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Abstract
Gene mutations are closely related to cancers and drug sensitivity. Noninvasive liquid

biopsy was used to detect mutations of ctDNA in plasma, which is regarded as an indicator

of chemotherapy reaction. In this study, we performed exon sequencing of 416 cancer-

related genes for cancer primary tissue and plasma samples of 20 patients in 11 cancers.

The comprehensive mutation landscape was obtained by bioinformatics tools. In all sam-

ples, a total of 0–135 genes involved somatic mutations, and 5–209 genes involved copy

number variation. APC, KRAS, and TP53 were detected as frequently mutated genes.

Nineteen genes with high-frequency copy-number amplification and 59 with frequent

copy-number deletions were identified. By quantitatively assessing the degree of agree-

ment, we found that liquid biopsy is reliable instead of tissues. Besides, 31 mutation prog-

nostic markers in 7 cancers were screened by integrating the consistent mutations and

enlarging samples in TCGA. Moreover, from drug-mutation network, 25 drugs connected

with 9 mutations (B-Mut-9) were obtained which can be served as drug biomarkers in

blood. This was proved by further integrating the mutation information of patients in

TCGA into drug-mutation network. In summary, the variation in ctDNA can be used as

the biomarkers for cancer prognosis and drug efficacy prediction.
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Introduction

In recent years, cancer has become an important factor
threatening human health. Through epidemiological stud-
ies, experimental and clinical observations, it was found
that the environment and behavior have important
impact on the occurrence of human malignant tumors.
Various environmental and genetic carcinogenic factors
may induce cellular non-fatal DNA damage in a synergistic
or orderly manner, thereby activating oncogenes and/or
inactivating tumor suppressor genes; in addition, with the
change of apoptotic regulatory genes and/or DNA repair

gene, cells are transformed into malignancies. Therefore,
the tumor is essentially a genetic disease.

Gene mutations are closely related to the production and
metastasis of various tumors. Studies have shown that the
BAP1 gene germline mutation involves autosomal domi-
nant tumor susceptibility syndrome, which is associated
with the tendency of uveal melanomas, melanocytic
tumors, and mesotheliomas.1–3Chinnaiyan and his co-
workers4 performed exome sequencing of 11 metastatic
breast cancer patients who underwent anti-estrogen and
estrogen deprivation therapy and found that ESR1 muta-
tions were found in six tumor patients. In addition, gene
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mutations also affect the patient’s sensitivity to chemother-
apy and prognosis. In a population-based study, COX pro-
portional hazards regression was employed to demonstrate
that KRAS-mutant colorectal cancer patients had a signifi-
cantly lower survival rate than wild-type patients after
diagnosis.5 And Lochhead et al.6 demonstrated that the
combined BRAF/MSI status in colorectal cancer is a
tumor molecular biomarker for prognostic risk
stratification.

In recent years, the methods of tumor detection and
diagnosis have made many important breakthroughs, but
the patients may have lost the best time to treat when tumor
or metastasis was detected by these means. Therefore, the
detection of biomarkers in blood as a quick, noninvasive,
and effective method for early detection of tumors or
metastases has an important advantage. The cell-free circu-
lating tumor DNA (ctDNA) in plasma from peripheral
blood provides an opportunity for noninvasive sampling
of tumor DNA. There are about 1% of ctDNA in cfDNA and
it can be distinguished from non-tumor DNA by the pres-
ence of tumor-specific mutations and copy number varia-
tions. With the rapid development of molecular
experiments, trace amounts of ctDNA can be detected.
This “liquid biopsy” can be used as monitoring indicators
of cancer diagnose, metastasize, recurrence, and treatment
by detecting the DNA including the number, chromosome
changes, sequence mutations, and epigenetic changes.
Studies have shown that ctDNA sequencing can be used
to determine tolerance and to guide the precise administra-
tion of anti-HER2-targeted therapy in the treatment of met-
astatic breast cancer and it has a distinguishing effect in the
prognosis of HER2-positive metastatic breast cancer.7

Takahashi et al.8 performed an analysis of before and after
neoadjuvant chemotherapy in 87 patients with primary
breast cancer showed that methylated ctDNA was a more
sensitive biomarker than CEA and CA15-3 and could be
used to monitor clinical tumor response to neoadjuvant
chemotherapy. Zheng et al.,9 dynamically monitoring
T790M mutations in ctDNA in 318 non-small cell lung
cancer patients, indicate that the EGFR T790M mutation
in plasma ctDNA is associated with poor prognosis in
patients with advanced NSCLC with acquired EGFR-TKI
resistance. Therefore, the changes in ctDNA in plasma as
noninvasive biomarkers for early diagnosis, recurrence,
and therapeutic effect of cancer have a greater clinical
application value than tissue biopsy.

In this study, we performed exon sequencing of 416
cancer-related genes for cancer primary tissue and plasma
samples of 20 patients in 11 cancers to detect gene muta-
tions. These 416 genes are genes related to tumor signaling
pathways reported in the literature. Through the detection
of mutations, we obtained a comprehensive landscape of
mutations in tissues and plasma of these patients. And
through the comparison among the patients’ tissues and
their plasma, we found the common mutations among
the same kind of cancers and the most recurrent variants
among the different tumors. The consistency of tissue and
plasma mutations, as well as the degree of substitution of
plasma to tissue for copy number variations, was evaluated
by comparing the tissue and plasma for each patient and

this can be used as a basis for mutations detection using
ctDNA instead of tissue biopsy. Besides, the molecular bio-
markers for prognostic risk stratification in mutation level
were screened by survival analysis and this provides
important guidance for clinicians to monitor the patient’s
condition and to switch treatment protocols in time. In
addition, our study also analyzes the efficacy of the muta-
tions in the tumor to the drugs through a drug-mutation
network. And the network was used to find the cancer
mutations that cause effective or invalid to drugs, which
provides a reference for cancer drug therapy.

