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Abstract
The process of cancer development and progression is driven by distinct subsets of cancer

stem cells (CSCs) that contribute the self-renewal capacity as the major impetus to the

metastatic dissemination and main impediments in cancer treatment. Given that CSCs

are so scarce in the tumor mass, there are debatable points on the metabolic signatures

of CSCs. As opposed to differentiated tumor progenies, CSCs display exquisite patterns of

metabolism that, depending on the type of cancer, predominately rely on glycolysis, oxi-

dative metabolism of glutamine, fatty acids, or amino acids for ATP production. Metabolic

heterogeneity of CSCs, which attributes to differences in type and microenvironment of

tumors, confers CSCs to have the plasticity to cope with the endogenous mitochondrial

stress and exogenous microenvironment. In essence, CSCs and normal stem cells are like mirror images of each other in terms of

metabolism. To achieve reprogramming, CSCs not only need to upregulate their metabolic engine for self-renewal and defense

mechanism, but also expedite the antioxidant defense to sustain the redox homeostasis. In the context of these pathways, this

review portrays the connection between the metabolic features of CSCs and cancer stemness. Identification of the metabolic

features in conferring resistance to anticancer treatment dictated by CSCs can enhance the opportunity to open up a new

therapeutic dimension, which might not only improve the effectiveness of cancer therapies but also annihilate the whole tumor

without recurrence. Henceforth, we highlight current findings of potential therapeutic targets for the design of alternative strat-

egies to compromise the growth, drug resistance, and metastasis of CSCs by altering their metabolic phenotypes. Perturbing the

versatile skills of CSCs by barricading metabolic signaling might bring about plentiful approaches to discover novel therapeutic

targets for clinical application in cancer treatments.
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Introduction

To date, many lines of research suggest that cancer can
be considered as a metabolic disease characterized by
defective respiration or enhanced glycolysis. Genomic
alterations and other hallmarks of cancers are
nowadays conceived as downstream epiphenomena of
underlying causes of metabolic disorders in cancer cells.1

Dysregulation of glucose metabolism, fatty acid synthesis,
and glutaminolysis that satisfy the bioenergetic and biosyn-
thetic needs of cancer cells can cause their resistance to

therapies.2 As such, it is evident that cancer cells can mod-
ulate their metabolism to optimize energy demands3 and
induce immune escape,4 which could be exploited as ther-
apeutic targets for cancer treatment in light of the evolving
metabolic landscape. Given that cancer stem cells (CSCs)
embrace many malignant traits conferring therapeutic
resistance, recurrence, and metastasis, eradication of CSCs
can hold a promise of permanent cure for cancer patients.

CSCs manage to retain stem cell properties embracing
the capacity of self-renewal and differentiation into
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progenies to form the epigenetically defined intra-clonal
bulk tumors. It is reminiscent of normal stem cells and
transit-amplification of cell populations with differentia-
tion capability,5,6 which is called “stemness” of cancer
cells. Metaphorically, the majority of heterogeneous tumor
cells resemble various kinds of worker bees and CSCs are
like the queen bees that establish the bee colony and het-
erogeneity of the hierarchy. Without the queen, the whole
colony will collapse. Likewise, CSCs sustain the entire
cancer population in a similar fashion. Unfortunately, con-
ventional cancer therapies kill only differentiated tumor
cells but spare CSCs, an extremely rare subset of resistant
cells within the tumor mass, which is the main cause of
recurrence and metastasis.7 This is due to the fact that
CSCs are able to expel anticancer drugs via ABC-transport-
ers.8 Peculiar properties of CSCs, such as manifesting qui-
escent phenotype, maintaining reactive oxygen species
(ROS) at low levels, and residing in hypoxic region
within tumors may also compromise the effectiveness of
anticancer therapies.9 These underlie the observation that
CSCs are refractory to treatment and have a high incidence
of relapse even after therapy has almost eradicated the
tumors. Finding CSCs may provide an effective direction
and a major leap toward a cure of cancers. Spherogenesis,
side population, cellular markers, and aldehyde dehydro-
genase (ALDH) activity of CSCs are currently major ave-
nues to characterize and isolate CSCs.10 However, there are
a lot of challenges of isolating and enriching such rare CSCs
from heterogeneous tumor bulk in the absence of knowing
their specific biomarkers. An alternative characterization of
CSCs from a metabolic perspective provides a new direc-
tion to identify and target this rare subpopulation.
Therefore, the metabolism-based therapy has become a
dawning strategy to halt cancer progression, and substan-
tial efforts have been made to discover novel targets for
anticancer treatment. In this review, we highlight the key
players of metabolic pathways that characterize CSCs with
insights in metabolic therapeutic strategies that can be
exploited in preclinical and clinical settings. Specific meta-
bolic inhibitors that can overwhelm stem cell properties
may halt disease recurrence and attenuate the dissemina-
tion of CSCs and the capacity of spawning metastases of
cancer cells.

