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Impact statement

This study has the following main impacts.
It offers a promising solution for removing
limited-view and limited-bandwidth artifact
in PACT using a linear-array transducer
and conventional image reconstruction,
which have long hindered its clinical
translation. Our solution shows unprece-
dented artifact removal ability for in vivo
image, which may enable important appli-
cations such as imaging tumor angiogen-
esis and hypoxia. The study reports, for the
first time, the use of an advanced deep-
learning model based on stabilized gener-
ative adversarial network. Our results have
demonstrated its superiority over other
state-of-the-art deep-learning methods.

Abstract

With balanced spatial resolution, penetration depth, and imaging speed, photoacoustic
computed tomography (PACT) is promising for clinical translation such as in breast
cancer screening, functional brain imaging, and surgical guidance. Typically using a linear
ultrasound (US) transducer array, PACT has great flexibility for hand-held applications.
However, the linear US transducer array has a limited detection angle range and frequency
bandwidth, resulting in limited-view and limited-bandwidth artifacts in the reconstructed
PACT images. These artifacts significantly reduce the imaging quality. To address these
issues, existing solutions often have to pay the price of system complexity, cost, and/or
imaging speed. Here, we propose a deep-learning-based method that explores the
Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to reduce
the limited-view and limited-bandwidth artifacts in PACT. Compared with existing recon-
struction and convolutional neural network approach, our model has shown improvement in

imaging quality and resolution. Our results on simulation, phantom, and in vivo data have collectively demonstrated the feasibility
of applying WGAN-GP to improve PACT’s image quality without any modification to the current imaging set-up.
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Introduction

Photoacoustic (PA) tomography (PAT) is a hybrid imaging
modality combining optical excitation and ultrasonic detec-
tion. In PAT, a pulsed laser provides the excitation light that
is absorbed by the biological tissue, which generates pres-
sure waves propagating in the tissue. The pressure waves
are then detected by an ultrasonic transducer or transducer
array to form an image of the original optical energy
deposition inside the tissue. Photoacoustic computed
tomography (PACT) is a major implementation of PAT,
which enables deep tissue imaging by using wide-field
light illumination and parallel acoustic detection with an
ultrasonic transducer array. PACT has great potential for
clinical translation, due to its non-ionizing radiation, deep
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penetration (>3 cm), and intrinsic functional and molecular
sensitivity.'™

For most clinical applications, PACT typically uses a
linear ultrasonic transducer array. Its planar detection
enables flexible position on the body surface. However,
it induces consequently two types of transducer-related
image artifact: limited-view and limited-bandwidth arti-
fact. The limited-view artifact in PACT is caused by incom-
plete signal acquisition from the partial solid angles.* Due
to the coherent signal generation (or specular emission) and
the limited detection angle, the targets that are aligned with
the transducer’s acoustic axis (i.e. vertical structures)
cannot be imaged.” For a linear ultrasound (US) transducer
array, the limited-view artifact mainly presents as curved
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stripe features that stretch on both sides of the recon-
structed imaged target. Similarly, the limited-bandwidth
artifact is caused by the US transducer array’s limited
detection frequency bandwidth and acts as a band-pass
filter that removes both high- and low-frequency compo-
nents of the PA signals.® The limited-bandwidth artifacts
usually present as hollow inner features of the solid targets.
In addition, the frequency bandwidth limits the axial
resolution.

Various methods have been explored to reduce the
reconstruction artifacts in PACT.*”® For example, research-
ers have used acoustic deflectors® and full-view ring-
shaped transducer arrays’ to address the limited-view
issue, which, however, substantially increased the system
complexity and reduced the applicability. Various algorith-
mic solutions have also been studied for limited-view
artifact, such as weighted-factor, iterative-based back-
projection and compressed-sensing techniques.””'%™°
However, these methods are either not applicable for
PACT systems with a linear-array transducer™ or time-
consuming with iterative computation.”'*'>!%1>  To
address the limited-bandwidth artifacts, Wiener filtering
was used to expand the frequency spectrum of the detected
signals. However, this method requires high signal-to-
noise ratio (SNR) of the signal, which may be not available
in practice. An iterative deconvolution method was also
reported to deblur the reconstructed images, at the cost of
processing time.'®