Materials and methods

Data acquisition

In this study, 20 cases of cancer patients were obtained from
the Tumor Hospital of Harbin Medical University, includ-
ing six patients with COAD (colon adenocarcinoma), four
patients with LUAD (lung adenocarcinoma), two patients
with SARC (sarcoma), one case of LUSC (lung squamous
cell carcinoma), one case of PAAD (pancreatic adenocarci-
noma), one case of READ (rectal adenocarcinoma), one case
of STAD (stomach adenocarcinoma), one case of ESCA
(esophageal cancer), one case of CGSC (cecal gland squa-
mous cell carcinoma), one case of BRCA (breast cancer),
and one case of UCEC (uterine corpus endometrial
cancer). Written informed consent was obtained from the
patients for publication, and study was approved by the
Harbin Medical University Cancer Hospital Ethics
Committee. Besides, the Affymetrix Genome-Wide
Human SNP 6.0 array data and somatic mutation (SNPs
and small INDELs) data generated on IlluminaGA system
of 10 cancers were downloaded from TCGA (The Cancer
Genome Atlas) data portal10 with their clinical follow-up
information. The copy number amplification variations
were defined as log2 ratio>0.25, and the copy number dele-
tion variations were defined as log2 ratio <�0.25.

ctDNA extraction and library construction

Whole blood (5 mL) is collected by EDTA blood collection
tubes then centrifuged within 1 h of collection at 1800� g
for 10min at �4�C or RT to remove blood cells. The super-
natant containing the plasma is removed with special care
taken as to not disturb the buffy coat. This is then centri-
fuged at 16,000� g for 10min to remove any remaining
cells. ctDNAwas extracted from 2mL plasma, by digestion
in 100 lL proteinase K buffer for 10min at 37�C followed by
purification with the NucleoSpin Plasma XS kit with mod-
ified protocols. The purified ctDNA is quantified by a
Picogreen fluorescence assay using the provided lambda
DNA standards (Invitrogen). Then, library construction
with the KAPA Hyper DNA Library Prep Kit, containing
mixes for end repair, dA addition and ligation, was per-
formed in 96-well plates (Eppendorf). Dual-indexed
sequencing libraries are PCR amplified for four to seven
cycles.
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Hybrid selection and ultra-deep next generation
sequencing of ctDNA

The 50-biotinylated probe solution is provided as capture
probes, the baits target 416 cancer-related genes
(Supplementary Table S1); 1 lg of each ctDNA-fragment
sequencing library is mixed with 5lg of human Cot-1
DNA, 5 lg of salmon sperm DNA, and 1 unit adaptor-
specific blocker DNA in hybridization buffer, heated for
10min at 95�C, and held for 5min at 65�C in the thermo-
cycler. Within 5min, the capture probes are added to the
mixture, and the solution hybridization is performed for
16–18 h at 65�C. After hybridization is complete, the cap-
tured targets are selected by pulling down the biotinylated
probe/target hybrids using streptavidin-coated magnetic
beads, and off-target library is removed by washing with
wash buffer. The PCR master mix is added to directly
amplify (six to eight cycles) the captured library from the
washed beads. After amplification, the samples are purified
by AMPure XP beads, quantified by qPCR (Kapa), and
sized on bioanalyzer 2100 (Agilent). Libraries are normal-
ized to 2.5 nM and pooled. Deep sequencing is performed
on Illumina HiSeq 4000 using PE75 V1 Kit. Cluster gener-
ation and sequencing are performed according to manufac-
turer’s protocol. The materials used for tissue sequencing
are paraffin-embedded tissue sections.

Sequence alignment and processing

Base calling was performed using bcl2fastq v2.16.0.10
(Illumina, Inc.) to generate sequence reads in FASTQ
format (Illumina 1.8þ encoding). Quality control (QC)
was applied with Trimmomatic.11 High-quality reads
were mapped to the human genome (hg19, GRCh37
Genome Reference Consortium Human Reference 37)
using modified BWA aligner 0.7.1212 with BWA-MEM algo-
rithm and default parameters to create SAM files. Picard
1.119 (http://picard.sourceforge.net/) was used to convert
SAM files to compressed BAM files which were then sorted
according to chromosome coordinates. The Genome
Analysis Toolkit13 (GATK, version 3.4–0) was modified
and used to locally realign the BAMs files at intervals
with indel mismatches and recalibrate base quality scores
of reads in BAM files.14

Variants detection and annotation

For paired tumor-normal libraries, we run the SAMtools15

mpileup command to convert them to mpileup files. And
then VarScan 2 software16 was used to identify mutations,
including single nucleotide variants (SNVs) and short
insertions/deletions (indels) and copy number variants.
For SNVs and indels, they were identified with minimum
variant allele frequency threshold set at 0.01 and P-value
threshold for calling variants set at 0.05 to generate variant
call format (VCF) files. Called SNP variants and indels were
annotated and classified using ANNOVAR.17 Variants were
filtered using data from cosmic70, clinvar, dbSNP 138
(http://www.ncbi.nlm.nih.gov/snp), and the 1000
Genomes Project (http://www.1000genomes.org/). Gene
annotations were made against the UCSC KnownGenes

database. PolyPhen218 and SIFT (sift.jcvi.org) were used
to evaluate the possibly damaging effects of single amino-
acid substitutions on the expression of the proteins of these
genes. Finally, only the exonic mutations were used for fur-
ther analyses.

