
(Padj¼ 0.0001.3907–04), and cancers (Padj¼ 1.98E-03).

Because we focused mostly on up-regulated genes, we
further identified AKT1, which belonged to both blue and
brown modules, as the hub gene of this PPI network
according to node degree. We also obtained the highest
degree genes in each module, which were UBA52 in the
blue module, AKT1 in the brown module, and LRRK2 in
the turquoise module.

UBA52 is the abbreviation of ubiquitin A-52 residue ribo-
somal protein fusion product 1. UBA52 not only supplies
ubiquitin but also regulates the ribosomal protein complex.
In previous studies, UBA52 was a key player in both
ubiquitin-related cell cycle control and the ribosome complex
in translational processes.31 In the present study, obese tree
shrews exhibited up-regulation of UBA52 at themRNA level,

Figure 5. PPI regulatory network and hub gene verification by qPCR. (a) Top 20 gene relationships in blue module. (B) Top 20 gene relationships in brown module. (c)

Top 20 gene relationships in turquoise module. (d) The analysis of TFs regulatory network. The pink and green nodes stand for the key genes identified by previous

analysis and the TFs that have regulatory function, respectively. (e) The relative expression of AKT1 in 3 different obesity phonotype groups. (f) The relative expression

of UBA52 in 3 different obesity phonotype groups. (A color version of this figure is available in the online journal.)
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suggesting its contribution to obesity possible via interference
with the cell cycle and the ribosome complex.

LRRK2 is the abbreviation for leucine-rich repeat kinase 2.
Because it contains multiple conserved domains, the lrrk2
protein could interplay with many other proteins. In previ-
ous studies, LRRK2 kinase activity changes are associated
with activation of the cellular death process and autophagy.
Mutations in LRRK2 correlate with inherited and sporadic
Parkinson’s disease. So, its contribution to obesity is possible
via interferencewith cell death and autophagy in accordance
with cellular nutrient conditions.32

Akt1 is a conserved serine/threonine kinase that regulates
and controls cell cycle progression, cell growth, cell metabo-
lism, and cell survival in many tissues and cell types. Shearin
et al.33 reported that lack of AKT in adipocytes causes severe
lipodystrophy. Wan et al.34 reported that loss of AKT1
increased energy expenditure and protected against diet-
induced obesity in rats. In the present study, severe obese
tree shrews exhibited up-regulation of AKT1 at the mRNA
level, whereasmoderate obese and lean tree shrews exhibited
the same level of AKT1 mRNA expression, suggesting that
AKT1 contributes to severe obesity development possibly via
interference with signaling pathways and is a very important
molecule linking severe obesity to cancer and diabetes.34

System biology approaches are advantageous in unrav-
eling transcriptional architecture of complex diseases.
We found the mRNA network, pathways, and hub genes
that were related to obesity. Furthermore, the tree
shrew with different obesity phenotypes is a potentially
useful model for studying the association of obesity with
other diseases.

Conclusions

System biology approaches are advantageous in unraveling
transcriptional architecture of complex diseases. We found
the mRNA network, pathways and hub genes that were
related to obesity. Furthermore, the tree shrew with differ-
ent obesity phenotypes is a potentially useful model for
studying the association of obesity with other diseases.
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Top 20 gene relationships in turquoise module. (d) The analysis of TFs regulatory network. The pink and green nodes stand for the key genes identified by previous

analysis and the TFs that have regulatory function, respectively. (e) The relative expression of AKT1 in 3 different obesity phonotype groups. (f) The relative expression

of UBA52 in 3 different obesity phonotype groups. (A color version of this figure is available in the online journal.)
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