Metabolic reprogramming in the CSCs

Themetabolic hallmarks of CSCs in different types or status
of tumors like proliferative vs. quiescent or normoxic vs.
hypoxic have been mired in controversy, and the molecular
mechanism governing the stemness properties of CSCs
remains unclear.11 Differences in tissue oxygenation and
genetic background may be one of the causative factors in
the development of metabolic complexity, plasticity and
heterogeneity in different types of CSCs.12 Remaining con-
troversies may be related to diverse surface markers and
isolation techniques of CSCs in different tumor types.13

Notwithstanding the divergent findings in the metabolism
of CSCs, a corpus of evidence is emerging to show that
these unique metabolic signatures are pivotal to the func-
tion of CSCs. The discoveries of stem cells spark heated

debate over whether CSCs employ central metabolic path-
ways as seen in normal stem cells, which are quite dissim-
ilar to the differentiated bulk of tumor cells. Even though
bioenergetic signature of CSCs has remained elusive, many
lines of evidence have accumulated to demonstrate that
metabolic pathways in CSCs are like those in tissue stem
cells. The metabolic signature of stem cell-like osteosarco-
ma resembles that of somatic stem cells characterized by an
upregulation of glycolytic flux.14 This metabolic shift of
CSCs encompasses a decrease in oxidative phosphorylation
(OXPHOS) but a pronounced increase in lactate
production, expression of glycolytic enzymes and glucose
consumption compared with their differentiated counter-
parts. Although glycolysis is enhanced in the CSCs of oste-
osarcoma,14 breast cancer,15 nasopharyngeal,16 colorectal,17

and hepatocellular carcinoma,18 many studies have shown
that CSCs of glioma,19 pancreatic ductal adenocarcinoma,20

leukemia21 rely mainly on mitochondrial respiration for the
major supply of energy (Table 1). These oxidative CSCs are
less glycolytic and have increased levels of mitochondrial
mass, membrane potential, ATP, and ROS concentrations as
compared with their differentiated counterparts. Pancreatic
cancer cells with oncogene ablation acquired stemness
traits to display active mitochondrial function and rely
less on glucose and glutamine metabolism, but more on
pyruvate and palmitate to fuel the tricarboxylic acid
cycle.22 However, the reliance on glycolysis or OXPHOS
is still ambiguous in glioblastoma, lung, breast, and ovarian
CSCs. These diverse observations may stem from the fact
that the definition and isolation methods of CSCs were not
identical among these studies, and hence different CSCs
came from a variety of sources with divergent character-
istics. In any case, metabolic heterogeneity of different sub-
clones of CSCs can bear different metabolic phenotypes
because of differences in genetic or microenvironmental
factors of cancers (Figure 1).13,23

In addition to glucose metabolism, recent reports have
disclosed the peculiarity of CSCs metabolism including
lipid metabolism, redox state, and utilization of alternative
fuels including amino acids and ketone bodies (Figure 1
and Table 1). Leukemia-initiating cells and hematopoietic
stem cells may depend on mitochondrial fatty acid oxida-
tion (FAO) for the production of ATP and NADPH.30,41

Glioblastoma CSCs can switch from higher pentose phos-
phate pathway (PPP) activity for elevated proliferation rate
under acute oxygenation to a glucose-dependent status
under hypoxia and a migrating process to protect cells
against hypoxic cell damage.27 Besides, oxidative stem-
like cells may be fueled by more differentiated glycolytic
somatic cells through a “reverse Warburg effect” under
normoxic conditions in breast cancer.51 Epithelial-
mesenchymal transition (EMT) contributes stemness to
CSCs with the capabilities to catabolize pyruvate, lactate,
amino acids such as glutamine, glutamate, and alanine, as
well as ketone bodies from the microenvironment to sup-
port mitochondrial respiration in CSCs.52 Intriguingly,
tumor cells with impaired respiration can regain mitochon-
drial function by receiving mitochondrial DNA (mtDNA)
from the surrounding cells in tumor microenvironment,
which renders tumor-initiating capacity and therapeutic
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Table 1. Cancer stem cells with different metabolic characteristics in various cancer types.