For the copy number variants, we followed the recom-
mended workflow provided in the VarScan project page in
SourceForge website (http://varscan.sourceforge.net/
copy-number-calling.html): (1) Run VarScan
“copynumber” routine on normal and tumor mpileup
files generated by SAMtools, (2) Run VarScan
“copyCaller” to adjust for GC content and make prelimi-
nary calls on the results from step (1), (3) Apply circular
binary segmentation (CBS) from DNAcopy package19 to
segment the raw regions and identify significant change-
points, (4) Visualize the results and recenter if necessary. If
baseline is adjusted, then repeat steps (3) and (4) again. In
addition, the R package “CNTools” and “cghMCR” are
used to integrate the output of DNAcopy into gene-level
copy number variation profiles for further analysis. During
this process, we dropped data on the X and Y chromosomes
(there are samples from both male and female patients in
the data set).

Evaluation of replacement degree of plasma to tissue
mutation

The significance of the coincidence of mutant genes in
tumor tissue and plasma was assessed based on hypergeo-
metric test, and the formula is

p ¼ 1�
T
C

� �
N � T
P� C

� �

N
P

� � (1)

where N is the total number of genes, T is the number of
mutated genes in tissue, P is the number of mutated genes
in plasma, and C is the number of mutated genes that are
common in tissue and plasma. In addition, the degree of
plasma-to-tissue substitution was also assessed, using the
enrichment imbalance strategy proposed by Jiang et al. in
2012,20which refers to the statistical method of linkage dis-
equilibrium in genetics. It is a method to measure the
degree of enrichment in gene enrichment analysis and
can be used to describe the non-random association of
two sets. If there is no association between the gene set T
and the gene set P, we usually think that the two sets are
independent of each other. Based on the principle of inde-
pendence, we will get the following expression

pðT � PÞ ¼ pðTÞ � pðPÞ

Then, if there is non-random association between T and
P, we will get p T � Pð Þ 6¼ p Tð Þ � pðPÞ. Therefore, we define
the coefficient sd as follows

sd ¼ pðT � PÞ � pðTÞ � pðPÞ (2)
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where sd represents the degree of plasma-to-tissue substi-
tution, p T � Pð Þ is the probability of the number of mutated
genes that are common in tissue and plasma, p Tð Þ is the
probability of the number of mutated genes in tissue, and
pðPÞ is the probability of the number of mutated genes in
plasma. The method also standardized the enrichment
imbalance metric

SD ¼ sd

sdmax
(3)

where

sdmax ¼
pðTÞ �

�
1� pðPÞ

�
; sd > 0 and NT < NP

pðPÞ �
�
1� pðTÞ

�
; sd > 0 and NT > NP

pðTÞ � pðPÞ; sd < 0

8>>><
>>>:

(4)

SD range from �1 to þ1, and the relationships between
the gene set T and the gene set P under different SD inter-
vals are shown in Table 1.

Drug-mutation background network construction,

analysis, and visualization

The mutation-gene-drug relations were obtained from
OncoKB database and VarDrugPub database. For the
VarDrugPub database, only the mutation-gene-drug rela-
tions with clear gene and amino acid changes were used.
Besides, we also collected 175 relationships between gene
mutations and drug efficacy from the published literatures.
These 175 relationships and the two public databases were
integrated and unique 3233 relationships among gene
mutations and drug efficacy were obtained. Here we only
took the mutations occurred in the 416 genes in the present
study and finally 1557 relationships were obtained. These
1557 relationships were used to construct a drug-mutation
background network.

The network was constructed for analysis and visualiza-
tion using cytoscape 2.8.221 (http://www.cytoscape.org/),
an open source software platform for visualizing molecular
interactions and biological pathways, and integrating these
networks with annotation information, gene expression
profiles, and other types data.

Survival analysis and statistical analysis

The prognostic of gene variants on overall survival (OS)
was examined using the Kaplan–Meier estimates and Cox
proportional hazard ratio (HR) regression analyses. Log-
rank test was used to assess the statistical significance of
the difference. All of these were performed using the
R package “survival”. The clustering diagram and heat
maps were implemented using the heatmap.2 function in
the R package “gplots”, using the hierarchical clustering
algorithm and the European distance similarity measure.

Functional analysis of gene sets

g: Profiler,22 a web server for functional interpretation of
gene lists was used to perform gene enrichment analysis of
Gene Ontology, KEGG pathway, and Human Protein Atlas
of genes that were mutated in tumors.

Data availability

The raw data are available upon request. The authors
affirm that all data necessary for confirming the conclu-
sions of the article are present within the article, figures,
and tables.