Deep learning (DL) has been increasingly applied in
enhancing PACT performance, including localizing wave-
fronts,"” improving LED-based PAT,'® and assisting cancer
detection."”' DL has also been extensively explored for
PACT artifact removal. For example, several groups have
reported the use of UNet and other deep convolutional
neural networks (CNNs) to address the limited-view and
sparse-sampling issues as postprocessing correction,”* >*
direct reconstruction,” and model-based learning.*® For
the band-limited response, fully connected neural network
has also been applied to the radio-frequency (RF) data to
retrieve out-of-band signals.”’ Similar studies by Allman
et al.*® focused on locating true point targets in the presence
of reflection artifacts. All the methods have shown promis-
ing results on simulated and experimental data; however,
none have addressed both limited-view and limited-
bandwidth artifacts simultaneously for PACT systems
with a linear-array transducer.

Recent advances in DL for medical imaging include one
of the most important breakthroughs: generative adversar-
ial networks (GANSs). By employing two models competing
with each other, GAN is known for generating realistic syn-
thetic images from arbitrary input.”” More details on GAN
will be discussed in the ‘Materials and methods” section.
Applications of GAN in medical imaging include image
reconstruction and segmentation, as well as disease diag-
nosis in X-ray CTand MRI.***! The downside of GAN is the
instable training. It often suffers from vanishing gradient
and mode collapse when either of the models becomes too
strong for the other one.*” Different techniques have been
studied to stabilize GAN, including noise addition®® and

loss modification,>*%°

mance and outcome.

Here, we propose a deep-learning-based solution to
address PACT’s limited-view and limited-bandwidth
artifacts. Our method is based on stabilized Wasserstein
generative adversarial network with gradient penalty
(WGAN-GP) and additional mean-squared-error (MSE)
loss function. WGAN-GP combines UNet® and
DCGAN?® to provide artifact-reduced PACT images with
significantly improved quality. WGAN-GP was trained and
tested on simulated data generated by the k-Wave tool-
box,>° with the time-reversal reconstruction images as the
model input. The network’s in vivo performance was vali-
dated on mouse vasculature images, and compared with
time-reversal and UNet-based results. Overall, WGAN-GP
has shown superior performance in removing limited-view
and limited-bandwidth artifacts in PACT images.

which have shown improved perfor-
36,37

Materials and methods

WGAN - GP and model architecture

A typical GAN model has two CNNs: the generator (G) and
discriminator (D). The two parts compete in a min-max
problem described in equation (1)*°

ming maxp V(G, D) = Ey_p,x[logD(x)]

+E,op,z) (log (1 -D (G(Z)) ) )
@

In this loss function, G takes the time-reversal recon-
structed image with artifacts as the input z, and outputs
the model-resolved image G(z) that can ‘trick’ D to
classify G(z) as an artifact-free image. P; and P, are the
real and the artifact-heavy data distribution respectively.
D, on the other hand, is trained to assign the correct label
to G(z) as a model-resolved output and x as an artifact-free
image (ground truth). In this way, G is trained to produce
the best possible output in order to make D misclassify
G(z), while D is trained to be more sensitive to identify
G’s attempt.

The loss function (1) in vanilla GAN suffers from train-
ing instability due to the vanishing gradient of D when
minimizing the Jensen-Shannon divergence between Py
and P,. Alternatively, in WGAN, Wasserstein metric, or
Earth’s Mover distance, W (d, z) is proposed. W(d, z) is dif-
ferentiable almost everywhere under mild consumptions,
thus leading to a more stable optimization of G. In this case,
D becomes an optimal discrimination as a critic, instead of a
classifier. This critic is under the 1-Lipschitz constraint
enforced by a gradient penalty which ensures the gradient
norm to be 1. Last but not the least, an additional MSE loss
component is added to maintain the information of the
reconstructed images. Yang et al.’’ suggested the use of
perceptual loss based on pretrained VGG network instead
of MSE. However, since the reconstructed PACT images are
not similar to the ImageNet data employed for the pre-
trained VGG model,*' we will first use the MSE loss in
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this study. Overall, our final loss function is