Cancer type Metabolic phenotype Model of study CSCs/tumor cells Methods

Acute myeloid

leukemia (AML)

OXPHOS21 Primary cultures from

human samples

Primary AML and normal

hematopoietic cells

ABT-263 and Seahorse

extracellular flux analyzer

Brain cancer Glycolysis24–26 In vitro LC26-R, LC26-RTL (170),

LCAS-R, and LCAS-RTL(138)

cells with BTIC features

Seahorse extracellular flux

analyzer

In vitro (xenograft) and

in vitro

Human glioblastoma

U87 cells and athymic mice

Clark-type oxygen electrode

In vitro NCH421k, NCH441, and

NCH644 cells

Gene expression analysis

In vitro GSC11 and GSC23 from human

primary glioblastoma tissues,

U87, and non-malignant

human astrocytes (NHAs)

Clark-type oxygen electrode

OXPHOS19 Human tumors, PDX

In vivo (xenograft)

CD133þ cells, Gliomaspheres Seahorse extracellular flux

analyzer

PPP27 In vivo Glioblastoma stem-like (GS) cell

lines

Gene expression profiling

and isotope tracing

Purine metabolism25 In vivo (xenograft) and

in vitro

Brain tumor initiating cells

(BTICs)

Metabolomics by isotope

tracing

Breast cancer Glycolysis15,28,29 In vitro CD44þCD24low EPCAMþ breast

cancer cells

Seahorse extracellular flux

analyzer and isotope

tracing

In vitro Human breast cancer cells Proteomics and targeted

metabolomics

In vitro Human breast cells MDA-MB

231 (ER�) and MCF-7 (ERþ)
Glucose uptake, glutamate,

glutamine, NADþ/NADH
ratio determination, and

proteomics

OXPHOS26 In vitro Breast cancer cell lines MCF-7

and T47D

Seahorse extracellular flux

analyzer and label-free

quantitative analysis

FAO30 In vitro ErbB2-MCF-10A, BT-474 cells,

an ErbB2 expressing breast

cancer cell lines

Isotope tracing

Mitochondrial biogenesis

and FAO31

In vitro MCF-7 breast cancer cells Seahorse extracellular flux

analyzer and label-free

quantitative analysis

PPP32 In vitro Breast cancer cell lines SUM149

and SUM159 and ALDHþ

cells

Glucose uptake and lactate

production assays,

NADPH, and glucose 6-

phosphate

measurements

Ketone bodies29,33 In vitro MCF-7 breast cancer cells Seahorse extracellular flux

analyzer

In vitro and in vivo

(xenograft)

MDA-MB-231 (GFPþ) cells 3-OH-butyrate effects on

tumor growth, migration,

and quantitation of tumor

angiogenesis

Cervical cancer TCA cycle34 In vitro Human cervical cancer cell line

SiHa and ovarian clear cell

adenocarcinoma cell line

OVTOKO

Measurement of metabolites

Colorectal cancer Glycolysis17 In vitro Human colon cancer LoVo cell

line and non-small cell lung

carcinoma (NSCLC) A549 and

NCI-H460 cell lines

Clark-type oxygen electrode

and proteomics

Glycolysis, TCA cycle,

and cysteine/methio-

nine metabolism35

In vitro CD110þ cells Metabolomics

Lysine catabolism36 In vivo (xenograft) CD110þ cells and primary CRC

cells (CRC102, CRC105, and

CRC108)

Transcriptomics and

proteomics

(continued)

Shen et al. Metabolic strategies to target cancer stem cells 467
...............................................................................................................................................................



Table 1. Continued.

Cancer type Metabolic phenotype Model of study CSCs/tumor cells Methods

Hepatocellular

carcinoma

Glutamine37,38 In vitro V138/H1299 BD Oxygen biosensor

system

In vitro H1299 cells infected with a

recombinant adenovirus

expressing p53 and HCT116

cells (p53þ/þ and p53�/�)

Glutathione assay, determi-

nation of glutamate and

glutamine concentrations

Glycolysis18 In vitro CD133þ cells PLC/PRF/5 Seahorse extracellular flux

analyzer, gene expression

profiling, and proteomics

Glycolysis and FAO in

sh-Nanog-TICs39
In vitro (xenograft) CD133þ/CD49fþ TICs from HCC

tissues and HCV NS5A

Tg mice

Isotope tracing, metabolo-

mics, and seahorse

extracellular flux analyzer

Leukemia OXPHOS21 Primary cultures from

human samples

CD34þ cells primary AML and

normal hematopoietic cells

ABT-263 and Seahorse

extracellular flux analyzer

FAO40 In vivo (xenograft) Bulk of tumor cells

OCI-AML3 cells

Clark-type oxygen electrode

and isotope tracing

FAO41 In vivo (xenograft) CD150þCD48–

CD41-Flt3–CD34- KSL cells

sorted from Pmlþ/þ or

Pml–/– mice

Isotope tracing and

Seahorse extracellular

flux analyzer

Lung cancer Glycolysis17 In vitro Human non-small cell lung

carcinoma (NSCLC) A549

and NCI-H460 cell lines and

colon cancer LoVo cell line

Clark-type oxygen electrode

and proteomics

OXPHOS42 In vivo (xenograft) and

in vitro

SPþ cells, A549 lung cancer

cell line

Clark-type oxygen electrode

Nasopharyngeal

carcinoma

Glycolysis16,43 In vitro Radioresistant human NPC cell

lines TW01 and HONE-1,

sphere-forming and SPþ cells

Morphological subtyping of

mitochondria

In vitro and in vivo

(xenograft)