Results

Overview of the studied samples

The tissues and plasma samples from 20 cancer patients
were obtained from the Tumor Hospital of Harbin
Medical University, including six patients with COAD,
four patients with LUAD, two patients with SARC, one
case of LUSC, one case of PAAD, one case of READ, one
case of STAD, one case of ESCA, one case of CGSC, one case
of BRCA, and one case of UCEC (Table 2). The ages of these
patients are between 29 and 75 years old. Most of them
occurred in cancer metastasis, and the metastatic sites
include liver, bone, brain, lung, supraclavicular lymph
node, pleural effusion, pelvic peritoneum, left groin, side
of the lumbar spine as well as local recurrence. One of the
patients was diagnosed as II TNM stage, nine were diag-
nosed as III TNM stage, and 10 were diagnosed asⅥ TNM
stage. The patients above were treated with chemotherapy,
endocrine therapy, radiotherapy, TKI target treatment, and
surgery at least. However, they took place in recurrence or
metastasis. In order to assess the next choice of treatment
options, we collected blood from patients and detected
abnormal changes in the 416 genes.

The consistent somatic point mutations detection in
tissues and plasma

First, we called the somatic mutations which include SNVs
and indels in the tissues and plasma, and the leukocytes in
the matched blood were used as normal controls. The
number of candidate variants per sample ranged from
0 to 364 corresponding to 0–135 genes (Figure 1).

Table 1. The relationships between P and T under different SD intervals.

SD Relationship between T and P

SD¼ 1 T � P or P � T, in the two cases, the gene set P and the

gene set T have the strongest association.

0<SD< 1 The number of gene set P annotated in gene set T is

more than random. A larger SD indicates a higher

degree of enrichment.

SD¼ 0 The gene set P and the gene set T are independent.

�1<SD< 0 The number of gene set P annotated in gene set T is

less than random. A smaller SD indicates a higher

degree of depletion.

SD¼�1 The gene set P and the gene set T are incompatible.
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For indels, there are 5 frameshift insertion structural varia-
tions, 11 frameshift deletion variations, 1 nonframeshift
insertion variations, 7 nonframeshift deletion variations,
and 1 stopgain in total. For SNVs, there are 400 silent var-
iations and 534 nonsilent variations in total (Figure 1(e)).
All of the variants were mapped to 216 unique genes and
the number of consistent somatic gene mutations detection
in tissues and plasma for all of the patients is shown in
Table 3. In Figure 1(a), we deleted the mutations that
existed in only one sample and the mutations that existed
only in the tissue of LUSC1 and SARC2 or only in the tissue
of LUAD3 and SARC2 to ensure that the figure was fit for
visualization. These complete mutations information is
shown in the Supplementary Table S2.

For SNVs, the most recurrent mutations occurred in
APC, KRAS, and TP53. They were all important genes in
cancer occurrence and development which have been well
documented. And they have been confirmed frequently
mutated in the colorectal cancer.23 The adenomatous pol-
yposis coli (APC) tumor suppressor is the most commonly
mutated in colorectal cancers24 which were consistent with
our results. KRAS type has been shown independently and
significantly associated with survival in the multivariate
analysis.25 TP53 polymorphism was a common crucial
gene in gastric cancer and colorectal cancer and plays
important role in their development.26,27 Four of the six
colon cancer patients had TP53 mutations detected both
in their tissues and plasma, and three of them had KRAS
mutations. Among these three, there are two APC muta-
tions detected both in their tissues and plasma (Figure 1(a)).
Nearly all of the variants in these three genes were

predicted pathogenic by cosmic or SIFT and PolyPhen2
scores. The mutations occurred in COAD2 patient were
minimal among these six colon cancers, only two genes.
This patient was a relatively young, low TNM staging
patient compared to the other five colon cancer patients
and there was no distant metastasis which represented a
relatively good condition. Besides, it is worthwhile to note
that most of the mutations occurred in plasma can also be
detected in the tissue in the global landscape, in other
words, the mutations occurred in pairs. This indicates
that using plasma instead of tissue detection is achievable.
For indels, it was a very sparse matrix (Figure 1(c)). The
TP53 mutation occurred both in the tissue and plasma of
esophageal cancer patient, and APC mutation occurred
both in the tissue and plasma of a colon adenocarcinoma
patient which was consistent with the previous studies.
All of these indel mutations are nonsilent mutations
(Figure 1(f)).

In addition, we also concern the functions of these
somatic mutations. An enrichment analysis was conducted
for these 216 mutated genes using the web server for func-
tional interpretation of gene lists named g:Profiler. The
result showed that they were significantly enriched in the
processes and pathways associated with mutation and
cancer, including production of small RNA involved in
gene silencing by RNA, somatic diversification of
immune receptors via somatic mutation, somatic hypermu-
tation of immunoglobulin genes, colorectal cancer, lung
cancer, pancreatic cancer, pathways in cancer, etc. (Figure
S1(a)). Not surprisingly, their abnormalities can lead to the
occurrence and development of cancer.