mingmaxp Vean (G, D) = —E,[D(x)] + E, [D (G(Z))}

+ 21GP(&) + AQMSE(G(Z), x)
2
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In this equation, E (.) denotes the expectation operator,
N is the total number of pixels, and % is sampled from G(z)
and x with t uniformly sampled between 0 and 1: X =
tG(z) + (1 — t)x. The weighting parameter /; of the gradi-
ent penalty takes the suggested value of 10,** while /, is 20
based on our training experiments. The number of critic
iterations per generator iteration is 5.

The overall architecture of WGAN-GP is shown in

Figure 1. G in WGAN-GP takes the form of UNet™ layers.
In Figure 1, each block of the UNet shows its name
(DnL: down-sampling layer; UL: up-sampling layer) and
the number of channels. The breakdown of each step in
the dashed box shows its associated layers with their cor-
responding parameters. UNet has been proven effective in

With : GP(%) = E& {(|VJ%D(5c)||2 - 1)2]

MSE(G(Z),x) =Eq, 2 {% 1G(z) — x”%}
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Figure 1. WGAN-GP model architecture. In all layers, the first number is the number of filters. k and s denote the kernel size and stride, respectively. In up-sampling
layer, size is the upsampling factor. (A color version of this figure is available in the online journal.)
BN: batch normalization; RelLU: rectified linear unit.
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passing features from lower layers and achieving faster
training without re-learning redundant features. Critic D
follows the model construction proposed by DCGAN
with enlarging feature maps toward the output, enabling
an increasing number of learned features for accurate critic
of the input. Different from the conventional GAN discrim-
inator, D in WGAN-GP does not have the sigmoid layer for
the final output.

Data-sets, simulation, and model training

In addition to building the actual model, constructing the
training and testing data-set is a vital step for WGAN-GP.
Our study used the k-Wave toolbox to simulate the training
and testing data in PACT.* To evaluate the performance of
WGAN-GP, we simulated a data-set with 5000 images of
randomly position-distributed disks (4000 for training and
1000 for testing). These disks have diameters ranging from
0.15 to 3mm. To train the model with in vivo data, we
adapted the brain vascular database by two-photon micros-
copy (TPM), as shown in Figure 3(e).*> There are three
reasons that make TPM vascular data useful for training
WGAN-GP. First of all, blood vessels are the major targets
in many PACT applications. TPM images, as shown in
Figure 3(e), contain cross-sectional blood vessels that close-
ly ensemble the targets in PACT images. Secondly, the TPM
images have much better resolutions than the simulated
PACT images, and thus can serve as the ground truth.
Thirdly, the TPM images have high-density high-variance
vascular structures, which help train the models to learn in
vivo conditions with complex vascular network. For each
stack of TPM volumetric images, we removed the first 50
and the last 30 depth stacks which either have oversized
blood vessels or significantly lower SNR. All the input TPM
images for k-wave simulation were rotated 90° in order to
emphasize the longitudinal vessels. To determine the train-
ing data size, a common practice is to obtain the learning
curve which shows the testing accuracy versus the training
size. For DL, it is intuitive that we need as many data as
possible to improve the performance of the model. The
learning curves from other studies have shown that the
accuracy of the model increases logarithmically with train-
ing data size.*’ Thus, for disk data, we empirically deter-
mined the training size based on our targeted training time
of 16 hours for WGAN-GP model. For TPM vascular data,
because the total data have ~9000 samples, a train/ test split
of 80/20 gives us 7200 training and 1800 testing instances.