Radioresistant human NPC cell

lines TW01, TW06, and

HONE-1, sphere-forming and

SPþ cells

Seahorse extracellular flux

analyzer

Osteosarcoma Glycolysis14 In vitro MG63 cells and 3AB-OS stem

cells

Seahorse extracellular flux

analyzer and D-glucose

and lactate measurement

Ovarian cancer Glycolysis44 In vivo (xenograft

and serial in vivo

passaging) and in vitro

Mouse ovarian surface

epithelium cells (MOSE)

C57BL/6 mice

Isotope tracing and

Seahorse extracellular

flux analyzer

Glycolysis45 In vitro Epithelial ovarian cancer (EOC) Isotope tracing

OXPHOS and PPP46 Fresh human samples

and in vivo (xenograft)

CD44þCD117þ cells Oligomycin, antimycin A,

rotenone, metformin by

Annexin V/PI staining

Pancreatic cancer Glutamine47 In vitro ABCG2high cells ATP, NADPþ/NADPH, and
glutathione

Glutamine

(non-canonical

pathway of gluta-

mine48 metabolism)

In vivo (xenograft) and in

vitro

AsPC-1 cells Gene expression, enzymatic

activity assays, and

NADPþ/NADPH ratio

determination

OXPHOS22 In vivo (inducible mouse

model of mutated

KRAS2) and in vitro

Sphere-forming cells Isotope tracing, metabolo-

mics, and Seahorse

extracellular flux analyzer

OXPHOS20 In vivo (xenograft) and in

vitro

CD133þ cells and CD44þ

CD133þ Primary human

PDAC cells

Seahorse extracellular flux

analyzer

Papillary thyroid

carcinoma

OXPHOS49 In vitro PTC-derived TPC-1 and

B-CPAP cell lines

GC/MS spectrometry mea-

surement of metabolites

Teratocarcinoma Glycolysis60 In vitro P19SCs and P19dCs Clark-type oxygen electrode

FAO: fatty acid oxidation; OXPHOS: oxidative phosphorylation; PDX: patient-derived xenograft; PPP: pentose phosphate pathway.
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resistance.53,54 Cancer-associated fibroblasts (CAFs)-
derived exosomes are laden with mtDNA, which can be
released into CSC niches and consumed by dormant
CSCs.55 This horizontal transfer of mtDNA promotes
respiration-proficient CSCs with higher OXPHOS potential
and the development of hormonal therapy resistance.55 The
horizontal transfer of mtDNA recapitulates the pivotal met-
abolic interaction between CSCs and the tumor microenvi-
ronment (Figure 1).

As for the mitochondrial distribution, the mitochondria
are widely scattered over the cell periphery in well-
differentiated cells, whereas these organelles are clustered
in a peri-nuclear fashion in CSCs.16 Similarly, the mitochon-
dria are peri-nuclear clustered in embryonic stem cells
(ESCs) and are rearranged to disperse throughout the cyto-
plasm upon differentiation.56 The peri-nuclear accumula-
tion of mitochondria supports the transportation of
mitochondrial transit peptide to strengthen mitochondrial
function.57 It may also indicate that ATP would be efficient-
ly transported from mitochondria to the nucleus, which is
refrained from fluctuations in Ca2þ levels that often occur
in the cytoplasm.57

Likewise, reduction-oxidation (redox) homeostasis and
mitochondrial membrane potential (Dwm) are imperative
hallmarks for a balance between differentiation and sus-
taining stemness status of stem cells and CSCs.58–60 In con-
trast to differentiated tissue cells, normal hemopoietic and
mammary epithelial stem/progenitor cells reside in a low
oxygen niche, that is essential to self-renew and deter from
differentiation.58,61 Stem cells launch the expression of anti-
oxidant enzymes to maintain ROS at low levels for shelter-
ing the cells from oxidative damage.62 Oppositely, raising
the ROS levels can compel stem cells to a lineage-specific
differentiation.63 In conformity with normal stem cells,
CSCs with augmented antioxidant defense systems keep
ROS levels at bay and may confer CSCs with survival

advantage and therapeutic resistance.9,16,46 Since mitochon-
drial respiration is a notorious intracellular ROS sources,
preferential dependence on glycolysis in certain types of
CSCs is considered a way to shield themselves from accu-
mulating too much ROS. Glycolytic pathway can consoli-
date the antioxidant defensive mechanism through
generating NADPH by glucose 6-phosphate dehydroge-
nase (G6PD) for the recycling of the low molecular
weight antioxidants including GSH (reduced glutathione),
thioredoxin and peroxiredoxin through glutathione reduc-
tase. It was shown that ROS generation results in mitochon-
drial depolarization,64 inferring that CSCs with low ROS
levels may retain the mitochondrial membrane integrity
and normal Dwm. Impairment or downregulation of mito-
chondrial uncoupling proteins may also result in low ROS
but high Dwm levels, which sustain the malignancy of
CSCs.60 The Dwm is also regarded as a prerequisite factor
for ESCs to differentiate or initiate teratoma formation.65