Table 2. The clinical information of 20 cancer patients.

number

Abbreviated

name Gender age Diagnosis Site of metastases

TNM

stage Treatment

1 BRCA1 Female 40 Breast cancer Liver, bone Ⅵ Chemotherapy, endocrine therapy

2 CGSC1 Female 56 Cecal gland squamous

cell carcinoma

Liver III Surgery and chemotherapy

3 COAD1 Male 50 Colon adenocarcinoma lung Ⅵ Chemotherapy

4 COAD2 Female 48 Colon adenocarcinoma NA III Surgery and chemotherapy

5 COAD3 Male 43 Colon adenocarcinoma Liver Ⅵ Surgery and chemotherapy

6 COAD4 Male 75 Colon adenocarcinoma Liver Ⅵ Chemotherapy

7 COAD5 Male 67 Colon adenocarcinoma liver Ⅵ Surgery and chemotherapy

8 COAD6 Male 73 Colon adenocarcinoma Liver Ⅵ Surgery and chemotherapy

9 ESCA1 Male 53 Esophageal cancer Supraclavicular

lymph node

III Radiotherapy and chemotherapy

10 LUAD1 Male 29 Lung adenocarcinoma Liver, brain, bone Ⅵ TKI target treatment

11 LUAD2 Female 48 Lung adenocarcinoma NA III Surgery and chemotherapy

12 LUAD3 Female 60 Lung adenocarcinoma NA II TKI target treatment

13 LUAD4 Male 64 Lung adenocarcinoma Pleural effusion III TKI target treatment

14 LUSC1 Male 72 Lung squamous cell carcinoma NA Ⅵ Radiotherapy and chemotherapy

15 PAAD1 Female 62 Pancreatic adenocarcinoma Pelvic peritoneum III Chemotherapy

16 READ1 Male 56 Rectal adenocarcinoma Local recurrence III Radiotherapy and chemotherapy

17 SARC1 Female 60 Clear cell carcinoma of left heel Left groin, side of the

lumbar spine

Ⅵ Chemotherapy

18 SARC2 female 47 Leiomyosarcoma of the

abdominal cavity

NA III Surgery and chemotherapy

19 STAD1 Male 65 Stomach adenocarcinoma Bone Ⅵ Surgery and chemotherapy

20 UCEC1 Female 67 Uterine corpus endometrial

carcinoma

NA III Surgery and chemotherapy
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The landscape of copy number variants among all
patients in tissues and plasma

The copy number variation spectrum of 387 autosomal
genes was obtained by applying VarScan software and
“CNTools” and “cghMCR” R packages (Materials and
Methods). The global heat map of the segment.mean is
shown in Figure 2(a). The segment.mean refers to the log-
arithm of the ratio of the copy number of tumor sample to
the normal control which is an indicator of the change in
the copy number. In general, the copy number is considered
to be amplification if the segment.mean is greater than 0.25
and the copy number is considered to be deletion if the
segment.mean is less than �0.25 (the default threshold for
most software). Here we refer to these two thresholds to
identify the genes that own the copy number amplification
and the copy number deletion variation in each sample.
The number of genes with copy number variants per
sample ranged from 5 to 209. Specifically, the number of
genes that undergo copy number amplification variation
ranged from 0 to 142 and the number of genes that own
copy number deletion variation ranged from 2 to 134. The

specific numbers of copy number variations in tissue,
plasma and the consistence in tissue and plasma for each
specific patient are shown in Supplementary Table S3. The
consistent CNVs in tissue and plasma were seen as the can-
didate biomarkers in blood. It is noteworthy that even
among individuals with the same cancer, the heterogeneity
of copy number variation is greater than somatic
mutations.

The functional analysis of genes with copy number var-
iation showed that they were mainly involved in the GO
terms of regulation of cell population proliferation, apopto-
tic process, cell death, programmed cell death, immune
system development, response to chemical and regulation
of cell differentiation, and many cancer-related pathways
such as colorectal cancer, hepatocellular carcinoma, pros-
tate cancer, gastric cancer, pancreatic cancer, breast cancer
and pathways in cancer, etc. This suggests that variations in
these genes can make a significant impact on the develop-
ment of cancers.

Liquid biopsy has an important significance when used
to discover biomarkers of tumor metastasis, but this must

Figure 1. Somatic mutation landscapes in the tissues and plasma of all patients. (a) Mutation landscape map for SNVs, each blue block represents the occurrence of

mutation in this gene in the sample. In this figure, we deleted the mutations that existed in only one sample and the mutations that existed only in the tissue of LUSC1

and SARC2 or only in the tissue of LUAD3 and SARC2 to ensure that the figure was fit for visualization. (b). The total number of mutations that occurred on each gene in

panel A. (c) Mutation landscape map for indels, each blue block represents the occurrence of mutation in this gene in the sample. (d) The total number of mutations that

occurred on each gene in panel C. (e) The counts of silent variations and nonsilent variations for SNVs in each sample. (f) The counts of silent variations and nonsilent

variations for indels in each sample. (A color version of this figure is available in the online journal.)
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be based on the fact that ctDNA in plasma and primary
tumor tissue has a certain consistency in tumor biomarkers.
Therefore, we still focused on the reproducibility of the
copy number variations in plasma for that in tumor tissues.
By calculating SD of the gene set P in the plasma with copy
number variation and the gene set T in the tissue with copy
number variation (Materials and Methods), we found that
73% (24 out of 33) of the SDs that can be calculated imply
that the association between tissue and plasma copy
number amplification or deletion variations is non-
random. And the correlations between almost all of the
tissue and plasma gene pairs with an SD greater than 0.1
(19 out of 24) are significant (hypermetrological test, formu-
la 1), with only one exception which is slightly greater than
the 0.05 level (Supplementary Table S3). This suggests that
the liquid biopsy used to speculate variations occur in
tumor tissues is reliable.