The training and testing data generated from simulation
were then carefully crafted to be close to the realistic data.
In our simulation, each disk or TPM vascular image with
the size of 256 by 256 pixels was passed through the k-Wave
toolbox to generate the raw RF photoacoustic data and the
reconstructed image with limited-view and limited-
bandwidth artifacts. White noise was added to the RF
data before reconstruction with randomly assigned SNR
ranging from 10 to 100. All the reconstructed data were
normalized between 0 and 1 after Hilbert transform.
Throughout the entire simulation, we follow the configura-
tion of L7-4 linear transducer array, which has 128 elements,
a central frequency of 5MHz, and a 3dB detection

Table 1. Training time for UNet and WGAN-GP with disk and TPM
vascular data.

Training time (hours) UNet WGAN-GP
Disk data 2.7 16.0
TPM vascular data 6.0 29.2

TPM: two-photon microscopy; WGAN-GP: Wasserstein generative adversarial
network with gradient penalty.

bandwidth of 60%. The size of the reconstructed image
size was 38.4mm by 38.4mm with a grid size of 150 pm.
The medium in the simulation was tissue with an average
speed of sound of 1540 m/s. Directivity of the transducer
was also taken into account based on the receiving aperture
of each element.

Both WGAN-GP and UNet models were trained on disk
and TPM vascular data. All the training for WGAN-GP was
performed on an NVIDIA RTX 2080 Ti GPU using
Keras with Tensorflow back-end. The number of training
epochs was 50 with a batch size of five for each iteration in
each epoch. The training time for each model is summa-
rized in Table 1. It is not surprising that WGAN-GP takes
more time to train than UNet, because of increased model
complexity and multiple D updates in one iteration. For a
fair comparison between UNet and WGAN-GP, we allowed
UNet model training with both data-sets to converge, as
shown in Figure 2. All the codes of the models with com-
plete parameters can be found at https://github.com/
trivul69/2d-artifact-removal-PACT. All the data used in
the paper can be shared upon request.

Evaluation metrics and experimental data

The evaluation matrices for the model with simulated data
include the structural similarity index (SSIM) and peak
signal-to-noise ratio (PSNR). SSIM and PSNR were used to
compare the similarity between a reference image x and a
target image G(z). SSIM contains local information that
reflects the interdependence of neighboring pixels and is
relatively perceptual.** PSNR, on the other hand, resides
more on global information owing to its dependence on
MSE between two images. SSIM and PSNR were calculated
for each output of WGAN-GP and then averaged over all the
testing data.

Experimental data were then employed to evaluate the
model’s performance. The DL models trained with disk
data-set were tested on two types of phantom data. The
first phantom was a group of transparent plastic tubes
(diameter: 1.5 mm) filled with black ink to provide optical
absorption. The tubes were placed at different depths
(5mm step size) in an optically scattering medium with a
reduced scattering coefficient of ~7cm ™" at 1064 nm. This
phantom set-up mimicked the simulated disk data and
evaluated the sensitivity of the models to light attenuation
and SNR. The second phantom was a point target repre-
sented by a human hair with a diameter of ~100 pm embed-
ded in clear agar. Band-limited frequency response of the
linear transducer array resulted in a blurred point-spread
function (PSF). To demonstrate WGAN-GP’s performance
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to reduce limited-bandwidth artifact, the model should be
able to improve the PSF to a narrower profile.

For in vivo data, we imaged the skin vasculature in the
trunk of a female mouse. The protocol was approved by
the Institutional Animal Care and Use Committee of Duke
University. The in vivo data were used to evaluate the
DL models trained with TPM vascular data-set. For all
experimental data, we used our PACT system based on a
commercial US scanner (Vantage 128, Verasonics) with an
L7-4 linear transducer array and an Nd:YAG laser (Q-smart
850, Quantel).45 Laser pulses at 532 nm were used, with a
pulse energy of 30 mJ and repetition rate of 10Hz. The
experimental set-up is shown in Figure 6(a).