ESCs with a high Dwm tend to develop teratoma, while a
decrease of the Dwm in ESCs is able to stagnate tumor
growth.65

In essence, it seems that the CSCs are equipped with an
extraordinary bioenergetic machinery to cope with oxida-
tive stress, hypoxia, and challenge of the microenviron-
ment. This dynamic and multidimensional Warburg effect
of CSCs compared with differentiated tumor counterparts
is specifically referred to as “the Warburg effect 2.0” to
signify the upgraded and pellucid version of CSC patho-
physiology regarding the CSC heterogeneity across tissue-
specific variations, distinct histologic tumor subtypes, as
well as the CSCs niche.66

Metabolic regulators wheel CSC properties

Accumulating evidence reveals that pluripotency tran-
scription factors such as NANOG, MEIS1, Wnt, or OCT4
are inextricably intertwined with metabolic regulators such
as MYC, p53, K-Ras, and HIF1a, and their link with meta-
bolic reprogramming dictates the stemness properties of
CSCs.67,68 Certain metabolic signatures of CSCs act as a
coordinator of stemness to perform several intricate func-
tions in sustaining the stemness characteristics. Therefore,
we highlight the therapeutic potential of these critical met-
abolic regulators that may govern the metabolic plasticity
and redox homeostasis in CSCs (Figure 2).68

p53. TP53 is an extensively studied tumor suppressor
gene in oncology research.69 Occurrence of p53 mutations
represents an early event in more than 50% of human
malignancies.70 p53 plays a crucial role in regulating glyco-
lytic pathway through TIGAR (TP53-induced glycolysis
and apoptosis regulator) and phosphoglycerate mutase
(PGM) to suppress glycolytic enzymes and downregulate
the transcriptional levels of glucose transporter 1 (GLUT1)
and GLUT4 (Figure 2).71 Additionally, p53 upregulates
mitochondrial metabolism by enhancing the biosynthesis
of synthesis of cytochrome c oxidase 2 (SCO2) and gluta-
minase 2 (GLS2) (Figure 2).37,72 Also, p53 abrogates the bio-
synthesis of nucleotides and lipids in tumor cells by
attenuating the PPP (Figure 2).73 Moreover, p53 reduces

Figure 1. Metabolic heterogeneity of CSCs. Instead of dwelling in a solitary

place, CSCs reside in a diversified ecosystem encircled by extracellular matrix,

endothelial cells, immune cells, and cancer-associated fibroblasts (CAFs). In

contrast to their differentiated counterparts, CSCs display an exquisite meta-

bolic characteristics according to the type of cancer, which may predominately

rely on glycolysis, catabolism of glutamine, fatty acids, and certain amino acids.

Heterogeneity of CSC metabolism across different types and microenvironment

of tumors confers CSCs to have the plasticity to cope with the endogenous

mitochondrial stress and/or exogenous microenvironment. (A color version of

this figure is available in the online journal.)
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the biosynthesis of fatty acids but boosts FAO, thereby pro-
moting OXPHOS by the increase of metabolic products of
FAO in mitochondria of cancer cells (Figure 2).74 In 2007, it
was reported that adult human fibroblasts can be reprog-
rammed into ESC-like induced pluripotent stem cells
(iPSCs) by overexpressing defined factors.75 Upregulation
of glycolytic genes was unveiled to precede the expression
of stemness markers in the reprogramming process.76 In
addition, p53 pathway attenuates the reprogramming effi-
ciency of somatic cells to iPSCs77 and CSCs.78 The absence
of p53 imparts the resistance of colon CSCs to paclitaxel
because of increased autophagy and decreased apoptosis.79

Moreover, p53 was found to upregulate miR-34a to dampen
the expression of CD44, which is a CSC surface marker that
participates in the metastasis of CSCs.80 In addition, p53 is
able to upregulate miR-200c to reverse the stemness
and EMT of CSCs (Figure 2).81 We demonstrated that the
reactivation of p53 by resveratrol could impede the stem-
ness, EMT process, and metabolic remodeling of CSCs in
nasopharyngeal carcinoma.43 Taken together, p53 may be
considered as an important target for CSCs-targeting
therapy.