Next, we concerned the recurrent copy number variation
genes among all patients. Genes with frequent copy
number variation among multiple cancers may have the
potential as markers for same treatment for multiple can-
cers (homotherapy for heteropathy). The recurrent copy
number amplification variation genes were defined in this
study as the genes that have copy number amplification
variation in more than 10 samples (including 10, 25%)
and that have copy number deletion variation in no more
than 10 samples. Similarly, we defined the recurrent copy
number deletion variation genes as the genes that have
copy number deletion variation in more than 10 samples
and that have copy number amplification variation in no
more than 10 samples. This strict definition standard guar-
antees the accuracy of marker identification. Finally, 19
recurrent copy number amplification variation genes and
59 recurrent copy number deletion variation genes were
identified (Figure 2(b)).

The gene ontology and KEGG pathway enrichment
analysis showed that the recurrent copy number amplifica-
tion variation genes were mainly involved in the positive
regulation of metabolic, biosynthetic, apoptotic, develop-
mental and cellular processes, and many cancer-related
pathways (Figure S1(b)). While the recurrent copy
number deletion variation genes were mainly involved in
the processes of response to stimulus, chemical stimulus
and stress, regulation of cell proliferation, cell differentia-
tion, cell death, and many cancer-related pathways (Figure
S1(c)). The recurrent copy number amplification variation
genes and the recurrent copy number deletion variation
genes were involved in different aspects of biological pro-
cesses but were all related to cancer. Theymay be the poten-
tial therapeutic marker for adjuvant chemotherapy for
multiple cancers.

The prognostic biomarkers screening for cancers

The screening of cancer prognostic biomarkers provides
important guidance for clinicians to understand the
patient’s condition and to switch treatment protocols in
time. Therefore, we investigated whether the consistent
mutations in patient tissue and plasma in our study could
be used as markers for cancer prognosis. We obtained the
mutation data for SNPs and small INDELs from cancer
patients matching the cancer type in our study from the
TCGA database, as well as segments data for copy
number variation. Finally, we obtained patient data for
nine cancers (except CGSC which was no data in TCGA
and PAAD which no common mutation detected in our
study). In addition, we also obtained survival data for
these cancer patients from the TCGA database. For the
copy number segments data, the R package “CNTools”
and “cghMCR” were also used to integrate them into
gene-level copy number variation profiles and the copy
number is considered to be amplification if the segment.
mean is greater than 0.25 and the copy number is consid-
ered to be deletion if the segment.mean is less than�0.25 as
mentioned before.

For each consistent mutation in tissue and plasma
detected in our study, we examined the difference in sur-
vival between patients with this mutation in the corre-
sponding cancer patients in the TCGA database and those
who did not. The statistical significance was tested using
the log-rank test method. Finally, we obtained 31 unique
gene markers as prognostic biomarkers for seven cancer
types (Supplementary Table S4). Specifically, there are 10
prognostic markers for BRCA, 15 prognostic markers for
COAD, 3 prognostic markers for ESCA, 1 prognostic
marker for LUAD, 1 prognostic marker for READ, and 2
prognostic markers for SARC, and 2 prognostic markers for
UCEC. Among these markers, the loss of GSTM1 gene
serves as a common prognostic marker for BRCA, COAD,
and READ, and the loss of NRAS gene serves as a common
prognostic marker for BRCA and COAD (Figure 3).

GSTM1 genetic variants have been proved associated
with the survival in breast cancer28,29 and many other can-
cers.30,31 Bansal et al.28 have proposed that GSTM1 gene
deletion was significantly correlated with breast cancer in

Table 3. The number of consistent somatic gene mutations detection in

tissues and plasma for 20 patients.

Tissue

SNV

plasma Consistent Tissue

Indel

plasma Consistent

COAD1 5 2 2 0 0 0

COAD2 3 0 0 0 0 0

COAD3 4 4 3 0 0 0

COAD4 5 5 4 1 2 1

COAD5 3 2 2 1 1 1

COAD6 4 1 0 1 0 0

LUAD1 1 2 1 1 0 0

LUAD2 0 0 0 0 0 0

LUAD3 71 0 0 0 0 0

LUAD4 4 0 0 1 0 0

LUSC1 89 0 0 1 0 0

SARC1 0 0 0 0 0 0

SARC2 135 1 1 7 0 0

ESCA1 4 3 3 1 1 1

BRCA1 4 1 0 0 0 0

CGSC1 3 1 0 1 0 0

PAAD1 2 2 1 0 1 0

UCEC1 2 1 1 1 1 1

READ1 11 1 1 0 0 0

STAD1 0 3 0 1 1 1
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2015,28 and our study further illustrated that GSTM1 gene
deletion was associated with poor prognosis in breast
cancer compared with those without this mutation. And
NRAS mutation has been studied to have prognostic
values in colorectal cancer patients.32 This implies that
these cancers share some similar patterns, consistent with
previous studies. Our study further proves and comple-
ments the findings of previous studies. It is worth noting
that almost all of these gene mutations are risk factors of
survival (HR< 1), only KIF1B gene deletion (Figure 3(f))
was exceptional which was a protective factor
(HR¼ 1.9322, 95% CI 1.0603–3.5210, P¼ 0.0287)).

