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Biomedical optical imaging technologies are playing an
indispensable role in basic research and clinical diagnosis
owing to their superior spatial resolution, rich imaging con-
trasts, and non-ionizing properties of the light radiation.
Biomedical optical imaging technologies rely on the inter-
action of light with biological tissues, the subject of biomed-
ical optics, to provide contrast to reveal the features of
interest of a sample. When interacting with biological tis-
sues, the properties of the incident photons like amplitude/
intensity, phase, polarization states, and wavelength may
be modified by scattering, absorption, tissue birefringence,
fluorescence, and nonlinear effects. All these changes of the
light properties may provide specific contrasts for imaging
the structure or function of biological tissues.

Optical coherence tomography (OCT)1–5 and photoa-
coustic tomography (PAT)6–10 are two representative
novel optical imaging technologies that can provide high-
resolution (micrometer scale) three-dimensional (3D) struc-
tural and functional imaging of biological tissues. OCT is a
low-coherence interferometry-based optical imaging tech-
nology that uses coherence gating to achieve depth resolu-
tion. Conventionally, OCTuses a Michelson interferometer,
either optical fiber-based or in free space, illuminated with
a broadband light source to get the interference signal
between the backscattered light from a sample in the
sample arm and the reflected light from the reference
arm. Although first invented in 1991,1 time-domain OCT
was not well accepted in the clinics until the invention of
the spectral-domain OCT (SD-OCT), which was reported
first in 1995 and well recognized since 2003.2,3,11–13

There are different branches of OCT technology for
imaging different bio-parameters by using different con-
trast mechanisms. Conventional OCT images the structure
of biological tissues by using the signal intensity contrast,
which depends on the optical boundaries formed by
regions with different optical properties.14,15 Polarization-
sensitive OCT,16,17 including Mueller-matrix OCT and
Jones-matrix OCT,18–21 images the polarization properties
of a sample like amplitude and orientation of birefringence.
Optical Doppler tomography22–24 or Doppler OCT images

the flow speed of moving particles like the red blood cells
inside a blood vessel. OCT angiography (OCTA)25–27 is a
recently developed technology to image the structures of
the blood vessels with sensitivity high enough to image the
capillaries, which uses the moving-induced decorrelation
of the interference signals as contrast. Optical coherence
elastography (OCE)28,29 is a new branch of OCT to measure
the mechanical properties of biological tissues by taking
advantage of the high spatial resolution of OCT to measure
the small displacement induced by pressure.

OCT has found clinical and preclinical applications in
various medical fields such as ophthalmology,30–37 cardiol-
ogy,38–40 neurology,41–43 gynecology,44,45 dermatology,46–48

dentistry,49,50 developmental biology,51 urology,52–54 gastro-
enterology,55–57 etc. OCT has been used to measure the
oxygen saturation in blood vessels by extracting the spec-
tral information in the interference signals.58–60 OCT can
provide molecular contrasts in a multimodal imaging
system to quantify the concentration of molecules like rho-
dopsin and lipofuscin in the retina.61–65 OCT was used to
measure the intrinsic signals of the photoreceptors.66,67

Currently, OCT has established its role in the forefront in
ophthalmology for the diagnosis and monitoring progres-
sion of all kinds of retinal diseases. The clinical applications
of OCT in other medical fields are also under investigation.

In this thematic issue, we have gathered research and
mini-review articles in the fields of PS-OCT, OCE, OCTA,
and novel applications of OCT. The paper by Yao and
Duan68 presented a review on the recent developments of
high-resolution 3D optical tractography using Jones-
matrix PS-OCT. Tractography is a specialized imaging tech-
nology that can reveal the detailed fiber architecture of
fibrous tissues. Recent developments have demonstrated
the feasibility of extracting the depth resolved local optic
axis from PS-OCT measurements using Jones-matrix calcu-
lus. The obtained optic axis data can then be used to con-
struct 3D tractography in a variety of tissues including
heart, skeletal muscle, cartilage, and artery. This new trac-
tography technology is also termed optical polarization
tractography.