MYC. MYC regulates cancer metabolism and redox bal-
ance by boosting glycolysis82 and glutaminolysis by upre-
gulation of glutamine transporters and mitochondrial GLS
through microRNAs (Figure 2).83,84 Glutamine fuels ATP
production and intermediates in the biosynthesis of
amino acids, nucleic acids, fatty acids, and glutathione,
which bears powerful antioxidant and other biological
activities.85 In line with the findings in iPSCs, overexpres-
sion of MYC acts as a bridge between glycolysis and stem-
ness in cancers.67 MYC upregulates stemness and
differentiation, as well as signaling pathways that result
in the chemotherapy resistance of CSCs.67,86 Silencing of
c-MYC was found to re-sensitize colon CSCs to chemother-
apeutic agents through down-regulation of ABC transport-
ers (Figure 2).87 In CSCs, metabolic reprogramming driven

by MYC is linked to CD44 variant isoforms (CD44v)-medi-
ated redox homeostasis, tumor suppressor FBW7-driven
c-MYC degradation, and ubiquitination, which are associ-
ated with chemoresistance.88

HIF. HIF-1a and HIF-2a have a pivotal role in cancer cell
progression for CSCs to trigger the metabolic reprogram-
ming from an oxidative to a glycolytic phenotype to cope
with low levels of oxygen, pH, and nutrients in the strin-
gent tumor microenvironment (Figure 2).89 HIF-1a regu-
lates cancer migration, angiogenesis, and cell survival
pathways,90 and it also upregulates carbonic anhydrases
for controlling pH gradient between intracellular and extra-
cellular environments.91,92 This pH shift affects the drug
absorption and metabolism and suppresses cytoplasmic
retention of anticancer drugs.93 Overexpression of HIF in
CSCs enhances cancer progression through upregulation of
PKM2 (pyruvate kinase muscle isozyme), ABC transporters
(Figure 2), vascular endothelial growth factor, angiogenesis,
recruitment of tumor-associated macrophages, and CD8þ/�

T cells, as well as attenuation of natural killer cells.94–96

Other metabolic regulators. Aside from a rapid ATP gen-
eration, glycolytic flux can supply metabolites to furnish
PPP to produce NADPH and biosynthetic building blocks
to support anabolic processes and protect CSCs from oxi-
dative stress.97 In breast CSCs, glucose transporters GLUT1
and GLUT4 and key glycolytic enzymes including HK
(hexokinase), PKM2, and lactate dehydrogenase A
(LDHA) control the central pathway of glucose catabolism
and display increased activities. However, treatment
with 2-DG (2-deoxyglucose), a glucose analogue that sup-
presses HK2, preferentially interferes with the viability of
CSCs compared with differentiated tumor counterparts,
demonstrating the crucial roles of glycolysis in the mainte-
nance and growth of breast CSCs.98 Additionally, PKM2
and PFKFB4 (6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 4) were corroborated to be critical stemness

Figure 2. Key regulators orchestrate metabolic plasticity and stemness features in CSCs. Critical transcription factors such as MYC, HIF-1a, and p53 not only govern

metabolic plasticity and redox homeostasis in CSCs but also serve as coordinators in regulating the stemness traits and differentiation capabilities of CSCs. Activation

is represented by red lines and suppression is denoted by green lines. (A color version of this figure is available in the online journal.)
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regulators in glioma stem cells.99 The interaction of nuclear
PKM2 and OCT4 can upregulate stemness genes to enrich
the subset of CSCs under metabolic stress and thereby pro-
mote cancer metastasis.100 LDHA generates lactate to
adjust pH and direct USP28-mediated de-ubiquitination
and stabilization of MYC and activation of SLUG promoter,
which endows breast cancer cells with stemness features.101

Inhibition of G6PD, the gatekeeper of the PPP, decreased
spherogenesis and the ALDH activity in breast CSCs.32

Besides, phosphorylation of Bcl-2 associated death promo-
tor (BAD) by kinases like Akt activates glucokinase to pro-
mote glycolysis and support the growth and proliferation
of CSCs.2 Dephosphorylated BAD directs cell death and
dampens the metabolic pathways required for an elevated
glycolysis to confer survival advantage of CSCs.102

Metabolism-based therapy fires arrow at Achilles’
heel of CSCs

Through collective efforts dedicated to the development of
new anticancer drugs targeting the metabolism of cancer
cells, a variety of metabolism-based drugs have been tested
in preclinical and clinical studies (Figure 3 and Table 2).
Glucose deprivation by 3-bromopyruvate (3-BrPA) and
analog 3-BrOP induced the in vitro elimination of CSCs
and compromised in vivo tumorigenicity.17,103 2-DG could
competitively inhibit glycolysis and block the generation of
glucose 6-phosphate and inhibit HK2, and preferentially
suppress the propagation of CSCs.16 Pyruvate dehydroge-
nase kinase (PDK) inhibitor such as dichloroacetic acid
(DCA) can induce the formation of PKM2/OCT4 complex
and attenuate the transcriptional activity of OCT4, which
modulates the apoptosis in glioma stem cells.99 Vitamin C
suppresses glycolysis104 and miR-302/367 to compromise

the reprogramming of breast CSCs through downregula-
tion of TET1 gene.105 It also inhibits stress-induced
epinephrine-activated LDHA, and thereby decreases the
lactate generation to dampen the USP28/MYC/SLUG
pathway in CSCs.101