The construction of drug-mutation network and
analysis

In order to predict drugs that correspond to gene mutations
that occur in the plasma, the drug-mutation network
(DMN) was constructed. First, a drug-mutation back-
ground network was constructed using the 1557 drug-
mutation relations obtained from OncoKB database,
VarDrugPub database, and published literatures as
described in the section of materials and methods. In the
network, there was an edge represents sensitive or resistant
between the gene mutation and the corresponding drug.

Figure 2. Heat maps of copy number segment.means. (a) The copy number variation landscape for all patients in global. (b) The copy number variation landscape for

19 recurrent copy number amplification variation genes and 59 recurrent copy number deletion variation genes. (A color version of this figure is available in the online

journal.)
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Eventually, we got a network which includes 1004 nodes
(658 gene mutations and 346 drugs) and 1557 edges (Figure
4(a)).

The most important key nodes (the nodes with the larg-
est degree) in the network were the BRAF V600E and EGFR
T790M mutation. They were related with 91 and 62 drugs,
respectively. And they were famous cancer-derived onco-
genic mutation in multiple cancer types. Oncogenic BRAF
V600E substitutions are observed primarily in melanoma,
colon cancer, and non-small cell lung cancer, but have been
identified in multiple tumor types. Klempner et al.33

described the recurrent BRAF mutations in advanced
high-grade colorectal neuroendocrine tumors and identify
a BRAF alteration frequency of 9% in 108 cases. Besides,
EGFR mutation was also an important variation which
exerts synergistic antitumor interactions with several cyto-
toxic drugs.34

For the 20 patients, we take all of the common mutations
including SNVs, indels, and CNVs in tissue and plasma
ctDNA in each of them as the candidate mutations. The
common mutations can be regarded as stable mutations
occurred in patients. There were 32 common SNVs, 11
common indels, and 258 common CNV genes in total for
20 patients. These mutations were mapped to 151 unique
genes. Then these gene mutations were taken as seed nodes
into the network and along with their first neighbors were
extracted to build a subnet (Figure 4(b)). In the subnet, there
were 9 gene mutations in our study connected by 25 drugs
mapped into the mutations in the network. These nine gene

mutations were corresponding to five cancer types in our
study. In particular, TP53 R273C in READ, TSC2 Deletion in
LUAD, CCND1 Amplification in ESCA, FGFR1
Amplification in BRCA, KRAS G12D, TP53 V216M, TP53
R248Q, FLT1 Amplification, and FLT3 Amplification in
COAD. These nine mutations can be served as drug bio-
markers in the blood (we defined B-Mut-9). When the
liquid biopsy detects these mutations, they represent muta-
tions in the corresponding tumor tissues. It is worth noting
that the TP53 and KRAS genes were the most recurrent
mutations found in the previous analysis. Three of the
nine drug markers were mutations that occurred in TP53
gene. The TP53 gene is the most closely related gene to
human cancers that has been discovered so far and is an
important gene that prevents normal cells from becoming
cancerous cells. The 25 drugs connected with themwere the
effective drugs related to these cancers. In addition, the
drugs which connected with gene mutations in multiple
cancer types may be used as spectral drugs for multiple
cancers. For example, doxorubicin can be used to treat
both READ and COAD. This implement the idea of differ-
ent diseases treated with same treatment regimen. The
method in our study can provide a reference for clinicians
in selecting medication regimens.

The drug efficacy prediction for TCGA patients

In order to take advantage of the established network and
the B-Mut-9, we have found to predict the efficacy of drugs
for patients with certain gene mutations in plasma.

Figure 3. Kaplan–Meier plots for patients with gene mutation and who did not in cancers. (a) Kaplan–Meier plot for GSTM1 deletion group and the control group in

COAD. (b) Kaplan–Meier plot for GSTM1 deletion group and the control group in BRCA. (c) Kaplan–Meier plot for GSTM1 deletion group and the control group in READ.

(d) Kaplan–Meier plot for NRAS deletion group and the control group in COAD. (e) Kaplan–Meier plot for NRAS deletion group and the control group in BRCA. (f)

Kaplan–Meier plot for KIF1B deletion group and the control group in SARC. (A color version of this figure is available in the online journal.)
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We obtained the large sample dataset from TCGA database.
The mutation data for SNPs and small INDELs and the
segments data for copy number variation of nine cancers
from the TCGA database used before were also employed
for this analysis. Here we use the mutations detected
in these patient tissues to hypothesize their plasma
mutations. An edge was generated between one patient
and one gene mutation in the drug-mutation subnetwork
(Figure 4(b)) if this mutation occurred in this patient to
construct a drug-mutation-patients network (DMPN)
(Figure 5). To be more specific, the DMPN contained the
B-Mut-9 we found above and the drugs as well as the
patients who have been detected for these mutations.
The numbers of mutations of B-Mut-9 detected in these
nine cancers were 8 for BRCA, 8 for COAD, 8 for ESCA, 9
for LUAD, 7 for LUSC, 8 for READ, 6 for SARC, 8 for STAD,
and 8 for UCEC. The sensitive drugs that were originally
linked to the gene mutation were considered to be
effective drugs for this mutation in the specific patient.
In other words, the drugs those are effective for patients
were obtained by two step neighborhood through the gene
mutations.