Results

Simulated testing data

The performance of WGAN-GP compared with time-
reversal and UNet on the simulated disk data is shown in
Figure 3. For the simulated disk data, both WGAN-GP and
UNet have improved the reconstructed time-reversal
images that have heavy limited-view artifacts (i.e. the
curved stripe features) and limited-bandwidth artifacts
(i.e. the hollow disks). It is clear that the DL-resolved
images can recover the solid inner structures of the disks,
which are largely missing in the time-reversal images, illus-
trated by the structures in the red boxes (Figure 3(a) to (d)).
WGAN-GP and UNet have on par performance on simu-
lated disk data, represented by the SSIM and PSNR results
in Table 2. For TPM vascular data, WGAN-GP shows a
slightly better performance than UNet. Besides higher
SSIM and PSNR, WGAN-GP outperforms UNet in recov-
ering low-contrast structures, shown by the yellow arrows
in Figure 3(e) to (h). As the PA sources become more com-
plex, WGAN-GP shows superior performance over UNet.
Additionally, as shown by the white dashed arrows in
Figure 3(e) to (h) and close-up images in Figure 3(i) to (I),
both models can better recover vertical structures than the
time-reversal result.

5 6 7 8

x10°
E] UNet on Vascular Data

Phantom data

For the tube phantom, both DL models trained with disk
data-set have better performance than time-reversal. At the
first four depths, similar to the results on simulated disks,
WGAN-GP and UNet recover the inner structures of the
tube, as shown in Figure 4(a) to (c). Due to light attenuation,
the SNR of the blood tube decreases with depth (Figure 4(a)
and (e)). We can observe that when the SNR is less than
~15dB, both UNet and WAGN-GP cannot reconstruct the
true target, as illustrated in Figure 4(b) and (c).
Nonetheless, for in vivo imaging, PACT can provide suffi-
cient SNR in deep tissues (17.5dB at ~4cm™), even with
compact laser sources.”” In addition, our model has great
denoising capability. As shown in Figure 4(e), WGAN-GP
improves the SNR by 3 and 1.5 folds over time-reversal and
UNet, respectively.

The capability of the models to resolve a point target was
then evaluated by the hair phantom data. The PSF of the
time-reversal result clearly shows the enlarged axial width
due to band-limited frequency response, and the wing-
shaped limited-view artifacts (Figure 5(a)). The DL model
results have improved the PSFs as illustrated in Figure 5(b)
and (c). The spatial profiles shown in Figure 5(d) further
show that WGAN-GP has better spatial resolution than
UNet. The difference is more significant in the lateral direc-
tion, where WGAN-GP’s and UNet's FWHM are 40 and
55 pm respectively. Additionally, the stripe artifacts due to
limited view (red arrows in Figure 5(a)) are largely
removed by WGAN-GP, but not by UNet.

In vivo data

Finally, the performance of WGAN-GP on in vivo mouse
vascular data is shown in Figure 6, with a representative
cross-sectional PACT image. Compared to the time-reversal
images (Figure 6(c)), the WGAN-GP images provide sub-
stantially improved visibility for continuous vascular struc-
tures, including the vertical vessels (Figure 6(e) and (g)).
UNet has comparable improvement as shown in Figure 6
(d) and (f); however, UNet recovers fewer details
than WGAN-GP as denoted by the close-up images in
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Figure 3. Performance of WGAN-GP on simulated disk and TPM vascular images. Representative ground truth, time-reversal reconstruction, UNet and WGAN-GP
results on (a—d) disk and (e-h) TPM vascular images. (i-l) Close-up images of the green boxes in (e-h) showing the vertical structures. The red boxes in (a—-d) highlight
the superior performance of DL models to recover the true disk shapes. The yellow arrows in (e-h) highlight the low-contrast structures that are reconstructed by

WGAN-GP only. The dashed white arrows point out the vertical vessels recovered by the models. Scale bar: 5 mm. (A color version of this figure is available in the online

journal.)