As increased mitochondrial biogenesis and OXPHOS are
observed in certain types of CSCs, mitochondrial inhibitors
such as oligomycin, rotenone, antimycin A, metformin, or
phenformin can lead to apoptosis of CSCs.106 FAO inhibitor
etomoxir can suppress CPT1 (carnitine palmitoyl-transferase 1)
and re-sensitize CSCs to cytotoxic agents.106 Based on the
“endosymbiotic theory,” mitochondria in eukaryotic cells
were initially derived from endocytosis of aerobic bacteria.
Consequently, mitochondria still share some characteristics
similar to bacteria, explaining the potential use of some
FDA-approved antibiotics to target at mitochondria.107

These antibiotics such as doxycycline and azithromycin
were reported to impede the spherogenesis of CSCs through
inhibition of mitochondrial function (Table 2).107

Combination therapies encompassing conventional che-
motherapies and chemo-sensitizing agents would be the
most effective way to enhance the efficacy of CSCs-
targeted therapy. 5-fluorouracil (5-FU)-refractory cells
showed increased levels of PKM2 and acquisition of stem-
ness in colon cancer. Co-treatment of 5-FU and metformin
was found to dampen the respiratory chain Complex I
activity, abolish spherogenesis of colon CSCs, and diminish
the stemness markers.108 Doxycycline resistant-CSCs are
relatively more sensitive to metabolism-based drugs
including OXPHOS inhibitors including atovaquone and
irinotecan, glycolysis inhibitors such as vitamin C and
stiripentol, as well as an autophagy inhibitor chloroquine
(Table 2).107 Emerging mitochondrial inhibitors

Figure 3. Metabolism-based therapy compromises CSC properties. Metabolism-based therapeutic strategies targeting pivotal metabolic pathways that can be

exploited in preclinical and clinical settings. Specific metabolic inhibitors that can overwhelm stem cell properties may halt disease recurrence, attenuate CSC

dissemination, and dampen the capacity of spawning metastasis of cancer cells. (A color version of this figure is available in the online journal.)
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“mitoketoscins” with special focus on ketone metabolism
mimic the structure of coenzyme A, which functionally
inhibit the activity of CSCs through binding to OXCT1
and ACAT1 catalytic sites within the binding sites of coen-
zyme A (Table 2).109 In addition, diphenyleneiodonium
chloride (DPI) halts mitochondrial respiration through the
suppression of flavin-dependent enzymes, which consti-
tute respiratory chain complexes I and II. Accordingly,
DPI-induced chemoquiescence significantly reduces CSC
subpopulation.33 Moreover, a mitochondria-targeting com-
pound, tri-phenyl phosphonium (TPP), can selectively
annihilate both bulk tumor mass and CSCs but spare
normal fibroblasts (Table 2).110 TPP seems to be able to dis-
tinguish metabolically the mitochondria in normal cells
from those in malignant cells because bulk tumor mass
and CSCs likely have mitochondria with a higher Dwm.111

Besides, targeting DRP1 protein by mDIVI1 compromised
the mitochondrial fission–fusion cycles and mitochondrial
function, cell migration, and CSC signaling (Table 2).111

Naturally occurring mitochondrial inhibitors, Brutieridin
and Melitidin, can suppress mevolonate metabolism
to inhibit the propagation of CSCs (Table 2).112 GLS1
inhibitors such as 968 or BPTES can attenuate CSC proper-
ties in hepatocellular carcinoma via increased ROS
levels and impaired Wnt/b-catenin signaling (Table 2).113

Glutaminase inhibitors, including Zaprinast (an anti-asthma
drug) and BPTES, were able to effectively compromise the
stemness and sensitize pancreatic CSCs to radiotherapy and
enhance apoptosis in vitro and in vivo caused by redox
imbalance.48

Glycolysis and OXPHOS are two main metabolic
engines in CSCs, which are not necessarily mutually exclu-
sive or disjointed. It is worth mentioning that some CSCs
manifest metabolic plasticity by switching to glycolytic
phenotype when respiration pathway is blocked.28,114,115

In addition, the metabolic compensation with OXPHOS
or other microenvironmental nutrient supply in CSCs
may also render their resistance to inhibition of

Table 2. Metabolic inhibitors in different metabolic phenotypes.