ISSN 1535-3702 Experimental Biology and Medicine 2020; 245: 269–272

Copyright ! 2020 by the Society for Experimental Biology and Medicine

https://orcid.org/0000-0003-3690-3722
mailto:shjiao@fiu.edu


Qian et al.69 presented a new method of evaluating the
posterior eye elasticity in vivo by using a shaker-based
OCE. They validated the technique by imaging both phan-
toms and rabbit eyes in vivo. Su et al.70 reported their
investigations on retinal neurovascular responses to trans-
corneal electrical stimulation (TES). By using SD-OCT to
measure the intrinsic optical signal (IOS) and the blood
flow parameters, they were able to record simultaneously
the neural and vascular responses of the retina to TES in
vivo. They have found that TES mainly induced neural
responses in the retina while no significant vascular
responses were evoked. These results provided insights to
the mechanism of retinal neurovascular coupling in
response to TES. Yao et al.71 reviewed the current progress
of quantitative OCTA, which extracts quantitative meas-
ures of the vasculature parameters from OCTA images,
including blood vessel tortuosity, blood vessel caliber,
blood vessel density, vessel perimeter index, fovea avascu-
lar zone area, FAZ contour irregularity, vessel branching
coefficient, vessel branching angle, branching width ratio,
and choroidal vascular analysis. These quantitative meas-
ures are proved to be useful for the diagnosis of various
retinal diseases.

PAT is a scalable imaging technology, which has two
major branches: photoacoustic microscopy (PAM) and pho-
toacoustic computed tomography.6 PAT uses the photoa-
coustic effect to generate an image. When illuminated by
pulsed or intensity-modulated laser light with a wave-
length within the absorption spectrum of a sample, the
absorbed light energy is converted to heat, inducing a tran-
sient temperature increase. Upon thermal relaxation, an
ultrasonic wave is generated, which can be detected by
using an ultrasonic transducer. The time-of-flight of the
detected ultrasonic wave tells the depth information of
the origin of the wave, thus the location of the absorber,
e.g. the red blood cells in a blood vessel. The lateral reso-
lution of PAM can be either the size of the light focus in the
superficial region (the ballistic scattering regime) or the size
of the ultrasonic focus in deeper regions where the incident
light is diffused (optical quasidiffusive or diffusive regime).
The majority of PAT technologies have been intensively
studied for preclinical imaging of animal models.

Zhang et al.72 investigated the technical feasibility of
transrectal PAT for prostate cancer imaging by using ICG
as a contrast agent, light illumination from an LED array
via the urethral track, and a commercial linear array ultra-
sonic transducer. They conducted experiments on a clini-
cally relevant ex vivo model including whole human
prostates harvested from radical prostatectomy. Their
imaging results showed that tubes containing ICG solution
at different concentrations could be detected at different
positions in the prostate within a 2 cm range from the ure-
thral wall, an imaging range that can possibly cover the
entire prostate.

In the paper of Kim et al.,73 new updates to improve the
clinical usability of a real-time clinical photoacoustic and
ultrasound imaging system were reported. These updates
allow optimization of all imaging parameters while contin-
uously acquiring the photoacoustic and ultrasound images
in real-time. The updated system has great potential to be

used in a variety of clinical applications such as assessing
the malignancy of thyroid cancer, breast cancer, and
melanoma.

In the article of Karthikesh and Yang,74 technologies of
photoacoustic image-guided interventions were reviewed.
They reviewed the potentials of photoacoustic imaging in
guiding active and passive drug deliveries, photothermal
therapy, and other surgeries and therapies using endoge-
nous and exogenous contrast agents including organic,
inorganic, and hybrid nanoparticles, as well as needle-
based biopsy procedures. The advantages of photoacoustic
imaging in guided interventions were discussed.

Dadkhah and Jiao75 reported a PAM-based multimodal
imaging technology, which integrated PAM, OCT, OCTA,
and fluorescence microscopy in a single platform. The
reported systemwas able to image complementary features
of a biological sample by combining different contrast
mechanisms.

In addition to the OCT and PAT technology and their
applications, this thematic issue also features articles that
use novel optical imaging as a key technology for research.
Li et al.76 investigated application of intrinsic nonlinear
optical imaging such as two-photon excited autofluores-
cence and second harmonic generation (SHG) microscopy
to quantitatively assess chondrocyte viability in articular
cartilage. Lu et al.77 applied time-lapse near-infrared light
microscopy to monitor the spatiotemporal dynamics of the
IOS responses in freshly isolated retinas activated by visible
light stimulation. Nesmith et al.78 reported the use of opti-
cal method to map the electromechanics in intact organs.
Massett et al.79 used SHG and total internal reflection fluo-
rescence microscopy to investigate the loss of smooth
muscle a-actin effects on mechanosensing and cell-matrix
adhesions.

In summary, although only covered a limited number of
optical imaging technologies and their applications, this
thematic issue would help us perceive the power and sig-
nificance of optical imaging technologies in clinical diagno-
sis and biomedical research. This thematic issue will also
help attract future publications of biomedical optical imag-
ing related articles in Experimental Biology and Medicine.
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