Figure 6(f) and (g). Moreover, WGAN-GP also has better
contrast-to-noise ratio (CNR) of 9.3 than UNet (CNR=6.1).
We believe that the CNR improvement is due to the differ-
ence in the loss function between the two models. UNet
uses the MSE for gradient descent, which leads to more
image blurry and thus lower CNR. This blurring effect is
also evident in the simulated results (Figure 3(i) to (1)),
where UNet cannot reconstruct the fine details. For in
vivo data, in which the PA targets are dense (Figure 6(c)),
UNet’s blurring effect is more significant, resulting in
lower CNR.

Discussion

In this work, we have reported a new deep-learning model
WGAN-GP, which is based on the GAN, to reduce the
limited-view and limited-bandwidth artifacts in PACT
images. We first trained and tested WGAN-GP using sim-
ulated disk data and TPM vascular images, showing
improved SSIM and PSNR. WGAN-GP then shows superi-
or performance on the experimental phantom and in vivo
animal data compared to UNet both qualitatively and
quantitatively. Overall, WGAN-GP is capable of reducing
the limited-view and limited-bandwidth artifacts of PACT
using a linear transducer array, and thus, has great poten-
tial to enhance the image quality without modifying the
imaging system or reducing the imaging speed. Such

Table 2. SSIM and PSNR results of UNet and WGAN-GP on disk and
vessel testing data.

UNet WGAN-GP
SSIM (mean =+ standard deviation)
Disk 0.96 +0.03 0.96 +0.03
Vessel 0.62 +0.09 0.65+0.08
PSNR (mean =+ standard deviation)
Disk 32.2+3.14 32.1+3.14
Vessel 25.7+2.22 26.5+2.06

PSNR: peak signal-to-noise ratio; SSIM: structural similarity index; WGAN-GP:
Wasserstein generative adversarial network with gradient penalty.

improvements by WGAN-GP are beneficial for a variety
of PACT applications, such as mapping the tumor vascula-
ture in thermal ablation and detecting blood clots during
sonothrombolysis.

Nonetheless, our method has some limitations. First, in
our forward model, we only consider the US generation but
not the optical excitation. In practice, different light deliv-
ery strategies lead to different optical fluence distribution
within the sample. Our model has not been trained to
accommodate the optical fluence variation in the training
data. In the next step, we will incorporate optical excitation
in our simulation as an end-to-end forward model.
Secondly, the DL networks are target-specified and can
only recognize the PA targets similar to those used in the
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Figure 6. Experimental performance of WGAN-GP on in vivo trunk vascular images of a mouse. (a) System set-up for the experimental data. (b) Cross-sectional
B-mode US image of the mouse trunk with the corresponded PACT images from (c) time-reversal, (d) UNet, and (¢) WGAN-GP. (f and g) Close-up images of the region
indicated by the white dashed boxes in UNet and WGAN-GP images, respectively. For CNR calculation, the green boxes denote the target, while the blue boxes
indicate the background regions. The dashed white arrows highlight the vertical vessels recovered by the models. Scale bar: 7.5 mm. (A color version of this figure is

available in the online journal.)
CNR: contrast-to-noise ratio; PA: photoacoustic; US: ultrasound.

training data, which is a common issue for DL. Therefore,
the network trained with disk data cannot be applied for in
vivo vascular data. Future work will create more generic
training data with various types of PA targets. Finally, the
training time of WGAN-GP is two times longer than that of
UNet. It will be even more time-consuming for 3D image
reconstruction.

Our future work will mainly focus on optimizing the
model accuracy and validating the in vivo results.
Currently, the SSIM of the model on the vessel data is
only about 0.65, which can be improved by using a larger
training data size and incorporating other vascular data-
bases as PACT ground truth. In addition, even though the
model has been thoroughly validated by the experimental
phantom data with simple targets (tubes and hair), it
remains technically challenging to validate the fidelity
of the recovered structures for the in vivo images. This is
the common problem for current DL approaches on recon-
struction enhancement. US imaging can be used as a
concurrent validation. However, conventional B-mode US
imaging has limited sensitivity to blood vessels. In the
future, we propose to use PACT-compatible microbubbles
to enhance the US imaging of blood vessels and thus vali-
date our DL model.
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