Metabolic phenotype Target Metabolic inhibitor

Glycolysis Glucose transporter 1 (GLUT1) WZB117

Hexokinase 2 (HK2) Dihydronaringenin phloretol

2-Deoxyglucose (2-DG)

3-Bromopyruvate (3-BrPA)

Lonidamine (LND)

Pyruvate dehydrogenase kinase (PDK) Dichloroacetic acid (DCA)

Lactate dehydrogenase A (LDHA) FX11 and Oxamate

Pyruvate kinase (PKM) TLN232

Monocarboxylate transporters (MCT) SR13800 and SR13801

Hypoxia inducible factor 1a (HIF-1a) Echinomycin, Topotecan (Hycamtin),

Digoxin, and PX-478

Autophagy Hydroxychloroquine (HCQ)

N-glycosylation 2-Deoxyglucose (2-DG)

ATP synthase Vitamin C

GABAergic activity Stiripentol

OXPHOS PDH and a-keto dehydrogenase CPI-613 (devimistat)

Mitochondrial complex I Metformin

Mitochondrial division inhibitor 1 Mdivi-1

3-Hydroxy-3-methylglutaryl-CoA-reductase

(HMG-CoA reductase)

Brutieridin

Melitidin

Mito-ribosome Mitoriboscins

OXCT1/ACAT1 Mitoketoscins

Mitochondrial complex I/II Mitoflavoscins

Mitochondria Decyl (triphenyl) phosphonium (DTPP)

Dihydroorotate dehydrogenase (quinone), mitochondrial Atovaquone

DNA replication and transcription Irinotecan (Campto)

Vascular endothelial growth factor Sorafenib

Glucose uptake Niclosamide

Mitochondrial biogenesis Doxycycline (Doxymycin capsule)

Tigecycline

Azithromycin (Zithromax)

OXPHOS/complex II Pyrvinium pamoate

OXPHOS/complex III Atovaquone

Mitochondrial Complex V Bedaquiline

Cyclin-dependent kinase 4/6 (CDK4/6) Palbociclib

Lipogenesis Fatty acid synthase (FASN) Cerulenin, C75 and Orlistat

Stearoyl-CoA desaturase 1 (SCD1) A37062

Glutaminolysis Glutaminase BPTES and CB-839

Transaminase Amino-oxyacetic acid (AOA)

SLC1A5 GPNA

OXPHOS: oxidative phosphorylation.

472 Experimental Biology and Medicine Volume 245 March 2020
...............................................................................................................................................................



glycolysis.13 Sequential or combinational treatment of two
or more metabolic inhibitors would block the development
of drug resistance and completely eradicate CSCs. For
instance, “two metabolic hit strategy” proposes that the
utilization of mitochondria-interfering agent like doxycy-
cline drastically reverses the metabolism of CSCs toward
an inflexible glycolytic pathway, rendering a second meta-
bolic hit that completely halts the biochemical machinery of
CSCs.116 Metformin combined with either bromodomain
and extraterminal motif (BET) or inhibitor JQ-1 for the
treatment of pancreatic cancer or PI3K inhibitor for treating
ovarian cancer can simultaneously halt OXPHOS and indi-
rectly suppress glycolysis.20,117 Furthermore, CSCs do not
become resistant to drugs upon administration of a mito-
chondrial ROS inducer menadione, implying that accumu-
lated ROS levels to a toxic level may be an alternative
strategy to increase the effectiveness of anticancer therapy
to eradicate CSCs.20 As a consequence, blocking glutathi-
one synthesis by buthionine sulfoximine could disturb the
redox homeostasis in CSCs, and subsequently decrease the
clonogenicity and facilitating the radiotherapy responses of
cancer patients.9,118

Because of the fact that some metabolic features of CSCs
are common to those of normal stem cells, an accurate dis-
tinction between them is awaited. Once these metabolic
differences can be identified, a novel therapy is able to be
established to kill only CSCs but spare tissue stem cells.
In such a scenario, simultaneous or sequential block of
glycolytic flux and OXPHOS may be a new treatment to
concurrently eliminate glycolytic and oxidative CSCs.
These metabolic targets expose unrecognized Achilles’
heel in CSCs amendable for therapeutic intervention to pre-
vent recurrence and thereby achieve long-term remission in
cancer patients.

Future perspectives

CSCsmay choose either glycolysis or OXPHOS as the major
metabolic engine in response to environmental factors
including tumor size, hypoxia, and the sequence of activa-
tion of oncogenes. The metabolic plasticity of the CSC sub-
population can be one of the major obstacles to eradicate
CSCs. Therefore, a comprehensive portrait of the plasticity
still awaits to be deciphered in CSCs. Instead of dwelling in
a solitary place, CSCs reside in a diversified ecosystem
encircled by extracellular matrix, immune cells, endothelial
cells, and CAFs. Given that CSC–stromal interactions are
quintessential for determining treatment response, limita-
tions pertaining to the differences of tumor microenviron-
ment can be minimized by devising better niche-targeting
strategies. Thorough scrutiny of the singularities of mitos-
temness can provide clues to tackle CSCs by metabolic
intervention. We envision that metabolic therapeutic inter-
ventions would eventually be practiced as an add-on to
standard cytotoxic regimens, especially in halting cancer
recurrence and metastasis to achieve more effective long-
term disease remission. Lastly, discovering the metabolic
distinction between CSCs and tissue stem cells is a prereq-
uisite to develop new therapies that can aim at metaboli-
cally distinct CSCs but spare the normal tissue cells.
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