Through the drug-mutation-patients network, we
obtained drugs that are suitable for patients with these
nine cancer types through the drug biomarkers B-Mut-9
(Supplementary Table S5). This provides a certain reference
for clinicians in choosing drug plans. If a new tumor patient
arrived and the biomarkers in B-Mut-9 are detected in their
plasma, then clinicians can consider using these drugs to
treat them. The network in our research can also be

transplanted to other studies to screen for drugs suitable
for cancer patients.

In addition, in order to verify the accuracy of the drugs
for treating cancers obtained from the network, we com-
pared the predicted drugs in the network for patients of
each cancer with the patient’s medication information in
the clinical information tables of TCGA patients. We
found a total of 92 pairs of patient medication information
from 9 cancers that corresponded to the network.
Specifically, there are 14 pairs in BRCA, 8 pairs in COAD,
9 pairs in ESCA, 20 pairs in LUAD, 4 pairs in LUSC, 4 pairs
in READ, 8 pairs in SARC, 5 pairs in STAD, and 20 pairs in
UCEC. Among these 92 pairs of relationships, there were 30
pairs whose therapeutic effects were absent. In the remain-
ing 62 pairs of relationships, there were 44 pairs (71%)
whose treatment effects showed effective. This result indi-
cates that the suitable prediction of our network of drugs
for cancer patients through genetic mutations is effective.

Discussion

Liquid biopsy as a non-invasive monitoring indicators of
cancer diagnose, metastasize, and recurrence has been
attracting more and more attention. The detection of bio-
markers in blood has an important advantage for early
detection of tumors or metastases and relapse.35,36 It can
also be used for dynamic monitoring of early recurrence
of cancer, and can even detect signs of cancer recurrence
more than a year before imaging methods.37 The cell-free
circulating tumor DNA (ctDNA) in plasma from peripheral

Figure 4. The drug-mutation network (DMN). (a) Drug–mutation network which includes 1004 nodes and 1557 edges. Blue circles represent mutations, orange

triangles represent drugs. The sizes of the nodes are represented by the sizes of the nodes’ degrees. Solid lines represent drug sensitivity and dashed lines represent

tolerance. (b) The DMN subnet which was extracted from DMN through the commonmutations including 32 common SNVs, 11 common indels, and 258 common CNV

genes in tissue and plasma ctDNA as the seed nodesmapped into the network and extracted along with their first neighbors. (A color version of this figure is available in

the online journal.)
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blood provides an opportunity for noninvasive sampling of
tumor DNA. It has been an important biomarker for tumor
in blood.

CtDNA retains the characteristics of primary tissue to a
certain extent, in other words, it has a high consistency with
the primary tissue, including DNA methylation,38,39 muta-
tion,40,41 and so on. The characteristics of tumor in the pri-
mary tissue can be reflected by ctDNA.42 Simultaneous
detection of these two types of data (primary tissue and
plasma ctDNA) of same patient allows us to clearly under-
stand the degree of tissue and plasma consistency and the
types of mutation in plasma that can be used instead of
tissue detection.

Here we present the 416 tumor-related driver genes.
And the exon sequencing of these 416 genes was performed
on 20 tumor patients in 11 cancers to obtain their mutant
landscape. By comparing the coincidence degree of inter-
cancer mutations, it was found that the degree of overlap
between the tissues and plasma of different patients was
consistent, i.e. the coincidence degree of the mutant genes
between the same cancers or the same tissue-derived can-
cers was higher, which provided the initial foundation for
plasma detection instead of tissue. Furthermore, we accu-
rately quantify the degree of substitution of plasma to
tissue to prove that is feasible for plasma detection instead
of tissue biopsy. Our results can provide a basis for the
reliability of whether a mutation that detected by liquid
biopsy can reveal a real mutation in cancer tissue.
Besides, the screening of cancer prognostic biomarkers of
mutation level provides important guidance for clinicians
to monitor the patient’s condition and to switch treatment
protocols in time.

Chemical drug therapy and targeted drug therapy are
the the most universal means of current cancer treatment,
and the drug selection is critical to the efficacy of the
patients. And when some gene mutations occur in the
tumors, these mutations will have an impact on the efficacy
to the drugs. Therefore, it is necessary to know the relation
between gene mutations and the efficacy to drugs. In this
study, the networks were used to analyze the current sus-
ceptibility of drugs that have been reported to be affected
by gene mutations in cancers. Effective drugs related to
gene mutations in the cancers can be obtained, providing
a reference for clinicians in the selection of drug therapy for
specific cancer type. The consistent mutations in tissue and
plasma of our study mapping to the network were nine
gene mutations (B-Mut-9) which was proved as the drug
biomarkers in blood. From the network, we also obtained
the same treatment regimens for different diseases and
understand the mechanisms of them.

The total number of patients in this study as well as the
number of patients with each type of cancer is not very
adequate to study which is one of the limitations of this
study. But most of our research results are based on the
networks, rather than using mathematical statistics to iden-
tify the differences, which greatly reduces the impact of the
sample number. As the sample size increases, our collection
of blood markers will also increase, which can provide
more liquid biopsy markers that can replace tissue biopsies
for clinicians. In addition, due to the monotony of our sam-
pling, there is a lack of research on cancer metastasis, so
further analysis of larger sample sizes and time series sam-
pling of multiple processes is necessary.

Figure 5. The drug-mutation-patients network. The sizes of the nodes are represented by the sizes of the nodes’ degrees. Different colors of nodes represent patients

with different cancer types and drugs as well as gene mutations. (A color version of this figure is available in the online journal.)
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